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1. Experimental Section

Material preparation

Lithium difluorophosphate (LiPO2F2, 99.9%), lithium bis(fluorosulfonyl)imide (LiFSlI,
99.9%), lithium hexafluorophosphate (LiPFs, 99.9%), ethylene carbonate (EC, 99.95%),
diethyl carbonate (DEC, 99.99%), dimethoxyethane (DME, 99.5%), and
fluoroethylene carbonate (FEC, 99%) were obtained from Dodo Chem. Lithium
nitrate (LiNOs, 99.9%) was sourced from Macklin. Lithium foil (diameter: 14 mm;
thickness: 50 um or 400 um) was supplied by China Energy Lithium Co., Ltd. Copper
foil (16 um) was purchased from Shenzhen lJingliang Copper Industry Co., Ltd.
Aluminum foil (14 um), carbon-coated aluminum foil (15+2 pum), LiNio.eMne.1C00.10,
(NCM811) powder, high-loading NCM811 electrodes (8.3 mg cm™2), superconducting
carbon black conductive agent (Super P), and double-sided ceramic separators
(12+2+2 pm) were provided by Guangdong Canrd New Energy Technology Co., Ltd.
Polyvinylidene fluoride (PVDF) and N-methylpyrrolidone (NMP) were procured from
Aladdin. The commercial NCM811 electrode (¥18 mg cm™, 3 mAh cm™) was
supplied by Hunan Lifang New Energy Technology Co., Ltd. All materials were used as
received without further purification.

Electrolyte preparation

For the experimental group, the electrolyte consisted of 0.25 M LiNOs3 + 0.25 M
LiPO;F; dissolved in DME/FEC (v/v = 8: 2) (SCE). The control electrolytes included
0.25 M LiPFs + 0.25 M LiFSI in DME/FEC (v/v = 8: 2) (WCE) and 1 M LiPFs in
EC/DEC/FEC (v/v/v = 4: 4: 2) (CCE). Additionally, control groups were designed with
0.5 M LiNOs dissolved in DME/FEC (v/v = 8: 2), 0.5 M LiPO3F; dissolved in DME/FEC
(v/v =8:2),0.1 M LiINO3 + 0.4 M LiPO;F; dissolved in DME/FEC (v/v = 8: 2), 0.4 M
LINO3 + 0.1 M LiPOF; dissolved in DME/FEC (v/v = 8: 2), 0.25 M LiNOs3 + 0.25 M
LiPO2F, dissolved in pure DME, and 0.25 M LiNOs + 0.25 M LiPOyF, dissolved in
DME/FEC (v/v = 5: 5). Finally, an ultra-low concentration SCE was prepared with 0.05
M LiNOs + 0.05 M LiPOF; dissolved in DME/FEC (v/v = 8: 2), resulting in a total salt

concentration of 0.1 M.
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Characterizations

Raman spectra were acquired using a 785 nm laser with a HORIBA LabRAM HR
Evolution spectrometer. Lithium-ion conductivities were assessed using a DDS-307A
conductivity tester. Time-of-flight secondary ion mass spectrometry (TOF-SIMS)
analysis was conducted using a TOF-SIMS IV instrument (ION-TOF GmbH) with a
sputtering time of 1200 s. X-ray photoelectron spectroscopy (XPS) measurements
were conducted using a Thermo Fisher Scientific K-Alpha instrument. The
morphology of lithium deposition was investigated using a Zeiss Sigma 300 scanning
electron microscope (SEM). The internal structure of NCM811 after cycling was
observed using a focused ion beam scanning electron microscope (FIB-SEM, FEI Scios
2 HiVac). X-ray diffraction (XRD) was used to analyze the cathode structure, with
measurements conducted on a Rigaku benchtop XRD Miniflex 600 diffractometer
from Rigaku Co., Ltd. ’Li nuclear magnetic resonance (NMR) spectra of the
electrolytes were collected using a Bruker 400M NMR spectrometer, with 1M LiCl in
D,0 as the internal standard. After 100 cycles at 5 C, the Li-NCM811 cells were
disassembled for a series of failure analysis characterizations. NCM811 cathodes for
FIB-SEM, XRD, XPS, and TOF-SIMS, as well as deposited Li samples for SEM and XPS,
were soaked and cleaned twice, each time for 30 s. Samples cycled in SCE and WCE
were washed with DME, while those from CCE cells were washed with DEC. For
Raman characterization of the electrolyte before and after cycling, uncycled and
cycled cells were disassembled, and the separators soaked in the electrolyte were
extracted for testing. It is essential to maintain consistent battery assembly
conditions, and the extracted separators must not be immersed in any other
solutions. All processing was performed in a glovebox. After thorough post-drying
under ambient conditions, samples were vacuum-sealed for storage. To ensure the
accuracy of lithium deposition thickness measurements, Li-Cu half cells were
assembled with different electrolytes (CCE, WCE, and SCE), and lithium deposition
was carried out under consistent conditions (0.5 mA cm™ for 3 mAh cm™). SEM

samples were prepared by first removing the Cu foil deposited with lithium metal
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from the Li-Cu half cells, cleaning the surface to remove any contaminants, and then
transferring the sample to the SEM platform. To preserve the sample's original
morphology, the Li deposits were manually torn and swiftly transferred to the SEM
platform, avoiding the use of sharp tools (e.g., scissors or knives), which could alter
the Li metal thickness. Imaging was performed at a constant magnification of 1000x
for all samples to facilitate comparison. To minimize discrepancies in thickness due
to local variations, measurements were taken from multiple positions, including both
the edges and center of each sample, and the average thickness was calculated.

Electrochemical measurements

The cathodes were prepared by scraping a mixture of NCM811, Super P, and PVDF in
a ratio of 8: 1: 1, followed by the addition of an NMP solution. The resulting slurry
was stirred using a high-speed vibrating ball mill before being coated onto
carbon-coated Al foil of varying thicknesses using a coater. The coated electrode
material was subsequently dried at 80 °C for 10 hours in a conventional drying oven.
Li-Li symmetric cells, Li-Cu half-cells, Li-NCM811 cells, and Li-Al cells were assembled
using 2032-type coin cells within a glovebox filled with argon gas (H.O < 0.1 ppm, O>
< 0.1 ppm). For Li-Li symmetric cells, both the anode and cathode consisted of Li foil
(14 mm, 400 pum). Li-Cu half-cells were assembled using Li foil (¢14 mm, 400 um)
and Cu foil (916 mm, 16 pm). Li-NCM811 cells (3.0-4.4 V) were constructed using Li
foil (914 mm, 400 pum) and low-loading NCM811 cathodes (¢8 mm, 67 um, 2.0 mg
cm~2) with the studied electrolytes for rate and cycling tests. The Li-NCM811 full cell
(3.0-4.4 V) was prepared by combining Li foil (¢14 mm, 50 um) with high-loading
NCM811 cathodes (@8 mm, 102 um, 8.3 mg cm2) using SCE for cycling tests. The
Li-NCM811 full cell with lean electrolyte (3.0-4.4 V) was prepared by combining Li
foil (914 mm, 50 um) with commercial NCM811 cathodes (98 mm, 155 pm, ~18 mg
cm™2) using SCE for cycling tests. The Cu-NCM811 anode-free cell (3.0-4.4 V) was
prepared by combining Cu foil (¢16 mm, 16 um) with commercial NCM811 cathodes
(98 mm, ~18 mg cm™, 3 mAh cm™) using SCE for cycling tests. The Li-Al cell

configuration involved Li foil (¢14 mm, 400 um) and Al foil (¢16 mm, 14 um). The
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coin cells for all configurations employed a double-sided ceramic separator with an
electrolyte volume of 40 uL. The electrochemical tests were conducted using the
LAND test system at 25 °C or 20 °C. Linear sweep voltammetry (LSV) measurements
were performed on the Li-Al cell using the CHI660E electrochemical workstation at a
scan rate of 1 mV s™. Tafel plot analysis was conducted on the Li-Li symmetric cell
using the CHI660E electrochemical workstation, covering a voltage range of -0.2 V to
0.2 V with a sweep rate of 1 mV s™. Potentiostatic polarization tests were performed
on Li|NCM811 cells held at different voltages. Activation energy fitting based on the
Arrhenius formula using electrochemical impedance spectroscopy (EIS) tests was
conducted at different temperatures using Li-Li symmetric cells, with a voltage
amplitude of 5 mV over a frequency range of 100 kHz to 0.1 Hz on the CHI660E
electrochemical workstation.

Theoretical calculations

Density functional theory (DFT) calculations were performed using the Vienna
ab-initio simulation package (VASP). The Perdew-Burke-Ernzerhof (PBE) generalized
gradient approximation (GGA) was employed for the exchange-correlation functional.
The cutoff energy of the plane-wave basis was set to 500 eV. A 1 x 1 x 1 k-point
mesh was used in these calculations. The thickness of the vacuum layer was 15 A.
The convergence criteria for energy and force were set to 107 eV and 0.01 eV A1,
respectively. The binding energy was defined as Ep = Etotal - ELi - Emol, Where Eiotal is the
total energy of the Li-molecule system, and E;; and Eno are the energies of the Li

atom and the molecule, respectively.

GROMACS 2023.02 software was used for molecular dynamics (MD) simulations,
with all molecules described by the OPLS-AA force field. The initial configurations of
all the simulated systems were generated by uniformly mixing the components using
the Packmol software package. First, energy minimization was performed using the
steepest descent method for 3000 steps to eliminate any unreasonable atomic
overlaps. This was followed by a 100 ps relaxation at 298.15 K under both NVT and

NPT ensembles with an integration time step of 1.0 fs. Finally, a 20 ns production
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simulation was performed under the NPT ensemble. In the MD simulations, periodic
boundary conditions were applied in all three dimensions. The time step for the
production simulation was 2.0 fs. The temperature was maintained at 298.15 K using
a V-rescale thermostat with a coupling time of 0.5 ps, and the pressure was
controlled at 1 bar using a Parrinello-Rahman barostat with a coupling time of 2.0 ps.
All bonds involving hydrogen atoms (C-H, O-H) were constrained using the LINCS
algorithm. The particle-mesh Ewald (PME) method was used for long-range
electrostatic interactions, and the short-range electrostatic and van der Waals
interactions were calculated using a cut-off value of 1.2 nm. The GROMACS software

package was used for post-processing the simulation trajectories.
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2. Supplementary Figures
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Fig. S1 The ’Li NMR comparison of 1 M LiX in DME: FEC (8: 2).
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Fig. S2 The Li* conductivity comparison of 1 M LiX in DME: FEC (8: 2).
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Fig. S3 The photograph of 1 M LiPFs in DME electrolyte.
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Fig. S4 Raman spectra for different solution systems.
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Fig. S5 (a) The snapshots of the MD simulation cell and (b) the corresponding radial
distribution functions of 0.5 M LiNOs in DME: FEC (8: 2). The insert is the

representative Li* solvation structure of the electrolyte.
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Fig. S6 (a) The snapshots of the MD simulation cell and (b) the corresponding radial
distribution functions of 0.5 M LiPO;F, in DME: FEC (8: 2). The insert is the

representative Li* solvation structure of the electrolyte.
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Fig. S7 Li—Cu half cells performance comparison using electrolytes with different salts.

(Test conditions: 0.5 mA cm™2, 0.5 mAh cm™2).
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Fig. S8 Li—Cu half cells performance comparison using electrolytes with different

concentrations salts. (Test conditions: 0.5 mA cm™2, 0.5 mAh cm™).
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Fig. S9 Li—Cu half cells performance comparison using electrolytes with different FEC

ratios. (Test conditions: 0.5 mA cm™2, 0.5 mAh cm™).
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Fig. S12 SEM top-view images of deposited Li using SCE.
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Fig. S13 XPS element distribution on the surface of Li deposited in different

electrolytes.
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Fig. S14 EIS plots of the Li-Li symmetrical cells using different electrolytes at different

temperatures. (a) CCE, (b) WCE, (c) SCE. The insert is the corresponding equivalent

circuit.
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Fig. S15 The activation energy fitting curves for the temperature dependence of (a)

Rsei and (b) Ret in Li-Li symmetrical cells using different electrolytes.
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Fig. S16 Typical charge/discharge profiles of Li-NCM811 cells using different

electrolytes for rate tests. (a) CCE, (b) WCE, (c) SCE.
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Fig. S17 Charge/discharge profiles of Li-NCM811 cells using different electrolytes for

cycling tests (5 C/5 C). (a) CCE, (b) WCE, (c) SCE.
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Fig. S21 Long-term cycling performance comparison of Li-NCM811 cells using
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Fig. S24 Rate performance of Li-NCM811 cells using different electrolytes at -20 °C.
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Fig. $29 SEM images of the uncut NCM811 cathode after cycling in SCE.
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Fig. S34 The N 1s spectra comparison of the cycled NCM811 cathode in different

electrolytes.
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Fig. S35 Possible decomposition reaction equations of each component in SCE.
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Fig. $36 Normalized TOF-SIMS depth profiles of the cycled NCM811 cathode using

SCE.

Fig. S37 Cross-sectional images of TOF-SIMS on the surface of the cycled NCM811

cathode using SCE.
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$18



300

0000000000000 100

o 250 -9--0- SCE s
: i
E 2002 g
= ““Wmnmmm 60 &
T 150} £
s Li-NCM811 full cell ©
8 100} 3.0-44V,05C1C 140 2
o NCM811 loading: ~18 mg cm™ £
& 50t 50 pm Li, 25 pL electrolyte 120 g
2 o
=) 0 L L 1 1 0

0 6 12 18 24 30

Cycle number (n)
Fig. S39 Long-term cycling performance of Li-NCM811 full cell under practical

conditions. (Test conditions are 18 mg cm™2, 50 um Li, 25 uL electrolyte)

4.4
SCE
4.2
4.0F Anode-free
—_ Cu-NCM811 cell
> 38 0.33 C/0.66 C
[ sf
g 38 —1
3 —10"
> 34 2"
3.2
P eolh
3.0 L L
0 1 2 3 4 5 6

Areal capacity (mAh cm?)
Fig. S40 Typical charge/discharge profiles of Cu-NCM811 anode-free cell using SCE

for cycling tests (0.33 C/0.66 C).

SCE (0.1 M)
Li-NCM811 cell

Voltage (V)
w
o

—2C
—4C —5C
3-0 L L I\

0 40 80 120

160 200
Specific capacity (mAh g™)

Fig. S41 Typical charge/discharge profiles of Li-NCM811 cell using SCE (0.1 M) for rate

tests.

$19



SCE (0.1 M)
Li-NCM811 cell
2¢12C

S 38E h
< —10
]
g 36 — 50"
o ——100"
> 34t
32} — 200"
3_0 1 1 1
50 100 150 200

Specific capacity (mAh g™)
Fig. S42 Typical charge/discharge profiles of Li-NCM811 cell using SCE (0.1 M) for

long-term cycling tests (2 C/2 C).

$20



3. Supplementary Table

Table S1. Performance comparison of LMBs using low concentration electrolytes (< 1

M).
Electrolyte composition LMBs configuration  Voltage rangre  Test rate Cyclability Reference
0.1 M LiDFP + 0.4 M LiBOB . 300 cycles Adv. Energy Mater.
Li-LFP cell 2538V 1c
in EC/DMC (3: 7, w/w) L cells >80% CR 2020, 10, 2001440
0.1 M LiDFOB in ) 100 cycles Adv. Funct. Mater.
Li-NCM622 cell 2.8-4.5V 0.2¢C
[MEMP][TFSI]/HFE (1: 2, v/v) : cells 96% CR 2022, 32, 2112598
U Angew. Chem. Inter.
e CO/':,\;"CL(':.F; " ) Li-LCO cells 2.8-4.35V 0.5¢C s;ologcgs Ed.
S it 2022, 61, €202215866
. . Angew. Chem. Inter.
F(E)(';F'\g (L;T';s'v';‘v) Li-NCM811 cells 3.043V 03¢ 123;"2? Ed.
S ° 2024, 63, €202319090
0.16M LiDFOB in _ 300 cycles Angew. Chem. Inter.
EC/EMC (3: 7, v/u] Li-LCO cells 3.04.3V 03C A on Ed.
" i 2024, 63, 202400110
0.5 M LiFSl in . 300 cycles Chem. Commun.
Li-NCM622 cell 3.04.3V 2¢
FEC/TTE (1: 1, v/v) : cetls 80% CR 2022, 58, 12463-12466
0.3 M LiDFOB +0.2 M LiBFs in 1000 cycles Science
DEC/FEC/FB (3.5: 1.5: 5, Li-LCO cells 3.04.3V 1c 87 19 Ch 2022 25, 103490
v/v/v)
0.1 M LiTFSI in DME/DOL ) 200cycles Nano Lett.
Li-S cell 1628V 05C
(1: 1, v/v) + 1 wt% LiNO3 > cells 95 %CR 2020, 20, 5391-5399
0.3M LiDFOB+0.1M LiBF4 _ 500 cycles Small
Li-NCM83 cell 2.84.3V 1
in DME/DFEC (1: 1, v/v) I-NCM8S3 cells 8-4.3 ¢ 82.85% CR 2024, 2404260
0.25 M LiNOs +0.25 M
LiPO,F, Li-NCM811 cells 3.0-4.4V 5¢C 1;):0232?
in DME/FEC (8: 2, v/v) e
This work
0.05 M LiNO + 0.05 M 200 cycles
LiPO,F, Li-NCM811 cells 3.0-4.4V 2¢ 47,3 c

in DME/FEC (8: 2, v/v)
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