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1. Gerneral materials and instrumentation

All reagents and deuterated solvents purchased as analytical grade and used without further purification.
Column chromatography was performed using 300-400 mesh silica gel. Nuclear magnetic resonance
spectra were afforded with Bruker Avance 400 MHz or 600 MHz pectrometer. *H and **C NMR chemical
shifts are reported relative to residual solvent signals, and *:P{*H} NMR chemical shifts are referenced to
an external unlocked sample of 85% H3PO4 (6 0.0). Chemical shifts (ppm) were reported in parts per
million (ppm). Coupling constants(J) were reported in Hertz. Multiplicity reported using the following
abbreviations: s (singlet), d(doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), dt
(doublet of triplet). Mass spectra were recorded on a Micromass Quattro Il triple-quadrupole mass
spectrometer using electrospray ionization with a MassLynx operating system. The UV-vis experiments
were conducted on Lambd 950 absorption spectrophotometer. The fluorescent experiments were
conducted on a Hitachi F-7000 fluorescence spectrophotometer. Phase textures of all compounds were fully
characterized by polarizing optical microscopy (Olympus BX51-P) in conjunction with a heating stage
(Linkam LTS420E) and controller (T95-HS). Optical investigations were carried out under equilibrium
conditions between two glass slides that were used without further treatment. Transition enthalpies were
determined as obtained from differential scanning calorimetry (DSC) which were recorded on a TA
DSC250 (heating and cooling rate: 10 K/min, peak temperatures).

Synchrotron X-ray diffraction and electron density reconstruction: High-resolution small-angle powder
diffraction experiments were recorded on Beamline BL16B1 at Shanghai Synchrotron Radiation Facility,
SSRF. Samples were held in evacuated 1 mm capillaries. A modified Linkam hot stage with a thermal
stability within 0.2 °C was used, with a hole for the capillary drilled through the silver heating block and
mica windows attached to it on each side. A MarCCD detector was used. q calibration and linearization
were verified using several orders of layer reflections from silver behemate and a series of n-alkanes. The
measurement of the positions and intensities of the diffraction peaks is carried out using Galactic
PeakSolve™ program, where experimental diffractograms are fitted using Gaussian shaped peaks. The
diffraction peaks are indexed on the basis of their peak positions, and the lattice parameters and the space
groups are subsequently determined. Once the diffraction intensities are measured and the corresponding
space group determined, 3-d electron density maps can be reconstructed, on the basis of the general formula

E(xy) = Znk F(hk) exp[i2rn(hx+ky)] (Egation S1)
Here F(hK) is the structure factor of a diffraction peak with index (hk). It is normally a complex number and
the experimentally observed diffraction intensity.
I(hk) = K-F(hk)-F*(hk) = K:|F(hk)? (Egation S2)
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Here K is a constant related to the sample volume, incident beam intensity etc. In this paper we are only
interested in the relative electron densities, hence this constant is simply taken to be 1. Thus the electron
density
E(xy) = Znk sqrt[1(hk)] exp[i2z(hx+ky) +¢nk] (Egation S3)

As the observed diffraction intensity I(hk) is only related to the amplitude of the structure factor |F(hK)|, the
information about the phase of F(hk), #nk, can not be determined directly from experiment. However, the
problem is much simplified when the structure of the ordered phase is centrosymmetric, and hence the
structure factor F(hk) is always real and ¢n is either 0 or 7.

This makes it possible for a trial-and-error approach, where candidate electron density maps are
reconstructed for all possible phase combinations, and the “correct” phase combination is then selected on
the merit of the maps, helped by prior physical and chemical knowledge of the system. This is especially
useful for the study of nanostructures, where normally only a limited number of diffraction peaks are

observed.
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2. Synthetic Procedures and Characterization Data
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Scheme S1. Synthetic routes of Pt(I1) acceptor and chemical structures of compounds used. Conditions: a)
trimethylsiyl acetylene, Pd(PPhz)s, Cul, toluene; 82%; b) KF, MeOH/THF(1:1), rt; 90%; c) TsCl, NaOH,
DCM; 95%.

2-(2-(2-Methoxyethoxy)ethoxy)ethyl tosylate 5!, compound S252, S3%3, S4%3, S554) 5654 S7%5, S8%5, 5954,
S10%4, S11°%, 1a%2, 1b% and 1¢>* were synthesized according to the reported literature(In ref. $1-S5) and
some of the reported spectra are not shown.

The synthesis of compound 3a-3d uses conventional 3+3 reaction, whose quantitative yield is almost
100% as reporteds®S°,

Synthesis of compound S2
Compound S1 (0.3 g, 2.38 mmol), Pt(PEts).l2 (3.04 g, 4.22 mmol) were dissolved
BR F X o indry toluene (60 mL) ina 100 mL Schlenk flask, Cul (20 mg, 0.20 mmol) and dry

1~ y "l

PEt, Et,P
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diethylamine (10 mL) were added to the solution. Then the mixture was stirred at room temperature for 48
h under nitrogen. The product was concentrated to give a crude product which was purified by flash column
chromatography with dichloromethane: ethyl acetate (50:1, v/v) as the eluent to afford compound S2 as
light yellow solid (1.83 g, 62%) .52 'TH NMR (600 MHz, CDCls, 298K) & 7.20 (s, 1H), 7.12 — 7.06 (m, 3H),

2.24 — 2.19(m, 24H), 1.30 — 1.08 (m, 36H). 3P NMR (243 MHz, CDCls, 298K) & 8.45 (s, 1®Pt satellites,
Lpip = 2326.72 Hz).
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Fig. S1. *H NMR spectrum (600 MHz, CDCls, 298 K) recorded for S2.
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Fig. S2. 3'P{*H} spectra (243 MHz, CDCl3, 298 K) of S2.

Synthesis of compound l1a
Compound S2 (350 mg, 0.28 mmol), AgOTf (217 mg, 0.84 mmol) were added
EtR Z X PEts into a40 mL brown vial, then freshly distilled CH2Cl (20 mL) was added. The

Pt Pt,
PEt; E.F CT resulting mixture was stirred in the dark at room temperature for 12 h. After

TfO”
filtering off the heavy creasy precipitate through a glass fiber filter, the suspension was obtianed. The
solvent was removed under a flow of nitrogen to afford 1a as a white solid (49 mg, 95%).5? *H NMR (600
MHz, CD2Cl, 298K) & 7.79 (s, 1H), 7.23 (s, 3H), 2.04 (s, 24H), 1.33 — 1.01 (m, 36H). 3P NMR (243 MHz,

CD,Cly, 298K) & 21.84 (s, 1%Pt satellites, 1Jprp = 2220.29 Hz).
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Fig. S3. *H NMR spectrum (600 MHz, CD,Cl>, 298 K) recorded for 1a.
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Fig. S4. 3'P{*H} spectra (243 MHz, CD.Cl,, 298 K) of 1a.
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Synthesis of compound S3
OH 3,5-dibromophenol (5.0 g, 19.84 mmol), trimethylsiyl acetylene (12 mL, 79.40
mmol) were dissolved in dry tetrahydrofuran (60 mL) in a 100 mL Schlenk flask,
s =Z X ™S Pd(PPhazp)4 (2.29 g, 1.98 mmol), Cul (370 mg, 1.98 mmol) and dry triethylamine
(10 mL) were added to the solution. Then the mixture was cooled by liquid nitrogen, degassed and purged
with nitrogen for three times. The reaction mixture was stirred at 80°C for 48 h under nitrogen. After
cooling, the product was concentrated to give a crude product which was purified by flash column
chromatography with dichloromethane: petroleum ether (1:1, v/v) as the eluent to afford compound S3 (4.7
g, 82%) as a white solid.>3 *H NMR (600 MHz, CDCls, 298K) & 7.17 (t, J = 1.1 Hz, 1H), 6.88 (d, J = 1.2 Hz,
2H), 0.23 (s, 18H). 1*C NMR (151 MHz, CDCls, 298K) § 154.97, 128.43, 124.46, 118.91, 103.67, 94.98,
77.71, 77.21, 77.00, 76.79, -0.15. ESI-HR-MS: m/z 325.0555 [S3 + K], calcd. for [Ci6H22KOSi2]*,
325.0841.
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Fig. S5. 'H NMR spectrum (600 MHz, CDCls, 298 K) recorded for S3.
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Fig. S6. *C NMR spectrum (151 MHz, CDCls, 298 K) recorded for S3.
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Fig. S7. ESI-HR-MS spectrum of S3.
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Synthesis of compound S4
o Compound S3 (3.98 g, 13.89 mmol) and KF (2.42 g, 41.67 mmol) were dissolved in
MeOH/THF (60 mL, v/v =1:1). The reaction mixture was allowed to stir at room
/C\K temperature for 12 h, then filtered, the filtrate was collected, and the solvent was
removed under reduced pressure. The residue was purified by flash column
chromatography with dichloromethane: petroleum ether (1:2, v/v) as the eluent to afford compound S4
(1.78 g, 90%) as a white solid.>* *H NMR (600 MHz, CDCls, CDCls, 298 K) § 7.21 (d, J = 1.0 Hz, 1H), 6.95

(s, 2H), 3.07 (s, 2H). 3C NMR (151 MHz, CDCls, 298 K) § 155.06, 128.56, 123.63, 119.55, 82.20, 77.94.
ESI-HR-MS: m/z 143.0736 [S4 + H]*, calcd. for [C1o0H70]*, 143.0491.
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Fig. S8. 'H NMR spectrum (600 MHz, CDCls, 298 K) recorded for S4.
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Fig. S9. $3C NMR spectrum (151 MHz, CDCls, 298 K) recorded for S4.
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Ttem name: ZZY-54

Item description:
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Fig. S10. ESI-HR-MS spectrum of S4.

Synthesis of compound S5

N/ N/ N/ N
o O o o

311.1254,

Compound S4 (1.0 g, 7.03 mmol), 2-(2-(2-Methoxyethoxy)ethoxy)ethyl
v tosylate (2.56 g, 8.44 mmol) and K>COs (2.9 g, 21.1 mmol) were dissolved

in DMF (40 mL). After the reaction mixture was allowed to stir at 90 °C for

A\

residue was purified by flash column chromatography with petroleum ether:
ethyl acetate (3:1, v/v) as the eluent to afford compound S5 (2.06 g, 85%) as a colorless oil.>* *H NMR (600
MHz, CDCls, 298K) 6 7.20 (s, 1H), 7.01 (d, J = 1.1 Hz, 2H), 4.12 — 4.08 (m, 2H), 3.85 - 3.81 (m, 2H), 3.71
(dd, J=6.0, 3.5 Hz, 2H), 3.68 — 3.63 (m, 5H), 3.54 (dd, J = 5.5, 3.8 Hz, 2H), 3.37 (d, J = 4.6 Hz, 3H), 3.06
(s, 2H). 13C NMR (151 MHz, CDCls, 298K) § 158.20, 128.22, 123.21, 118.79, 82.38, 77.71, 71.76, 70.72,
70.49, 70.43, 69.37, 67.57, 58.87. ESI-HR-MS: m/z 311.1260 [S5 + Na]*, calcd. for [C17H20NaOa]",

S12
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Fig. S13. ESI-HR-MS spectrum of S5.

Synthesis of compound S6
Et,p. /! Compound S5 (0.17 g, 0.61 mmol), Pt(PEts)2l> (1.68 g, 2.45 mmol) were

Pt.
YA PE% dissolved in dry toluene (60 mL) in a 100 mL Schlenk flask, Cul (23 mg,

Y 4 4 o 0.12 mmol) and dry diethylamine (5 mL) were added to the solution. Then

\ the mixture was stirred at room temperature for 48 h under nitrogen. Then,

Et;P

pr"E%  the product was concentrated to give a crude product which was purified

| by flash column chromatography with dichloromethane: ethyl acetate
(30:1, v/v) as the eluent to afford compound S6.5* *H NMR (600 MHz, CDCls, 298K) & 6.82 (s, 1H), 6.67 (s,
2H), 4.10-4.06 (m, 2H), 3.86 —3.82 (m, 2H), 3.75-3.71 (m, 2H), 3.71 - 3.67 (m, 2H), 3.67 — 3.63 (M, 2H),
3.58 —3.54 (m, 2H), 3.38 (s, 3H), 2.28 — 2.14 (m, 24H), 1.22 — 1.10 (m, 36H). 3P NMR (243 MHz, CDCl;,
298K) & 8.51 (s, 1Pt satellites, *Jpr.p = 2325.02 Hz). ESI-HR-MS: m/z 1425.2100 [S6 + Na]*, calcd. for

[C41H7812NaO4P4Pt:] ", 1425.2128.
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Synthesis of compound 1b

ewp., O™ Compound S6 (50 mg, 0.035 mmol), AgOTf(27 mg, 0.106 mmol) were were
"PEt,

4 added into a 10 mL brown vial, then freshly distilled CH2Cl> (8 mL) was added.
\ - - - -
°e o o0 The resulting mixture was stirred in the dark at room temperature for 12 h.

\\P(pE.S After filtering off the heavy creasy precipitate through a glass fiber filter, the

Et;P” oTf

suspension was obtianed. The solvent was removed under a flow of nitrogen to
afford 1b as a white solid (49 mg, 95%).5* 'H NMR (600 MHz, CDCls, 298K) & 7.34 (s, 1H), 6.88 (s, 2H),
4.22—4.16 (m, 2H), 3.91 (d, J = 4.7 Hz, 2H), 3.78 (d, J = 4.6 Hz, 2H), 3.72 (s, 2H), 3.69 (s, 2H), 3.63 — 3.58
(m, 2H), 3.44 (s, 3H), 2.13 — 2.02 (m, 24H), 1.25 — 1.12 (m, 36H). 3P NMR (243 MHz, CDCls,, 298K) &
21.84 (s, 1°°Pt satellites, 1Jp.p = 2204.25 Hz). ESI-HR-MS: m/z 1148.4183 [1b — 20Tf]*, calcd. for
[Ca1H7804P4PL]*, 1148.4146.
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Fig. S17. *H NMR spectrum (600 MHz, CDCls, 298 K) recorded for 1b.

S17



—26.377
—21.838
—17.306

A J A
50 45 40 35 30 25 20 15 10 5 0 5 10
1 (ppm)
Fig. S18. 3P{H} spectra (243 MHz, CD,Cl;, 298 K) of 1b.
Intens. i 21.d: +MS, 0.0-0.3min #1-15
XIOE 340.2603
| 2500
2000
20l 1500 -
-
1000
500
i
1146 1147 1148 1149 1150 1151 1152 1150
m/z
104 579.1692
0.5+
724.1514
208.1817 1063.3435 1197.4348
004 l |l m l A ™ uML N A
200 400 600 800 1000 1200 1400 1600 1800 2000 m/z

Fig. S19. ESI-HR-MS spectrum of 1b.
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Synthesis of compound S7
Y Y v Methoxytriethylene glycol (5.0 g, 0.03 mol) was added to a dry 50 mL Schlenk flask.

HO
o o< Then, Na metal (190 mg) was added slowly and stirred under N. atmosphere at

A
100 °C for 1 hour. After the solution was cooled to 65 °C, and epichlorohydrin (0.63 mL, 0.005 mol) was
added drop-wise. Upon complete addition of epichlorohydrin, reaction mixture was heated to 100 °C, and
allowed to react for 3 days. After completion of the reaction, NH.CI (1.06 g, 0.02 mol) was added and
reacted at 100 °C for 1 h. The product was concentrated to give a crude product which was purified by flash
column chromatography with ethyl acetate: methanol (9:1, v/v) as the eluent to afford compound S7 as a
light yellowish 0il(3.2g, 28% ).5° *H NMR (600 MHz, CDCls, 298K) & 3.97 — 3.95 (m, 1H), 3.68 — 3.60

(m, 22H), 3.57 — 3.47 (m, 6H), 3.37 (s, 6H).
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Fig. S20. *H NMR spectrum (600 MHz, CDCls, 298 K) recorded for S7.

Synthesis of compound S8

TVl Compound S7 (1.24 g, 2.62 mmol), NaH (80 mg, 3.15 mmol) were dissolved in dry
TSO{Q\_/O\_/O\_/O\ tetrahydrofuran (40 mL) at ice bath conditions and stired for 15 minutes. TsCl (0.75
g, 3.94 mmol) was added to the solution. The reaction mixture was stirred at room temperature for 8 h under
nitrogen.Then the product was concentrated to give a crude product which was purified by flash column
chromatography with dichloromethane: methanol (80:1, v/v) as the eluent to afford compound S8 (2.93 g,

80%) as a colorless 0il.>> *H NMR (600 MHz, CDCls, 298K) § 7.80 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz,
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2H), 4.71 — 4.65 (m, 1H), 3.67 — 3.47 (m, 26H), 3.40 — 3.32 (M, 6H), 2.43 (s, 3H). 13C NMR (151 MHz,
CDCls, 298K) & 144.49, 133.99, 129.57, 127.99, 79.61, 71.87, 70.85, 70.54, 70.46, 70.31, 69.62, 58.99,
21.60. ESI-HR-MS: m/z 561.2340 [S8 + Na]*, calcd. for [C2sH42NaO1:1S]*, 561.2391.
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Fig. S21. *H NMR spectrum (600 MHz, CDCls, 298 K) recorded for S8.
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Fig. S22. 3C NMR spectrum (151 MHz, CDCls, 298 K) recorded for S8.
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Item name: ZZY-S8 Channel name: 2: Average Time 0.8678 min : TOF MS (50-2000) eV ESI+ : Combined

Item description:
L7e8
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Fig. S23. ESI-HR-MS spectrum of S8.

Synthesis of compound S9
4 Compound S8 (1.07 g, 1.98 mmol) and S4 (235 mg, 1.65 mmol) were
/o\_/o\_/o\_/o}—o dissolved in dry CH3CN (20mL). K>.CO3(0.64 g, 4.95 mmol) and KI (83 mg,
N\ K1) were added to the solution. The reaction mixture was stirred at 90 °C for
12 h under nitrogen atmosphere. Precipitated salts were removed by filtration and the crude product was
purified by flash column chromatography with dichloromethane: methanol (40:1, v/v) as the eluent to
afford compound S9 (0.84 g, 84%) as a colorless 0il.5* *H NMR (600 MHz, CDCls, 298K) & 7.20 (s,
1H), 7.10 (s, 2H), 4.52 (s, 1H), 3.68 — 3.59 (m, 24H), 3.55 — 3.52 (m, 4H), 3.37 (s, 6H), 3.05 (s, 2H); 13C
NMR (151 MHz, CDCls, 298K) 6 157.96, 128.70, 123.34, 120.66, 82.47, 77.70, 77.45, 71.89, 71.10,
70.62, 70.59, 70.52, 70.48, 70.45, 59.01. ESI-HR-MS: m/z 531.2566 [S9 + Na]", calcd. for

[C27H40NaOq]*, 531.2565.
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Fig. S26. ESI-HR-MS spectrum of S9.

Synthesis of compound S10
EtsPL,y Compound S9 (0.282 g, 0.55 mmol), Pt(PEtz)2l2 (1.52 g, 2.21 mmol) were

~ Y Y ) 3 dissolved in dry toluene (50 mL) in a 100 mL Schlenk flask, Cul (10 mg,
N :>_ 0.10 mmol) and dry diethylamine (10 mL) were added to the solution. Then

e P the mixture was stirred at room temperature for 48 h under nitrogen. The

product was concentrated to give a crude product which was purified by
flash column chromatography with dichloromethane: methanol (50:1, v/v) as the eluent to afford compound
S10 as a colorless 0il.>* *H NMR (600 MHz, CDCls, 298K) § 6.82 (s, 1H), 6.70 (s, 2H), 4.52 — 4.45 (m, 1H),
3.75—3.51 (m, 24H), 3.37 (s, 6H), 2.31 — 2.14 (m, 20H), 1.17 (dd, J = 16.0, 8.0 Hz, 29H). 3P NMR (243
MHz, CDCls, 298K) & 8.52 (s, 1Pt satellites, *Jpip = 2323.80 Hz). ESI-HR-MS: m/z 1645.3436 [S10 +

Na]*, calcd. for [Cs1HggloNaOgP4Pt2]*, 1645.3438.
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Fig. S29. ESI-HR-MS spectrum of S10.

Synthesis of compound 1c

o Compound S10 (342 mg, 0.21 mmol) and AgoTf (632 mg, 0.63 mmol) were

S~ # ™° added into a 40 mL brown vial, then freshly distilled CH2Cl> (30 mL) was
N ¢ 0 o
O A_PAP ° added. The resulting mixture was stirred in the dark at room temperature for 16
\ e . . :
Et\p—"&‘PE" h. After filtering off the heavy creasy precipitate through a glass fiber filter, the

suspension was obtained. The solvent was removed under a flow of nitrogen to afford 1c as a white solid
(332 mg, 95%).5* *H NMR (600 MHz, CD,Cl,, 298K) & 7.27 (s, 2H), 6.98 (s, 1H), 4.98 (s, 2H), 3.79 (t, J =
77.4 Hz, 28H), 3.44 (d, J = 6.9 Hz, 7H), 2.09 (s, 24H), 1.20 (dd, J = 16.0, 7.9 Hz, 34H). 3'P NMR (243 MHz,
CD2Cl,, 298K) & 21.84 (s, 1*°Pt satellites, 1Jpr.pr = 2216.40 Hz). ESI-HR-MS: m/z 1667.4568 [1c + H] ¥,
calcd. for [Cs3H99F6015P4Pt2S2] ¥, 1667.4570.
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Fig. S32. ESI-HR-MS spectrum of 1c.

Compound S11 was synthesized according to the above procedure St. 'H NMR

ououoqucoon (600 MHz, CDCls, 298K) 5 7.35 (s, 2H), 4.27 — 4.17 (m, 6H), 3.89 — 3.78 (m, 6H),

—0 O o o
/N

3.76 — 3.70 (m, 6H), 3.69 — 3.61 (m, 12H), 3.57 — 3.52 (m, 6H), 3.37 (s, 9H); 13C

NMR (151 MHz, CDCls, 298K) & 170.05, 152.11, 142.86, 124.19, 109.28, 72.26, 71.74, 70.64, 70.50,
70.42, 70.36, 70.32, 69.46, 68.67, 58.83. ESI-HR-MS: m/z 631.2936 [S11 + Na]*, calcd. for

[C2sHagNaO14]", 631.2938.
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Item name: ZZY-511 Channel name: 2: Average Time 0.5613 min : TOF MS (30-2000) 6eV ESI+ : Centroided : Combined
Ttem description:
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Fig. S35. ESI-HR-MS spectrum of S11.

Synthesis of compound S13

I anVanVant ) Compound S4(0.5 g, 3.52 mmol) and S11 (2.56 g, 4.22 mmol) were dissolved
7

OMOMOMOQ—{ in dry dichloromethane (40 mL). EDCI (0.81 g, 4.22 mmol) and DMAP (85.9

AALS \ Mg, 0.71 mmol) were added to the solution. The reaction mixture was stirred

at room temperature for 16 h under nitrogen.Then the product was concentrated to give a crude product
which was purified by flash column chromatography with dichloromethane: methanol (50:1, v/v) as the
eluent to afford compound S13 (2.1 g, 85%) as a colorless oil. *H NMR (600 MHz, CDCls, 298K) & 7.49 (d,
J=1.1Hz, 1H), 7.41 (s, 2H), 7.30 (s, 2H), 4.27 — 4.19 (m, 6H), 3.88 — 3.79 (m, 6H), 3.74 — 3.70 (m, 6H),
3.67 —3.60 (m, 12H), 3.55 —3.50 (m, 6H), 3.36 (s, 9H), 3.12 (s, 2H). *C NMR (151 MHz, CDCl3, 298K) &
164.02, 152.36, 150.38, 143.41, 133.03, 125.87, 123.64, 123.34, 109.58, 81.53, 78.81, 72.38, 71.80, 71.78,
70.71, 70.56, 70.47, 70.44, 70.41, 69.49, 68.87, 58.89.ESI-HR-MS: m/z 755.3292 [S13 + Na]*, calcd. for
[CasHs2Na014]", 755.3249.
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Fig. S38. ESI-HR-MS spectrum of S13.

Synthesis of compound S14
Compound S13 (0.53 g, 0.73 mmol), Pt(PEts)2l2 (2.0 g, 2.91 mmol) were
o 6 o0 0 o / dissolved in dry toluene (60 mL) in a 100 mL Schlenk flask, Cul (23 mg,
c{h__j\)/\})/\})45:__:>>4{ . . -
o o o s o 0.12 mmol) and dry diethylamine (5 mL) were added to the solution.

/N

1
EtsP._/
P

V2R VAR Wan “PE

\ Then the mixture was stirred at room temperature for 48 h under nitrogen.

b PEts
EtP™ |

The product was concentrated to give a crude product which was purified
by flash column chromatography with dichloromethane: methanol (60:1, v/v) as the eluent to afford
compound S14 as a colorless oil. *H NMR (600 MHz, CDCls, 298K) & 7.43 (s, 2H), 7.08 (s, 1H), 6.86 (s,
2H), 4.27 — 4.21 (m, 6H), 3.90 — 3.80 (m, 9H), 3.76 — 3.71 (m, 7H), 3.69 — 3.60 (m, 12H), 3.54 (dd, J = 9.6,
4.9 Hz, 6H), 3.37 (d, J = 6.6 Hz, 9H), 2.26 — 2.18 (m, 24H), 1.21 — 1.13 (m, 36H). 3P NMR (243 MHz,
CDCls, 298K) & 8.59 (s, 9Pt satellites, 1Jprp = 2321.14 Hz). ESI-HR-MS: m/z 1869.4122 [S14 + Na]*,
calcd. for [Ce2H11012NaO14P4Pt:]*, 1869.4122.

S31



cUUU

H,0

)

Fr992

=T
= 0g’h

=6lc

35 30 25 20 15 10 05 00 -05

4.0

0=

1 (p

85 80 75 70 65 60 55 50

9.0

10.0 95

Fig. S39. 'H NMR spectrum (600 MHz, CDCls, 298 K) recorded for S14.

€18'e—

8858

GoEEl—

_J

I

g
-20

T
-15

T
-10

T
10

T
15

T
20

T
25

T
30

r
35

1 (ppm)

Fig. S40. *'P{*H} NMR spectrum (243 MHz, CDCls, 298 K) recorded for S14.

S32



Intens. {
x10%

1.25

755.3285

32.d:+MS, 0.0-0.2min #1-13

11111111

zzzzzzzz

“ |

|
i “ H |
| 2 569,933 871921
oo gz N ) s Ko Laesd | Lo
"

864 4443
0.0} b,

11111111

1
11111111

vvvvvvvv

ssssssss

561.2363
1869.4123

1645.3419

‘“ l . VY ad

600 800 1000 1200 1400

(NTR A
400

0.00 b
200

1600 1800 2000 m/z

Fig. S41. ESI-HR-MS spectrum of S14.

Synthesis of compound 1d

Et,p. OTF

Compound 5 (300 mg, 0.162 mmol) and AgOTf (166 mg, 0.649 mmol)

& Y Y % / P et
S @42’ 4 were added into a 40 mL brown vial, then freshly distilled CH2Cl> (30 mL)
AR ’ \ was added. The resulting mixture was stirred in the dark at room
b PEt

a glass fiber filter, the suspension was obtained. The solvent was removed under a flow of nitrogen to afford
1d as a white solid (285 mg, 93%). 'H NMR (600 MHz, CDCls) & 7.73 (s, 1H), 7.50 (s, 2H), 7.05 (s, 2H),
4.42 (s, 6H), 4.15 — 3.53 (m, 30H), 3.43 (s, 9H), 2.07 (s, 24H), 1.24 — 1.13 (m, 36H). 3P NMR (243 MHz,
CD2Cl,) § 21.95 (s, 1Pt satellites, Jp.p = 2208.14 Hz). ESI-HR-MS: m/z 1913.5911 [1d + Na]*, calcd. for

[CoaH110FsNaO20P4P1S2]*, 1913.5074.

temperature for 16 h. After filtering off the heavy creasy precipitate through
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Fig. S44. ESI-HR-MS spectrum of 1d.

A solution of dipyridyl donor ligand (278.4 mg, 0.152 mmol) in
anhydrous dichloromethane (20 mL) was added dropwise to a
solution of compound 1a (195.2 mg, 0.159 mmol) in anhydrous
dichloromethane (20 mL) under continuous stirring. The
reaction mixture was stirred at room temperature for 16 h. The
solvent was removed under nitrogen flow to afford hexagon 3a
(quantitative yield). *tH NMR (600 MHz, CD,Cl,, 298K) § 8.80
—8.71 (m, 12H), 7.95 (s, 12H), 7.81 (s, 3H), 7.71 (d, J = 7.2 Hz,

12Ha2s
OC1zHzs

12H), 7.61 (s, 6H), 7.34 (d, J = 18.8 Hz, 24H), 7.26 (s, 3H), 7.21 (d, J = 8.3 Hz, 12H), 7.06 (d, J = 7.7 Hz,

12H), 4.09 — 3.93 (m, 36H), 1.97 — 1.64 (m, 108H), 1.53 — 1.21 (m, 324H), 1.20 — 1.16 (m, 108H), 0.88 —
0.86 (m, 54H). *C NMR (151 MHz, CDCls, 298K) & 164.95, 152.94, 152.37, 150.82, 150.13, 146.36,
143.06, 140.14, 139.04, 132.84, 132.47, 127.13, 125.12, 123.96, 123.67, 122.91, 121.84, 121.45, 119.71,
117.59, 108.47, 73.57, 69.22, 31.91, 31.90, 30.33, 29.72, 29.71, 29.68, 29.64, 29.61, 29.55, 29.38, 29.34,
29.28, 26.08, 26.03, 22.67, 14.10, 7.85.3'P NMR (243 MHz, CD2Cl,, 298K) & 15.28 (s, 1°°Pt satellites, *Jptp
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2245.32 Hz). ESI-TOF-MS: m/z 1410.0023 [3a — 60Tf]°*, 1721.6698 [3a — 50Tf]**, 2189.3977 [3a —

4OTf]**, 2968.9067 [3a — 30T,
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Fig. S46. °C NMR spectrum (151 MHz, CDCls, 298 K) recorded for 3a.
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Fig. S47. 3P{*H} NMR spectrum (243 MHz, CD,Cl>, 298 K) recorded for 3a.
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Synthesis of 3b

s ﬁw Y@ ,,,,, A solution of dipyridyl donor ligand (331.8 mg, 0.229
e : T mmol) in anhydrous dichloromethane (15 mL) was added
RN A dore JJJ\ dropwise to a solution of compound 3 (420 mg, 0.229

mmol) in anhydrous dichloromethane (15 mL) under

ws  CONtinuous stirring. The reaction mixture was stirred at

< room temperature for 16 h. The solvent was removed under

nitrogen flow to afford hexagon 3b (quantitative yield). *H

NMR (600 MHz, CD2Cl», 298K) 6 8.71 — 8.65 (m, 12H),

7.94 (s, 12H), 7.72 (d, J = 7.7 Hz, 12H), 7.63 (s, 3H), 7.35 (s,

12H), 7.32 (s, 12H), 7.21 (dd, J = 13.0, 7.5 Hz, 12H), 7.06 (d,

J=7.0 Hz, 12H), 6.77 (s, 6H), 4.11 (s, 6H), 4.07 — 3.95 (m, 36H), 3.81 (s, 6H), 3.66 (s, 6H), 3.63 (s, 6H),

3.59(d, J=4.3 Hz, 6H), 3.50 (s, 7H), 3.33 (d, J = 2.2 Hz, 6H), 1.89 — 1.68 (m, 108H), 1.51 — 1.21 (m, 324H),

1.22 —-1.12 (m, 108H), 0.91 — 0.82 (m, 54H). 3C NMR (151 MHz, CDCl3, 298K) & 164.95, 152.94, 150.12,

143.12,143.06, 140.11, 132.44, 127.00, 124.85, 123.52, 121.40, 119.28, 108.46, 73.57, 69.21, 31.90, 31.89,

30.32, 29.70, 29.66, 29.62, 29.60, 29.54, 29.36, 29.33, 29.26, 26.07, 26.02, 22.65, 14.08, 7.61. *'P NMR

(243 MHz, CD:Cls, 298K) & 15.79 (s, 1Pt satellites, 1Jpep = 2330.12 Hz). ESI-TOF-MS: m/z 1490.8842
[3b — 60Tf]®*, 1818.8544 [3b — 5OTf]**.
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Fig. S49. 'H NMR spectrum (600 MHz, CD.Cl», 298K) recorded for 3b.
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Fig. S52. ESI-TOF-MS spectrum of 3b.

Synthesis of 3c
A solution of dipyridyl donor ligand (315.2 mg, 0.166 mmol)

in anhydrous dichloromethane (15 mL) was added dropwise to
a solution of compound 6 (305.2 mg, 0.166 mmol) in
anhydrous dichloromethane (15 mL) under continuous stirring.
The reaction mixture was stirred at room temperature for 16 h.
The solvent was removed under nitrogen flow to afford
hexagon 2(quantitative yield). *H NMR (600 MHz, CD-Cly,
298K) 6 8.78 — 8.56 (m, 12H), 7.98 — 7.89 (m, 12H), 7.80 —
7.68 (m, 12H), 7.59 (s, 3H), 7.35 (s, 12H), 7.32 - 7.26 (s, 12H),
7.22 (s, 12H), 7.06 (d, J = 6.8 Hz, 12H), 6.78 (s, 6H), 4.55 (s,
3H), 4.02 (s, 36H), 3.92 — 3.50 (m, 84H), 3.32 (s, 18H), 1.87 — 1.67 (m, 108H), 1.52 — 1.22 (m, 324H), 1.22
—1.11 (m, 108H), 0.88 — 0.87 (m, 54H). 3C NMR (151 MHz, CDCls, 298K) & 164.93, 152.94, 150.14,
143.05, 140.13, 132.46, 127.13, 125.01, 123.68, 122.84, 121.74, 121.48, 119.61, 108.46, 77.21, 77.00,
76.79, 73.57, 70.49, 70.39, 69.22, 59.07, 31.92, 31.90, 30.33, 29.80, 29.72, 29.71, 29.68, 29.64, 29.61,
29.56, 29.51, 29.38, 29.35, 29.28, 26.09, 26.04, 22.67, 14.10, 7.82. 3P NMR (243 MHz, CD,Cly, 298K) §
15.53 (s, 1Pt satellites, 1Jp.p = 2317.73 Hz). ESI-TOF-MS: m/z 1600.9518 [3¢ — 60Tf]°*, 1950.9319 [3c —
50Tf]*", 2475.8995 [3c — 40Tf]**, 3350.8533 [3c — 30Tf]**
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Fig. S56. ESI-TOF-MS spectrum of 3c
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Synthesis of 3d

A solution of dipyridyl donor ligand (315.2 mg, 0.166
mmol) in anhydrous dichloromethane (15 mL) was added
dropwise to a solution of compound 6 (305.2 mg, 0.166
mmol) in anhydrous dichloromethane (15 mL) under
continuous stirring. The reaction mixture was stirred at
room temperature for 16 h. The solvent was removed under
nitrogen flow to afford hexagon 2(quantitative yield). *H
NMR (600 MHz, CDCl, 298K) 6 8.72 — 8.57 (m, 12H),
7.96 —7.72 (s, 12H), 7.73 — 7.72 (m, 12H), 7.64 — 7.63 (m,
3H), 7.45 (s, 6H), 7.35 (s, 12H), 7.34 — 7.31 (m, 12H), 7.22
— 7.18 (m, 12H), 7.06 (d, J = 8.4 Hz, 12H), 6.93 (s, 6H),
4.27 -4.23 (m, 18H), 4.02 - 4.0 (m, 36H), 3.88 — 3.79 (m, 18H), 3.70 — 3.66 (m, 36H), 3.51 — 3.48 (m, 18H),
3.33 (s, 18H), 1.86 — 1.67 (m, 108H), 1.52 — 1.22 (m, 324H), 1.22 — 1.12 (m, 108H), 0.91 — 0.82 (m, 54H).
13C NMR (151 MHz, CDCls, 298K) § 164.93, 164.81, 152.94, 151.62, 150.13, 143.09, 140.08, 132.43,
127.05, 123.59, 121.42, 119.30, 117.19, 108.94, 108.46, 73.57, 71.66, 71.43, 70.34, 69.44, 69.21, 68.22,
59.82, 59.69, 31.91, 31.89, 30.33, 29.85, 29.72, 29.71, 29.67, 29.63, 29.60, 29.55, 29.37, 29.34, 29.27,
26.08, 26.03, 22.66, 14.09, 7.62. 3P NMR (243 MHz, CD,Cl,, 298K) & 15.80 (s, 1°°Pt satellites, Jpep =
2317.24 Hz). ESI-TOF-MS: m/z 1713.4868 [3d — 60Tf]°*, 2085.7761 [3d — 50Tf]°".
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Fig. S57. *H NMR spectrum (600 MHz, CD.Cl,, 298K) recorded for hexagon 3d.
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3. DSC curve
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Fig. S61. DSC thermograms of metallacycles (a) 3a, (b) 3b, (¢) 3c and (d) 3d, during the first cooling - second
heating cycle. All metallacycles are in mesophase at room temperature. Introducing TEG chains does not
significantly alter the DSC curve is due to the close melting point between TEG (-7 °C) and dodecane (-9.6 °C).
Besides, compounds 3a-3d tend to form phase of poor order. The coherence, derived from the SAXS signal
(2n/FWHM), is smaller than 100 nm, suggesting a relatively short-range periodicity contaning only 5-12 lattices.
Such poor order would broaden and weaken peaks in DSC curves, which further enhances the similarity among

four compounds.
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4. The textures of metalacycles observed between crossed polarizers

Fig. S62. Optical micrographs of 3a recorded at 30 °C (a), 50 °C (b), 70 °C(c), 90 °C (d), 110 °C (e), 130 °C (f).
Introducing TEG chains doesn’t alter the nature of columnar phase, which causes no particular changes on POM

textures except for birefringence.

Fig. S63. Optical micrographs of 3b recorded at 30 °C (a), 50 °C (b), 70 °C(c), 90 °C (d), 110 °C (e), 130 °C (f),

respectively.
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Fig. S64. Optical micrographs of 3c recorded at 30 °C (a), 50 °C (b), 70 °C(c), 90 °C (d), 110 °C (e), 130 °C (f),

respectively.

Fig. S65. Optical micrographs of 3d recorded at 30 °C (a), 50 °C (b), 70 °C(c), 90 °C (d), 110 °C (e), 130 °C (),
respectively.
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5. SAXS and WAXS results of metallacycles
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Fig. S66. SAXS and WAXS diffractograms of metallacycles 3a (a, €), 3b (b, f), 3c (c, g), and 3d (d, h) on heating
scan, heating rate used was 10 K min/k. Details of extracting diffraction peaks of SAXS at 70 °C for 3a (i), 3b (j),

3¢ (K)

and 3d (1).

6. Numerical SAXS data

Table S1. Experimental and calculated d-spacings of the observed SAXS reflections of the Colhex/p6mm

phase of 3a at 70°C. All intensities values are Lorentz and multiplicity corrected.

(hkl) dobs.-spacing (nm) | dca.-spacing (nm) intensity Phase
(10) 4.86 4.86 100.0 n
(11) 2.81 2.81 0.3 0
(20) 2.44 2.43 2.8 0

Ahex = 5.61 Nm
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Table S2. Experimental and calculated d-spacings of the observed SAXS reflections of the Colhex/ p3ml

phase of 3b at 70°C. All intensities values are Lorentz and multiplicity corrected.

(hk) dobs.-spacing (nm) | dca.-Spacing (nm) intensity Phase
(10) 6.03 6.03 100.0 -094 nt
(11) 3.49 3.48 17.1 0
(20) 3.03 3.01 14.8 0747
(22) 1.75 1.74 1.3 /
(40) 1.51 1.51 1.0 /
(32) 1.39 1.38 1.7 /
(41) 1.32 1.32 1.3 /
anex = 6.96 NM

Table S3. Experimental and calculated d-spacings of the observed SAXS reflections of the Colnex/p3ml

phase of 3c at 70°C. All intensities values are Lorentz and multiplicity corrected.

(hk) dobs.-spacing (nm) | dcai.-Spacing (nm) intensity Phase
(10) 6.05 6.05 100.0 -094
(11) 3.50 3.50 19.3 0
(20) 3.07 3.03 17.7 -0.74
(22) 1.75 1.75 7.8 /
(31) 1.68 1.68 2.5 /
(32) 1.40 1.39 1.3 /
(41) 1.34 1.32 2.6 /

Anex = 6.99 nm
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Table S4. Experimental and calculated d-spacings of the observed SAXS reflections of the Colhex/p3m1
phase of 3d at 70°C. All intensities values are Lorentz and multiplicity corrected. The lattice parameter is
determined by high-index peaks and peak (10) is derived from the lattice parameter.

(hk) dobs.-spacing (nm) | dcal.-Spacing (nm) intensity Phase
(10) 6.02 6.02 100.0 -094
(11) 3.47 3.48 12.4 0
(20) 3.01 3.01 12.4 -0.74
(22) 1.74 1.74 5.6 /
(31) 1.67 1.67 5.4 /
(32) 1.36 1.38 1.3 /
(50) 1.20 /
1.19 8.2
(33) 1.16 /

Ahex = 6.95 Nm

7. Determination the p3m1 phase and its phase angles

The assignment of p3m1 phase is based on not only the phase separation between alkyl/TEG chains and
macrocycle shape, but also a full spectrum of macrocycle LC study. The phase separation between TEG
and alkyl chains is strong enough to guide the assembly of macrocycles for rhombic macrocycle
according to our previous work®® where +120° rotation of macrocycles along columnar axis exhibit
quasi-hexagonal order in 2D lattice with weak luminescence (quantum yield <12%). Replacing the
rhombic macrocycle by hexagonal one removes such rotation, which promotes the quantum yield
significantly in current work (>18%). However, pure alkyl chains cannot restrict the local in-plane
rotation due to their dynamic nature in 3a (Fig 4g). With the aid of TEG chains and strong enough phase
separation, the local in-plane rotation is gradually fixed and boosts the quantum yield to 47%. Such
fixation naturally breaks the symmetry of p6mm due to phase separation between TEG and alkyl chains.
This leads to the low symmetry p3ml phase, similar to the formation of another p3m1 LC, by polyphiles,

tooS,

Besides, the phase assignment is also supported by the extra broad peak from TEG cluster. The case is

found in our previous workS® and other liquid crystal phases such as SmA+ phase formed by triphilic
S51




T-shaped molecules®'?. The TEG chains simultaneously introduces phase separation and in-plane fixation
of free rotation in 3a. Former effect expands the 2D lattice from 4.9 nm to 6.0 nm and latter effect induces
the extra broad peak around 5.2 nm. The experimental results suggest the local domains with three-fold
symmetry and different orientations (red/blue area in Fig S67) as well as mixing chains boundaries in
between (grey area in Fig S67). If the overall symmetry is six-fold, i.e. conventional p6mm, which means
the macrocycles adapt in-plane free-rotation as 3a, the TEG cluster would be very small and diverse,
eliminating the broad peak.

RS,
e S es ey
et et et et are
R oo e,
et etatate,

o O OO O

Fig S67. The in-plane rotation of metallacycles and resulted clusters of TEG chains.

To solve the phase problem of p3m1 phase, a model was constructed to simulate the phase angle based on
volume and electron density of different parts in the metallacycle in Fig. 3c. All parameters used are
measured from the Materials Studio after geometry optimization. The metallacycle is represented by six
aromatic rods with averaged electron density of 500/nm? (501/nm? for 3a, 500/nm? for 3b, 503/nm? for 3c
and 518/nm? for 3d). We note that changing electron density without altering relatively high and low
shows negligible influence on phase angle (< 2°). The size of metallacycle edge is 1.8 nm*0.35 nm. The
Pt atoms and OTfs are 0.4 nm*0.6 nm with 674/nm? electron density, centered at 1/3 position of each
edge. For alkyl chains, the electron density is 441/nm?® and TEG is 509/nm?®. Considering the phase
separation between them, both peripheral soft chains are treated as circles with smooth edge. Volume of
both chains is estimated by the volume increment. In liquid crystal state, the 18 alkyl chains attached to
three TPEs occupy a cylinder whose radius is 2.0 nm and height is 0.45 nm. Similarly, 9 TEGs attached
to diplatinum(ll) corner requires radius of 1.4 nm. With all these parameters, the Fourier transform result of
the model in Fig. 3c can be calculated analytically and, as a consequence, the relative intensity and phase
angle can be obtained as in Table S5.
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Table S5. Simulated scattering intensity and phase by model in Fig. 3c.

(hk) Isim Phase/°
(10) 100 -170
(11) 22.5 0
(20) 33.4 -134
(22) 0.02 180
(31) 10.6 52
(32) 5.5 -38
(40) 8.6 -58
(41) 6.6 0
(33) 0.28 180
(50) 1.37 -62
(42) 4.0 -122

Fig. S68. Reconstructed ED maps of (a) 3b and (b) 3c.

The main source of deviation between simulated intensity and experimental result is from the electron

density of alkyl chains (purple vs blue triangles) as shown in Fig. 3e-f. As explained in the maintext,

metallacycles have to adapt local free rotation due to insufficient TEG volume, such rotation would fill

alkyl chains into TEG region, leading to the decrease of electron density in alkyl region. With same phase

angle combination, the experimental ED maps of 3b and 3c in Fig. S68 are qualitatively same as 3d.
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8. Photophysical studies and additional discussion

1. Absorption and emission spectra
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Fig. S69. UV/vis absorption, fluorescence emission spectra of metallacycyes 3a (a, €), 3b (b, f), 3c (c, g) and 3d (d,
h) in different solvents. Emission spectra of 3a (i), 3b (j), 3c (k) and 3d (I) in dichloromethane/hexane (Aex = 365

nm, ¢ = 10 uM).

2. Properties summary
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Fig. S70. (a) The quantum yield of luminescent metallomesogens in solid state in ref S6. (b)

lonic conductivity of

thermotropic liquid crystal below 50°C in ref S7. 3d is in red with high emission and good ionic conductivity.
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3. Optimized molecular model and space filling calculation

Fig. S71. Scheme of volume requires for alkyl chains (red) and TEG (blue).

To estimate the theoretical best ratio between alkyl and TEG chains, a rough model ignoring the
metallacycle size was constructed in Fig. S71. Since TPE corner has larger size than diplatinum(Il) corner,
measured from geometric optimized model, TPE occupies ~80° while diplatinum(ll) just occupies 40°, i.e.
in 2:1 ratio. The lattice parameter is assumed to be 7 nm and metallacycle side is 1.8 nm. It’s easy to
calculate the area of red region occupies 52.0%, blue region occupies 28.2% and hollow hexagon occupies
19.8%. Thus, ideally, the volume of TEG is 54.1% of alkyl chains would fill the space properly if the
density deviation between them is ignored.

Similar model could also qualitatively explain the swelling of lattice parameter. Judged from 3a, the area
alkyl chain occupied is 18.74 nm? in the lattice and hexagon occupies 8.42 nm?. For 3b-d, alkyl chains
are suppressed into the red region. Based on the area ratio (&) between the red and blue region, ideal

lattice parameter (a) for properly filling can be calculated by the equation 4.

a = ((18.74x(1+6)+8.42)x 2/312)12 (Eqution S4)

The calculated ideal lattice parameter for equally distributed TEG/alkyl (€ = 100%) is 7.3 nm and for =
54.1% is 6.6 nm. The experimental results (a = 6.9 - 7.0 nm) is exactly in the middle of the two cases,
indicating that the 6-fold topological feature of metallacycle plays a critical role in stacking. TEG units
and alkyl chains are indeed filled in the blue/red sectors, swelling the hexagonal cell.
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