Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Halogenation induced C-N bond activation enables the synthesis

of 1,2-cis C-aryl furanosides via deaminative cyclization

Wenbo Wang,^a Jiawei Wu,^a Kaiyu Jiang,^a Maochao Zhou^a and Gang He*^{ab}

^aState Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China ^bFrontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China

Table of Contents

1. General Information	S2
2. Optimization of Petasis reaction	83
3. Synthesis of 1,2- <i>cis</i> C-aryl furanosides via deaminative cyclization	S22
4. Mechanistic study using enantio-enriched amino alcohol (R)-6	\$43
5. Synthesis of amino alcohol substrates	
6. Derivation of the 1,2-cis C-aryl furanosides and synthetic applications.	S58
7. X-ray crystallographic data	S68
8. References	
9. NMR Spectra	S107

1. General Information

1.1 Reagents

All commercial materials were used as received unless otherwise noted. MeCN, DMSO and THF were purchased from J&K Chemical (dried by 4Å MS). HFIP and DCM (dried by 4Å MS) were purchased from Energy Chemical. TLC were performed on silica gel Huanghai HSGF254 plates and visualization of the developed chromatogram was performed by fluorescence quenching of UV fluorescence (λ max = 254 nm) or dipped with 10% H₂SO₄/EtOH solution then baked with heat gun until color develops. Flash chromatography was performed using Silica gel (200-300 mesh) purchased from Qingdao Haiyang Chemical Co. NBS (98%) and NCS (97%) were purchased from Bide pharm. Carbohydrates, amines, and potassium aryltrifluoroborates were purchased from Shanghai Bide pharm, Adamas-beta®, Macklin, Shanghai Haohong ScientificCo.Ltd, and others.

Note: Mixtures of CH₂Cl₂/MeOH/H₂O were used for the silica gel column chromatography and TLC development. The mixture with water component produced concentrated spots on the TLC plates, whereas spots with significant tailing were observed if water was omitted. According to the polarity of different compounds, three ratios were used: CH₂Cl₂/MeOH/H₂O = 30/2/0.3, 20/2/0.3, or 6/2/0.5. And all the mixtures used in this study were homogeneous.

1.2 Instruments

NMR spectra were recorded on Bruker AVANCE AV 600 or AV 400 instruments and all NMR experiments were reported in units, parts per million (ppm), using residual solvent peaks [CDCl₃: 7.26 ppm or 0.00 ppm (TMS) for ¹H NMR and 77.16 ppm for ¹³C NMR; CD₃OD: 3.31 ppm for ¹H NMR and 49.00 ppm for ¹³C NMR; acetone-D₆: 2.05 ppm for for ¹H NMR and 29.84 ppm for ¹³C NMR]. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, m = multiplet. The HRMS data were collected on a

Thermo Q ExactiveTM Focus instrument with Quadrupole-OrbitrapTM mass analyzer. The X-ray crystal structure was analysed on Rigaku XtaLAB P200 instrument. Reactions carried out at elevated temperature were heated using heating blocks.

2. Optimization of Petasis reaction

General procedure for optimizing Petasis reaction: unprotected glucose (36.0 mg, 0.2 mmol, 1.0 equiv), amine (0.2 mmol, 1.0 equiv), boronic reagents (1.0 or 1.2 equiv), additive and solvent (4 mL) were added into an 8 mL glass vial according the specific conditions listed below. The reaction mixture was stirred at rt or 60 °C. The resulting solution was concentrated *in vacuo*. The residue was dissolved in methanol and concentrated *in vacuo* (this manipulation was repeated for 3 times). The resulting residue was purified by silica gel flash chromatography to give the desired product.

но Сон Но Сон он он	+ H ₂ N +	B(OH) ₂ Additive (0.2 equiv) Solvent (4 mL) rt, 24 h	HO HOH OH HN OH OH HN S-1 OH
Entry	Additive	Solvent	Yield (%) ^a
1	none	MeOH	N.D.
2	none	HFIP	40
3	none	DMSO	N.D.
4	none	THF	N.D.
5	none	DCM	N.D.
6	none	HFIP	32 ^b
7	none	CH ₃ NO ₂	N.D.
8	none	PhCF ₃	N.D.
9	aq. HCl (0.2 equiv)	MeCN	N.D.
10	Pd(TFA) ₂ (0.2 equiv)	HFIP	30
11	NaOH (0.2 equiv)	HFIP	20
12	aq. HCl (0.2 equiv)	HFIP	22
13	Sc(OTf) ₃ (0.2 equiv)	HFIP	35

2.1 Table S1. Evaluation of solvents, additives and temperature

^aIsolated yield. ^bReaction was conducted at 60 °C. N.D.: not detected.

HO OH HO OH OH	+ R-NH ₂ +	BF ₃ K -	HFIP (4 mL) rt, 24 h	но	
Entry	A	mine		Yield (%	$(a)^a$
1		A1		45 ^b	
2		A2		50 ^b	
3		A3		76	
4		A4		N.D.	
5		A5		N.D.	
6		A6		N.D.	
7		A7		N.D.	
8		A8		N.D.	
9		A9		N.D.	
10		A10		N.D.	
11		A11		N.D.	
12		A12	62		
13		A13		40	
14		A14		41	
15		A12		79°	
16		A14		52°	
17		A12	66 ^{b,c}		
18		A14		N.D. ^{b,c}	
H ₂ N	H ₂ N HO	H ₂ N	ОН	HZ	
A1	A2		A3	A4	A5
TsNHNH ₂	NH ₂	∕∕NH ₂	2		
A6	A7	A8		A9	A10
		$\left(\sum_{\substack{N \\ H}} \right)^{H_2}$	in the second	H ₂ N	
/	A11 A	12	A13	A1	4

2.3 Table S3. Evaluation of amines

^aIsolated yield. ^bp-Tolylboronic acid was used instead of potassium p-tolyltrifluoroborate. ^c1.2 equiv boronic reagent was employed. N.D.: not detected.

2.4 General procedure of Petasis reaction

A solution of unprotected sugar (0.2 mmol, 1.0 equiv), amine (0.2 mmol, 1.0 equiv), and potassium aryltrifluoroborates (0.24 mmol, 1.2 equiv) in HFIP (4 mL) in an 8 mL glass vial was stirred at rt for 24 h and monitored by TLC analysis. The reaction mixture was concentrated *in vacuo*. The residue was dissolved in methanol and concentrated *in vacuo* (this manipulation was repeated for 3 times). The resulting residue was purified by silica gel flash chromatography to give the desired product.

White solid. ($R_f = 0.32$, DCM/MeOH/H₂O = 20/2/0.3)

Compound 1 was isolated in 52% yield (37.5 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.27 (d, *J* = 7.8 Hz, 2H), 7.08 (d, *J* = 7.8 Hz, 2H), 6.80 (d, *J* = 8.2 Hz, 2H), 6.46 (d, *J* = 8.4 Hz, 2H), 4.57 (d, *J* = 6.0 Hz, 1H), 4.00 – 3.92 (m, 2H), 3.72 (dd, *J* = 10.8, 2.9 Hz, 1H), 3.69 – 3.62 (m, 2H), 3.58 (dd, *J* = 10.8, 4.6 Hz, 1H), 2.26 (s, 3H), 2.11 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 146.7, 139.2, 137.6, 130.2, 129.8, 129.0, 127.0, 115.0, 77.0, 75.2, 73.0, 69.8, 64.7, 61.9, 21.1, 20.4.

HRMS: calculated for C₂₀H₂₈NO₅⁺ [M+H⁺]: 362.1962; **found**: 362.1955.

White solid. ($R_f = 0.41$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **2** was isolated in 79% yield (59.0 mg) following the general procedure of Petasis reaction.

¹**H** NMR (400 MHz, CD₃OD) δ 7.25 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 6.98 (td, J = 7.7, 1.2 Hz, 1H), 6.89 (dd, J = 7.2, 1.3 Hz, 1H), 6.78 (d, J = 7.9 Hz, 1H), 6.49 (td, J = 7.4, 0.9 Hz, 1H), 4.96 (d, J = 10.0 Hz, 1H), 4.52 (dd, J = 10.0, 1.8 Hz, 1H), 4.20 (t, J = 2.2 Hz, 1H), 3.81 – 3.76 (m, 2H), 3.76 – 3.71 (m, 1H), 3.64 (dd, J = 11.0, 5.3 Hz,

1H), 3.38 (td, *J* = 9.3, 3.6 Hz, 1H), 2.99 (td, *J* = 10.3, 8.6 Hz, 1H), 2.86 – 2.65 (m, 2H), 2.26 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 152.4, 137.9, 135.1, 130.5, 130.4, 129.6, 128.0, 125.2, 117.9, 108.5, 75.8, 73.3, 73.1, 69.8, 64.8, 61.2, 48.1, 29.1, 21.1.

HRMS: calculated for C₂₁H₂₇NNaO₅⁺ [M+Na⁺]: 396.1781; **found**: 396.1777.

White solid. ($R_f = 0.31$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **13-s** was isolated in 57% yield (45.6 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 8.38 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.75 (d, J = 7.7 Hz, 2H), 7.60 – 7.56 (m, 1H), 7.52 – 7.48 (m, 1H), 7.42 (t, J = 7.7 Hz, 1H), 6.76 (d, J = 8.3 Hz, 2H), 6.40 (d, J = 8.4 Hz, 2H), 5.56 (d, J = 5.9 Hz, 1H), 4.22 (dd, J = 5.9, 1.5 Hz, 1H), 4.11 (t, J = 1.9 Hz, 1H), 3.69 – 3.60 (m, 2H), 3.57 – 3.49 (m, 2H), 2.10 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 146.8, 138.0, 135.4, 133.4, 130.3, 130.0, 128.7, 127.1, 126.7, 126.6, 126.4, 125.5, 124.0, 114.4, 76.7, 76.1, 72.8, 69.5, 64.6, 58.9, 20.4. HRMS: calculated for C₂₃H₂₈NO₅⁺ [M+H⁺]: 398.1962; found: 398.1963.

White solid. ($R_f = 0.46$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **14-s** was isolated in 65% yield (47.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.28 (d, *J* = 7.3 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 2H), 7.12 (t, *J* = 7.2 Hz, 1H), 6.89 (t, *J* = 7.7 Hz, 1H), 6.81 (d, *J* = 7.1 Hz, 1H), 6.70 (d, *J* = 7.9 Hz, 1H), 6.40 (t, *J* = 7.3 Hz, 1H), 4.91 (d, *J* = 10.1 Hz, 1H), 4.46 (dd, *J* = 10.1, 1.7 Hz, 1H), 4.12 (t, *J* = 2.3 Hz, 1H), 3.75 – 3.60 (m, 3H), 3.54 (dd, *J* = 11.0, 5.4 Hz, 1H), 3.36 – 3.26 (m, 1H), 2.95 – 2.84 (m, 1H), 2.79 – 2.58 (m, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 152.3, 138.1, 130.5, 130.5, 129.0, 128.3, 128.0, 125.3, 118.0, 108.5, 75.7, 73.3, 72.9, 69.7, 64.7, 61.4, 48.1, 29.1.

HRMS: calculated for C₂₀H₂₅NNaO₅⁺ [M+Na⁺]: 382.1625; **found**: 382.1623.

White solid. ($R_f = 0.42$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **15-s** was isolated in 50% yield (38.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.55 – 7.47 (m, 1H), 7.27 – 7.20 (m, 1H), 7.16 – 7.10 (m, 1H), 7.07 – 7.00 (m, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 7.1 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.50 (t, *J* = 7.3 Hz, 1H), 5.31 (d, *J* = 10.2 Hz, 1H), 4.59 (d, *J* = 10.2 Hz, 1H), 4.16 (s, 1H), 3.81 – 3.70 (m, 3H), 3.63 (dd, *J* = 11.0, 5.2 Hz, 1H), 3.53 – 3.45 (m, 1H), 3.08 – 2.97 (m, 1H), 2.89 – 2.70 (m, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 163.1 (d, J = 244.5 Hz), 151.9, 132.2 (d, J = 5.0 Hz), 130.0, 129.9 (d, J = 8.6 Hz), 128.0, 125.3 (d, J = 16.2 Hz), 125.1, 124.6 (d, J = 3.2 Hz), 118.1, 116.5, 116.3, 108.3, 101.3, 75.7, 73.3, 72.8, 72.7, 69.6, 64.7, 55.4, 48.4, 29.1. ¹⁹F NMR (376 MHz, CD₃OD) δ -115.5.

HRMS: calculated for C₂₀H₂₅FNO₅⁺ [M+H⁺]: 378.1711; **found**: 378.1711.

White solid. ($R_f = 0.44$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **16-s** was isolated in 60% yield (45.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.29 (dd, J = 8.6, 5.5 Hz, 2H), 6.94 – 6.86 (m, 3H), 6.81 (d, J = 7.1 Hz, 1H), 6.69 (d, J = 7.9 Hz, 1H), 6.41 (t, J = 7.3 Hz, 1H), 4.91 (d, J = 10.0 Hz, 1H), 4.42 (dd, J = 9.9, 1.8 Hz, 1H), 4.10 (t, J = 2.1 Hz, 1H), 3.73 – 3.61 (m, 3H), 3.54 (dd, J = 11.0, 5.3 Hz, 1H), 3.36 – 3.26 (m, 1H), 2.94 – 2.83 (m, 1H), 2.78 – 2.58 (m, 2H).

¹³**C NMR** (101 MHz, CD₃OD) δ 163.3 (d, *J* = 244.1 Hz), 152.1, 134.2 (d, *J* = 3.0 Hz), 132.1 (d, *J* = 7.6 Hz), 130.5, 128.1, 125.3, 118.2, 115.5 (d, *J* = 21.3 Hz),108.5, 75.6, 73.2, 73.0, 69.7, 64.7, 60.8, 48.0, 29.1.

¹⁹**F NMR** (376 MHz, CD₃OD) δ -117.5.

HRMS: calculated for C₂₀H₂₅FNO₅⁺ [M+H⁺]: 378.1711; **found**: 378.1707.

White solid. ($R_f = 0.47$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **17-s** was isolated in 42% yield (33.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.12 (t, *J* = 7.7 Hz, 1H), 7.06 (d, *J* = 9.3 Hz, 2H), 7.00 (t, *J* = 7.8 Hz, 1H), 6.91 (dd, *J* = 7.1, 1.2 Hz, 1H), 6.77 (d, *J* = 7.9 Hz, 1H), 6.51 (t, *J* = 7.3 Hz, 1H), 4.96 (d, *J* = 10.0 Hz, 1H), 4.50 (dd, *J* = 10.0, 1.8 Hz, 1H), 4.19 (t, *J* = 2.3 Hz, 1H), 3.81 – 3.76 (m, 2H), 3.76 – 3.71 (m, 1H), 3.65 (dd, *J* = 11.0, 5.4 Hz, 1H), 3.45 – 3.37 (m, 1H), 3.06 – 2.93 (m, 1H), 2.88 – 2.68 (m, 2H), 2.19 (s, 3H).

¹³**C NMR** (101 MHz, CD₃OD) δ 162.3 (d, J = 243.1 Hz), 152.2, 138.3 (d, J = 6.5 Hz), 131.9 (d, J = 5.1 Hz), 130.5, 128.1, 126.1(d, J = 3.1 Hz), 125.3, 124.5(d, J = 17.1 Hz), 118.2, 116.6 (d, J = 22.4 Hz), 108.5, 75.6, 73.3, 73.0, 69.7, 64.7, 60.9, 48.1, 29.1, 14.2 (d, J = 3.6 Hz).

¹⁹**F NMR** (376 MHz, CD₃OD) δ -120.1.

HRMS: calculated for C₂₁H₂₇FNO₅⁺ [M+H⁺]: 392.1868; **found**: 392.1868.

White solid. ($R_f = 0.43$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **18-s** was isolated in 62% yield (49.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.39 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 7.02 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 7.1 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 6.54 (t, J = 7.3 Hz, 1H), 5.02 (d, J = 9.9 Hz, 1H), 4.54 (dd, J = 9.9, 1.8 Hz, 1H), 4.21 (t, J = 2.2 Hz, 1H), 3.84 – 3.79 (m, 2H), 3.78 – 3.73 (m, 1H), 3.67 (dd, J = 11.0, 5.3 Hz, 1H), 3.49 – 3.41 (m, 1H), 3.07 – 2.96 (m, 1H), 2.91 – 2.72 (m, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 152.1, 137.1, 133.9, 132.0, 130.5, 129.0, 128.1, 125.4, 118.2, 108.5, 75.6, 73.2, 72.9, 69.7, 64.7, 60.8, 48.0, 29.1.

HRMS: calculated for C₂₀H₂₅ClNO₅⁺ [M+H⁺]: 394.1416; **found**: 394.1417.

White solid. ($R_f = 0.42$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **19-s** was isolated in 69% yield (60.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.45 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 7.02 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 7.1 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 6.54 (t, J = 7.3 Hz, 1H), 5.00 (d, J = 10.0 Hz, 1H), 4.54 (dd, J = 9.9, 1.8 Hz, 1H), 4.21 (t, J = 2.2 Hz, 1H), 3.85 – 3.79 (m, 2H), 3.78 – 3.73 (m, 1H), 3.67 (dd, J = 11.0, 5.3 Hz, 1H), 3.49 – 3.40 (m, 1H), 3.06 – 2.94 (m, 1H), 2.91 – 2.72 (m, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 152.1, 137.5, 132.3, 132.0, 130.5, 128.1, 125.4, 122.0, 118.2, 108.5, 75.6, 73.2, 72.8, 69.7, 64.7, 60.9, 48.0, 29.1. HRMS: calculated for C₂₀H₂₅BrNO₅⁺ [M+H⁺]: 438.0911; **found**: 438.0916.

White solid. ($R_f = 0.22$, DCM/MeOH/H₂O = 20/2/0.3). Compound **20-s** was isolated in 78% yield (60.5 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.36 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 6.98 (t, J = 7.6 Hz, 1H), 6.88 (d, J = 7.0 Hz, 1H), 6.83 – 6.76 (m, 1H), 6.49 (t, J = 7.3 Hz, 1H), 5.00 (d, J = 10.1 Hz, 1H), 4.60 – 4.47 (m, 3H), 4.21 (dd, J = 2.8, 1.8 Hz, 1H), 3.85 – 3.70 (m, 3H), 3.64 (dd, J = 10.9, 5.3 Hz, 1H), 3.44 – 3.35 (m, 1H), 3.05 – 2.92 (m, 1H), 2.86 – 2.74 (m, 1H), 2.74 – 2.64 (m, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 152.3, 141.5, 137.1, 130.4, 128.0, 127.7, 125.2, 118.0, 108.5, 75.7, 73.2, 73.0, 69.7, 65.0, 64.7, 61.2, 48.0, 29.1.

HRMS: calculated for C₂₁H₂₈NO₆⁺ [M+H⁺]: 390.1911; **found**: 390.1911.

White solid. ($R_f = 0.45$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **21-s** was isolated in 62% yield (48.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.34 (s, 4H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 7.1 Hz, 1H), 6.80 (d, *J* = 7.9 Hz, 1H), 6.68 (dd, *J* = 17.6, 10.9 Hz, 1H), 6.50 (t, *J* = 7.3 Hz, 1H), 5.71 (dd, *J* = 17.6, 1.2 Hz, 1H), 5.16 (dd, *J* = 10.9, 1.1 Hz, 1H), 5.00 (d, *J* = 10.0 Hz, 1H), 4.54 (dd, *J* = 10.0, 1.8 Hz, 1H), 4.26 – 4.15 (m, 1H), 3.83 – 3.70 (m, 3H), 3.64 (dd, *J* = 11.0, 5.3 Hz, 1H), 3.44 – 3.36 (m, 1H), 3.04 – 2.94 (m, 1H), 2.86 – 2.68 (m, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 152.3, 137.9, 137.9, 137.8, 130.6, 130.5, 128.0, 126.8, 125.3, 118.0, 113.8, 108.5, 75.7, 73.3, 73.0, 69.7, 64.7, 61.1, 48.1, 29.1. HRMS: calculated for C₂₂H₂₈NO₅⁺ [M+H⁺]: 386.1962; found: 386.1962.

White solid. ($R_f = 0.45$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **22-s** was isolated in 79% yield (63.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.68 (d, J = 2.2 Hz, 1H), 7.66 (d, J = 1.7 Hz, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.32 (dd, J = 8.5, 1.8 Hz, 1H), 7.05 – 6.96 (m, 1H), 6.90 (dd, J = 7.2, 1.3 Hz, 1H), 6.84 (d, J = 7.9 Hz, 1H), 6.79 (dd, J = 2.1, 1.1 Hz, 1H), 6.56 – 6.43 (m, 1H), 5.12 (d, J = 10.0 Hz, 1H), 4.60 (dd, J = 10.0, 1.9 Hz, 1H), 4.24 (dd, J = 2.7, 1.8 Hz, 1H), 3.83 – 3.80 (m, 1H), 3.80 – 3.72 (m, 2H), 3.65 (dd, J = 10.8, 5.3 Hz, 1H), 3.48 – 3.38 (m, 1H), 2.99 (q, J = 9.7, 9.2 Hz, 1H), 2.87 – 2.76 (m, 1H), 2.76 – 2.66 (m, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 155.7, 152.4, 146.6, 132.7, 130.5, 128.6, 128.1, 127.0, 125.3, 122.9, 118.0, 111.5, 108.4, 107.7, 75.8, 73.3, 73.3, 69.8, 64.8, 61.5, 48.1, 29.1. HRMS: calculated for C₂₂H₂₆NO₆⁺ [M+H⁺]: 400.1755; found: 400.1756.

White solid. ($R_f = 0.45$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **23-s** was isolated in 79% yield (63.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.48 (dd, J = 7.4, 1.7 Hz, 1H), 7.37 (d, J = 8.6 Hz, 1H), 7.21 – 7.16 (m, 1H), 7.15 – 7.10 (m, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.94 (dd, J = 7.2, 1.2 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 6.73 (s, 1H), 6.56 (t, J = 7.3 Hz, 1H), 5.09 (d, J = 9.9 Hz, 1H), 4.60 (dd, J = 9.9, 1.7 Hz, 1H), 4.26 (dd, J = 3.0, 1.6 Hz, 1H), 3.84 – 3.79 (m, 2H), 3.78 – 3.73 (m, 1H), 3.66 (dd, J = 11.0, 5.4 Hz, 1H), 3.62 – 3.54 (m, 1H), 3.26 – 3.14 (m, 1H), 2.92 – 2.73 (m, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 156.6, 156.0, 152.1, 130.6, 129.5, 128.0, 125.3, 124.8, 123.6, 121.8, 118.8, 111.9, 109.0, 107.1, 75.5, 73.3, 73.2, 69.4, 64.8, 56.9, 49.7, 29.2. HRMS: calculated for C₂₂H₂₆NO₆⁺ [M+H⁺]: 400.1755; found: 400.1755.

White solid. ($R_f = 0.44$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **24-s** was isolated in 74% yield (61.5 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.86 (d, J = 8.0 Hz, 1H), 7.74 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.35 – 7.25 (m, 1H), 7.25 – 7.18 (m, 1H), 7.08 (t, J = 7.7 Hz, 1H), 6.96 (d, J = 7.9 Hz, 1H), 6.92 (d, J = 7.1 Hz, 1H), 6.54 (t, J = 7.3 Hz, 1H), 5.32 (d, J = 9.0 Hz, 1H), 4.64 (dd, J = 9.0, 2.3 Hz, 1H), 4.15 (t, J = 1.9 Hz, 1H), 3.82 – 3.72 (m, 3H), 3.70 – 3.59 (m, 1H), 3.52 – 3.41 (m, 1H), 2.90 – 2.77 (m, 2H), 2.76 – 2.65 (m, 1H). ¹³**C NMR** (101 MHz, CD₃OD) δ 152.4, 141.3, 141.1, 134.2, 129.9, 128.3, 125.8, 125.4, 125.3, 125.0, 123.5, 117.7, 107.2, 75.5, 74.1, 73.3, 70.1, 64.7, 55.2, 28.9. **HRMS**: calculated for C₂₂H₂₆NO₅S⁺ [M+H⁺]: 416.1526; **found**: 416.1526.

White solid. ($R_f = 0.44$, DCM/MeOH/H₂O = 20/2/0.3). Compound **25-s** was isolated in 65% yield (54.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.78 – 7.63 (m, 2H), 7.35 (s, 1H), 7.31 – 7.18 (m, 2H), 7.06 – 6.98 (m, 1H), 6.95 (d, J = 7.2 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H), 6.64 – 6.46 (m, 1H), 5.22 (d, J = 9.4 Hz, 1H), 4.49 (dd, J = 9.4, 2.0 Hz, 1H), 4.25 (t, J = 2.4 Hz, 1H), 3.84 – 3.77 (m, 2H), 3.77 – 3.71 (m, 1H), 3.66 (dd, J = 11.0, 5.4 Hz, 1H), 3.53 – 3.44 (m, 1H), 3.29 – 3.20 (m, 1H), 3.03 – 2.75 (m, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 151.9, 142.1, 140.8, 140.7, 130.6, 128.1, 125.4, 125.1, 125.0, 124.5, 124.2, 122.8, 118.8, 108.9, 75.4, 74.8, 73.3, 69.8, 64.8, 58.3, 29.1. HRMS: calculated for C₂₂H₂₆NO₅S⁺ [M+H⁺]: 416.1526; found: 416.1528.

White solid. ($R_f = 0.42$, DCM/MeOH/H₂O = 20/2/0.3). Compound **26-s** was isolated in 73% yield (80.5 mg) following the general procedure

of Petasis reaction.

¹**H** NMR (400 MHz, CD₃OD) δ 7.91 (d, J = 8.4 Hz, 1H), 7.81 (s, 1H), 7.68 – 7.62 (m, 2H), 7.35 (d, J = 7.9 Hz, 1H), 7.22 – 7.16 (m, 1H), 7.14 (d, J = 8.2 Hz, 2H), 7.06 – 6.97 (m, 2H), 6.88 (dd, J = 7.2, 1.2 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 6.52 (td, J = 7.4, 0.9 Hz, 1H), 5.13 (d, J = 8.9 Hz, 1H), 4.56 (dd, J = 8.9, 2.4 Hz, 1H), 4.14 (t, J = 2.2 Hz, 1H), 3.81 – 3.72 (m, 3H), 3.68 – 3.61 (m, 1H), 3.43 – 3.35 (m, 1H), 2.80 – 2.65 (m, 2H), 2.63 – 2.48 (m, 1H), 2.21 (s, 3H).

¹³**C NMR** (101 MHz, CD₃OD) δ 152.2, 146.4, 136.5, 135.9, 132.8, 130.8, 130.1, 128.2, 127.8, 127.2, 125.6, 125.4, 124.4, 121.7, 120.9, 118.0, 114.7, 107.8, 75.3, 74.1, 73.2, 70.1, 64.7, 54.2, 28.9, 21.4.

HRMS: calculated for C₂₉H₃₂N₂NaO₇S⁺ [M+Na⁺]: 575.1822; found: 575.1823.

White solid. ($R_f = 0.42$, DCM/MeOH/H₂O = 20/2/0.3). Compound **27-s** was isolated in 85% yield (66.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.32 (d, *J* = 8.7 Hz, 2H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.92 (d, *J* = 7.1 Hz, 1H), 6.89 – 6.82 (m, 2H), 6.81 (d, *J* = 7.9 Hz, 1H), 6.52 (t, *J* = 7.2 Hz, 1H), 4.98 (d, *J* = 10.0 Hz, 1H), 4.53 (dd, *J* = 9.9, 1.8 Hz, 1H), 4.23 (t, *J* = 2.2 Hz, 1H), 3.85 – 3.75 (m, 3H), 3.74 (s, 3H), 3.67 (dd, *J* = 11.0, 5.3 Hz, 1H), 3.45 – 3.36 (m, 1H), 3.06 – 2.95 (m, 1H), 2.88 – 2.69 (m, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 160.2, 152.4, 131.5, 130.5, 130.1, 128.0, 125.3, 118.0, 114.4, 108.5, 75.7, 73.2, 73.2, 69.7, 64.7, 60.9, 55.6, 48.0, 29.1.

HRMS: calculated for C₂₁H₂₈NO₆⁺ [M+H⁺]: 390.1911; **found**: 390.1910.

White solid. ($R_f = 0.41$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **28-s** was isolated in 61% yield (50.5 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.46 (d, J = 8.6 Hz, 2H), 7.33 (d, J = 8.6 Hz, 2H), 6.99 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 7.1 Hz, 1H), 6.78 (d, J = 7.9 Hz, 1H), 6.60 – 6.38 (m, 1H), 4.97 (d, J = 10.0 Hz, 1H), 4.52 (dd, J = 10.0, 1.8 Hz, 1H), 4.27 – 4.14 (m, 1H), 3.82 – 3.76 (m, 2H), 3.76 – 3.71 (m, 1H), 3.63 (dd, J = 11.0, 5.3 Hz, 1H), 3.46 – 3.36 (m, 1H), 3.08 – 2.95 (m, 1H), 2.87 – 2.69 (m, 2H), 2.08 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 171.6, 152.3, 138.8, 134.1, 130.9, 130.5, 128.0, 125.3, 120.8, 118.0, 108.5, 75.7, 73.3, 73.0, 69.7, 64.8, 61.0, 48.1, 29.1, 23.7.

HRMS: calculated for $C_{22}H_{29}N_2O_6^+$ [M+H⁺]: 417.2020; found: 417.2020.

White solid. ($R_f = 0.41$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **29-s** was isolated in 81% yield (61.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.28 (d, *J* = 8.1 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 2H), 7.01 (t, *J* = 7.7 Hz, 1H), 6.91 (d, *J* = 7.1 Hz, 1H), 6.80 (d, *J* = 7.9 Hz, 1H), 6.50 (t, *J* = 7.3 Hz, 1H), 4.98 (d, *J* = 10.8 Hz, 1H), 4.68 (d, *J* = 10.7 Hz, 1H), 4.06 (d, *J* = 9.3 Hz, 1H), 4.01 - 3.95 (m, 1H), 3.75 (dd, *J* = 9.4, 1.6 Hz, 1H), 3.69 (d, *J* = 6.3 Hz, 2H), 3.48 - 3.40 (m, 1H), 3.08 - 2.98 (m, 1H), 2.91 - 2.70 (m, 2H), 2.30 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 152.4, 137.8, 135.6, 130.4, 130.3, 129.6, 128.0, 125.2, 117.7, 108.3, 71.8, 71.7, 70.5, 69.1, 65.1, 60.6, 47.6, 29.1, 21.1.

HRMS: calculated for C₂₁H₂₈NO₅⁺ [M+H⁺]: 374.1962; **found**: 374.1964.

White solid. ($R_f = 0.46$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **30-s** was isolated in 72% yield (52.0 mg) following the general procedure of Petasis reaction.

¹**H** NMR (400 MHz, CD₃OD) δ 7.41 (dd, J = 8.6, 5.5 Hz, 2H), 7.07 – 6.99 (m, 3H), 6.92 (dd, J = 7.2, 1.2 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.52 (td, J = 7.4, 0.9 Hz, 1H), 5.02 (d, J = 10.7 Hz, 1H), 4.66 (dd, J = 10.7, 0.9 Hz, 1H), 4.16 – 4.09 (m, 1H), 4.02 (dd, J = 9.0, 0.9 Hz, 1H), 3.51 (dd, J = 9.1, 2.0 Hz, 1H), 3.49 – 3.42 (m, 1H), 3.02 (td, J = 10.3, 8.4 Hz, 1H), 2.91 – 2.81 (m, 1H), 2.81 – 2.72 (m, 1H), 1.28 (d, J = 6.5 Hz, 3H).

¹³**C NMR** (101 MHz, CD₃OD) δ 162.0 (d, *J* = 243.8 Hz), 150.8, 133.5 (d, *J* = 3.3 Hz), 130.7 (d, *J* = 3.3 Hz), 129.0, 126.7, 124.0, 116.6, 114.1 (d, *J* = 21.3 Hz), 106.9, 73.6, 69.4, 68.1, 66.1, 58.9, 46.2, 27.7, 18.7.

¹⁹**F NMR** (376 MHz, CD₃OD) δ -117.8.

HRMS: calculated for $C_{20}H_{25}FNO_4^+$ [M+H⁺]: 362.1762; found: 362.1753.

White solid. ($R_f = 0.42$, DCM/MeOH/H₂O = 6/2/0.5).

Compound **31-s** was isolated in 55% yield (57.6 mg) following the general procedure of Petasis reaction.

¹**H** NMR (400 MHz, CD₃OD) δ 7.31 (d, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 7.7 Hz, 2H), 6.82 (d, *J* = 8.1 Hz, 2H), 6.49 (d, *J* = 8.2 Hz, 2H), 4.81 (d, *J* = 3.7 Hz, 1H), 4.61 (d, *J* = 5.6 Hz, 1H), 4.07 – 4.00 (m, 2H), 3.97 (dd, *J* = 10.3, 4.1 Hz, 1H), 3.86 – 3.77 (m, 2H), 3.76 – 3.65 (m, 4H), 3.54 (dd, *J* = 10.3, 2.8 Hz, 1H), 3.43 (dd, *J* = 9.7, 3.7 Hz, 1H), 3.39 – 3.30 (m, 1H), 2.29 (s, 3H), 2.14 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 146.8, 139.2, 137.6, 130.2, 129.9, 129.0, 126.8, 115.0, 100.1, 77.3, 75.3, 74.6, 73.7, 73.5, 71.6, 71.1, 69.7, 69.3, 62.5, 62.1, 21.1, 20.4. HRMS: calculated for C₂₆H₃₇NNaO₁₀⁺ [M+Na⁺]: 546.2310; found: 546.2314.

White solid. ($R_f = 0.32$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **32-s** was isolated in 56% yield (36.5 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.29 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 6.81 (d, J = 8.2 Hz, 2H), 6.46 (d, J = 8.4 Hz, 2H), 4.59 (d, J = 7.3 Hz, 1H), 4.03 (dd, J = 7.3, 1.1 Hz, 1H), 3.83 – 3.74 (m, 2H), 3.73 – 3.66 (m, 1H), 3.60 (dd, J = 11.2, 5.8 Hz, 1H), 2.30 (s, 3H), 2.13 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 146.9, 140.1, 137.4, 130.2, 129.8, 128.8, 126.6, 114.8, 73.6, 73.2, 71.5, 65.0, 62.0, 21.1, 20.4.

HRMS: calculated for C₁₉H₂₆NO₄⁺ [M+H⁺]: 332.1856; **found**: 332.1848.

White solid. ($R_f = 0.33$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **33-s** was isolated in 66% yield (43.8 mg) following the general procedure of Petasis reaction.

¹**H** NMR (400 MHz, CD₃OD) δ 7.29 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 7.8 Hz, 2H), 6.82 (d, *J* = 8.2 Hz, 2H), 6.49 (d, *J* = 8.4 Hz, 2H), 4.60 (d, *J* = 6.6 Hz, 1H), 3.94 (dd, *J* = 6.6, 2.0 Hz, 1H), 3.83 – 3.72 (m, 2H), 3.68 – 3.61 (m, 1H), 3.61 – 3.53 (m, 1H), 2.28 (s, 3H), 2.13 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 146.6, 139.4, 137.5, 130.2, 129.8, 128.9, 126.9, 115.0, 75.6, 75.0, 71.1, 64.2, 61.8, 21.1, 20.4.

HRMS: calculated for $C_{19}H_{26}NO_4^+$ [M+H⁺]: 332.1856; found: 332.1853.

White solid. ($R_f = 0.48$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **34-s-2** was isolated in 74% yield (54.5 mg) following the general procedure of Petasis reaction.

¹**H** NMR (400 MHz, CD₃OD) δ 7.51 – 7.45 (m, 1H), 7.37 (d, J = 8.5 Hz, 1H), 7.22 – 7.09 (m, 2H), 7.01 (t, J = 7.7 Hz, 1H), 6.94 (d, J = 7.2 Hz, 1H), 6.78 (d, J = 7.9 Hz, 1H), 6.72 (s, 1H), 6.61 – 6.49 (m, 1H), 5.07 (d, J = 10.1 Hz, 1H), 4.56 (dd, J = 10.1, 1.4 Hz, 1H), 4.08 (dd, J = 5.4, 1.4 Hz, 1H), 3.91 – 3.84 (m, 1H), 3.81 – 3.68 (m, 2H), 3.64 – 3.55 (m, 1H), 3.27 – 3.16 (m, 1H), 2.94 – 2.73 (m, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 156.7, 155.9, 152.1, 130.6, 129.6, 128.0, 125.3, 124.8, 123.6, 121.7, 118.8, 111.9, 108.9, 107.0, 75.3, 71.2, 70.8, 64.1, 56.7, 49.6, 29.2. HRMS: calculated for C₂₁H₂₄NO₅⁺ [M+H⁺]: 370.1649; found: 370.1649.

White solid. ($R_f = 0.45$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **35-s** was isolated in 79% yield (54.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.31 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 7.8 Hz, 2H), 6.93 (t, J = 7.7 Hz, 2H), 6.62 (d, J = 7.8 Hz, 1H), 6.57 – 6.47 (m, 1H), 4.91 (d, J = 7.2 Hz, 1H), 4.43 (t, J = 6.7 Hz, 1H), 3.95 – 3.86 (m, 1H), 3.80 (dd, J = 11.3, 4.2 Hz, 1H), 3.76 (t, J = 5.9 Hz, 1H), 3.64 (dd, J = 11.3, 6.0 Hz, 1H), 3.59 – 3.47 (m, 1H), 3.20 (q, J = 9.3 Hz, 1H), 2.89 – 2.68 (m, 2H), 2.26 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 152.4, 137.9, 135.1, 131.1, 130.7, 129.5, 127.9, 125.2, 118.5, 109.1, 74.5, 74.3, 73.6, 64.2, 62.7, 49.7, 29.2, 21.1.

HRMS: calculated for $C_{20}H_{26}NO_4^+$ [M+H⁺]: 344.1856; found: 344.1865.

White solid. ($R_f = 0.38$, DCM/MeOH/H₂O = 30/2/0.3). Compound **36-s** was isolated in 81% yield (58.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.42 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 6.97 – 6.87 (m, 2H), 6.61 (d, *J* = 7.7 Hz, 1H), 6.52 (t, *J* = 7.3 Hz, 1H), 4.95 (d, *J* = 7.1 Hz, 1H), 4.55 (s, 2H), 4.45 (dd, *J* = 7.1, 6.2 Hz, 1H), 3.96 – 3.87 (m, 1H), 3.80 (dd, *J* = 11.3, 4.2 Hz, 1H), 3.75 (t, *J* = 6.0 Hz, 1H), 3.64 (dd, *J* = 11.3, 6.0 Hz, 1H), 3.61 – 3.52 (m, 1H), 3.24 (q, *J* = 9.3 Hz, 1H), 2.90 – 2.80 (m, 1H), 2.80 – 2.70 (m, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 152.4, 141.6, 137.3, 131.1, 130.9, 127.9, 127.7, 125.2, 118.5, 109.1, 74.5, 74.2, 73.6, 65.0, 64.2, 62.8, 49.8, 29.2.

HRMS: calculated for C₂₀H₂₆NO₅⁺ [M+H⁺]: 360.1805; **found**: 360.1806.

White solid. ($R_f = 0.42$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **37-s** was isolated in 61% yield (42.5 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.54 – 7.36 (m, 2H), 7.06 – 6.95 (m, 2H), 6.94 (t, *J* = 7.4 Hz, 2H), 6.58 (d, *J* = 7.7 Hz, 1H), 6.53 (t, *J* = 7.3 Hz, 1H), 4.95 (d, *J* = 6.7 Hz, 1H), 4.42 (t, *J* = 6.6 Hz, 1H), 3.93 – 3.86 (m, 1H), 3.80 (dd, *J* = 11.4, 4.2 Hz, 1H), 3.70 (t, *J* = 6.1 Hz, 1H), 3.65 (dd, *J* = 11.3, 6.0 Hz, 1H), 3.64 – 3.53 (m, 1H), 3.25 (q, *J* = 9.1 Hz, 1H), 2.93 – 2.72 (m, 2H).

¹³**C NMR** (101 MHz, CD₃OD) δ 163.4 (d, *J* = 244.1 Hz), 152.3, 134.5 (d, *J* = 3.2 Hz), 132.6 (d, *J* = 7.8 Hz), 131.1, 128.0, 125.3, 118.5, 115.4 (d, *J* = 21.2 Hz), 108.9, 74.3, 74.2, 73.8, 64.2, 62.1, 49.8, 29.2.

¹⁹**F NMR** (376 MHz, CD₃OD) δ -117.6.

HRMS: calculated for C₁₉H₂₃FNO₄⁺ [M+H⁺]: 348.1606; **found**: 348.1608.

White solid. ($R_f = 0.48$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **38-s** was isolated in 61% yield (46.5 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 8.16 (d, J = 7.2 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.86 – 7.72 (m, 2H), 7.46 (dd, J = 8.2, 7.3 Hz, 1H), 7.42 – 7.32 (m, 2H), 6.98 (t, J = 7.7 Hz, 1H), 6.91 (d, J = 7.2 Hz, 1H), 6.72 (d, J = 7.8 Hz, 1H), 6.49 (t, J = 7.4 Hz, 1H), 5.76 (d, J = 5.2 Hz, 1H), 4.59 (dd, J = 7.6, 5.2 Hz, 1H), 3.95 – 3.88 (m, 1H), 3.85 – 3.75 (m, 2H), 3.72 – 3.60 (m, 2H), 2.98 – 2.90 (m, 1H), 2.89 – 2.78 (m, 1H), 2.73 – 2.60 (m,

1H).

¹³C NMR (101 MHz, CD₃OD) δ 152.2, 135.4, 134.8, 134.6, 130.5, 129.7, 128.9, 128.6, 128.2, 127.0, 126.3, 125.9, 125.3, 125.0, 117.5, 106.9, 75.4, 75.1, 73.6, 64.3, 56.2, 50.1, 29.0.

HRMS: calculated for C₂₃H₂₆NO₄⁺ [M+H⁺]: 380.1856; **found**: 380.1857.

White solid. ($R_f = 0.44$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **39-s** was isolated in 76% yield (56.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.73 (d, J = 1.3 Hz, 1H), 7.66 (d, J = 2.2 Hz, 1H), 7.40 (d, J = 1.1 Hz, 2H), 6.94 (t, J = 7.3 Hz, 2H), 6.76 (d, J = 2.2 Hz, 1H), 6.63 (d, J = 7.5 Hz, 1H), 6.52 (t, J = 7.4 Hz, 1H), 5.06 (d, J = 6.8 Hz, 1H), 4.49 (t, J = 6.6 Hz, 1H), 3.95 – 3.88 (m, 1H), 3.81 (dd, J = 11.3, 4.2 Hz, 1H), 3.75 (t, J = 6.1 Hz, 1H), 3.66 (dd, J = 11.4, 6.0 Hz, 1H), 3.63 – 3.56 (m, 1H), 3.25 (t, J = 9.1 Hz, 1H), 2.91 – 2.81 (m, 1H), 2.81 – 2.71 (m, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 155.7, 152.5, 146.5, 132.9, 131.1, 128.6, 128.0, 127.3, 125.3, 123.4, 118.5, 111.4, 109.1, 107.7, 74.4, 74.4, 74.0, 64.2, 63.0, 49.9, 29.2. HRMS: calculated for C₂₁H₂₄NO₅⁺ [M+H⁺]: 370.1649; **found**: 370.1649.

White solid. ($R_f = 0.31$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **40-s-1** was isolated in 61% yield (44.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.32 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 7.8 Hz, 2H), 6.82 (d, J = 6.1 Hz, 2H), 6.53 (d, J = 6.4 Hz, 2H), 4.73 (d, J = 3.5 Hz, 1H), 4.04 (dd, J = 9.4, 3.5 Hz, 1H), 3.79 – 3.69 (m, 2H), 3.66 – 3.60 (m, 1H), 3.57 (dd, J = 10.9, 5.8 Hz, 1H), 3.49 (dd, J = 9.5, 1.0 Hz, 1H), 2.26 (s, 3H), 2.12 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 146.3, 137.6, 137.4, 130.3, 129.9, 129.5, 127.5, 115.7, 74.0, 73.0, 71.4, 71.0, 65.1, 60.1, 21.1, 20.4.

HRMS: calculated for C₂₀H₂₈NO₅⁺ [M+H⁺]: 362.1962; **found:** 362.1959.

White solid. ($R_f = 0.42$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **40-s-2** was isolated in 81% yield (60.5 mg) following the general procedure of Petasis reaction.

¹**H** NMR (400 MHz, CD₃OD) δ 7.39 – 7.29 (m, 2H), 7.09 (d, *J* = 7.8 Hz, 2H), 6.97 – 6.87 (m, 2H), 6.58 – 6.50 (m, 2H), 4.82 (d, *J* = 6.0 Hz, 1H), 4.43 (dd, *J* = 7.9, 6.0 Hz, 1H), 3.88 – 3.81 (m, 2H), 3.77 (dd, *J* = 11.1, 3.5 Hz, 1H), 3.72 – 3.65 (m, 1H), 3.62 – 3.54 (m, 2H), 3.37 (q, *J* = 8.9 Hz, 1H), 2.91 – 2.74 (m, 2H), 2.28 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 152.5, 138.0, 135.3, 131.3, 130.9, 129.6, 127.9, 125.2, 118.7, 109.4, 73.0, 72.1, 72.0, 71.4, 65.0, 63.6, 50.4, 29.3, 21.1.

HRMS: calculated for C₂₁H₂₈NO₅⁺ [M+H⁺]: 374.1962; **found**: 374.1964.

White solid. ($R_f = 0.34$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **41-s** was isolated in 56% yield (39.0 mg) following the general procedure of Petasis reaction.

¹**H** NMR (400 MHz, CD₃OD) δ 7.31 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 7.8 Hz, 2H), 6.81 (d, *J* = 8.3 Hz, 2H), 6.53 (d, *J* = 8.4 Hz, 2H), 4.72 (d, *J* = 3.6 Hz, 1H), 4.03 (dd, *J* = 9.3, 3.6 Hz, 1H), 3.81 – 3.70 (m, 1H), 3.53 (dd, *J* = 9.3, 1.2 Hz, 1H), 3.47 (dd, *J* = 7.8, 1.2 Hz, 1H), 2.26 (s, 3H), 2.12 (s, 3H), 1.20 (d, *J* = 6.3 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 146.3, 137.7, 137.4, 130.3, 129.9, 129.5, 127.6, 115.8, 74.7, 74.2, 71.3, 68.8, 60.1, 21.1, 20.7, 20.5.

HRMS: calculated for C₂₀H₂₈NO₄⁺ [M+H⁺]: 346.2013; **found**: 346.2012.

White solid. ($R_f = 0.36$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **42-s** was isolated in 60% yield (40.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.31 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 7.8 Hz, 2H), 6.81 (d, J = 8.3 Hz, 2H), 6.53 (d, J = 8.4 Hz, 2H), 4.72 (d, J = 3.5 Hz, 1H), 4.05 (dd, J = 9.3, 3.6 Hz, 1H), 3.88 – 3.81 (m, 1H), 3.58 (dd, J = 11.0, 6.9 Hz, 1H), 3.53 (dd, J = 11.0, 5.7 Hz, 1H), 3.21 (dd, J = 9.3, 1.4 Hz, 1H), 2.25 (s, 3H), 2.11 (s, 3H).

¹³**C NMR** (101 MHz, CD₃OD) δ 146.2, 137.5, 137.5, 130.3, 129.9, 129.5, 127.6, 115.7, 74.1, 72.3, 71.6, 64.9, 60.0, 21.1, 20.5.

HRMS: calculated for C₁₉H₂₆NO₄⁺ [M+H⁺]: 332.1856; **found**: 332.1848.

White solid. ($R_f = 0.34$, DCM/MeOH/H₂O = 20/2/0.3).

Compound S-1 was isolated in 45% yield (34.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.28 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 7.8 Hz, 2H), 6.63 (d, *J* = 9.0 Hz, 2H), 6.55 (d, *J* = 8.9 Hz, 2H), 4.53 (d, *J* = 6.1 Hz, 1H), 3.98 (dd, *J* = 6.2, 3.2 Hz, 1H), 3.95 (dd, *J* = 3.2, 1.9 Hz, 1H), 3.72 (dd, *J* = 10.9, 2.9 Hz, 1H), 3.70 – 3.64 (m, 2H), 3.63 (s, 3H), 3.57 (dd, *J* = 10.8, 4.8 Hz, 1H), 2.26 (s, 3H).

White solid. ($R_f = 0.21$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **S-2** was isolated in 50% yield (36.3 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.29 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 7.8 Hz, 2H), 6.65 (d, J = 7.8 Hz, 1H), 6.56 – 6.50 (m, 1H), 6.48 – 6.42 (m, 2H), 4.66 (d, J = 5.4 Hz, 1H), 4.06 (dd, J = 5.5, 3.5 Hz, 1H), 3.88 (dd, J = 3.6, 1.7 Hz, 1H), 3.73 – 3.68 (m, 1H), 3.66 – 3.61 (m, 2H), 3.59 – 3.53 (m, 1H), 2.26 (s, 3H).

White solid. ($R_f = 0.22$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **S-3** was isolated in 76% yield (55.2 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.17 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 7.8 Hz, 2H), 6.49 – 6.31 (m, 4H), 4.40 (d, *J* = 6.0 Hz, 1H), 3.94 – 3.81 (m, 2H), 3.62 (dd, *J* = 10.9, 2.8 Hz, 1H), 3.59 – 3.52 (m, 2H), 3.47 (dd, *J* = 11.2, 4.3 Hz, 1H), 2.17 (s, 3H).

White solid. ($R_f = 0.33$, DCM/MeOH/H₂O = 20/2/0.3). Compound S-4 was isolated in 40% yield (30.0 mg) following the general procedure of Petasis reaction.

¹**H** NMR (400 MHz, CD₃OD) δ 7.18 (d, *J* = 7.9 Hz, 2H), 6.99 (d, *J* = 7.8 Hz, 2H), 6.09 (s, 3H), 4.49 (d, *J* = 6.0 Hz, 1H), 3.88 – 3.83 (m, 2H), 3.62 (dd, *J* = 10.8, 2.9 Hz, 1H), 3.57 (dd, *J* = 6.6, 3.9 Hz, 1H), 3.54 (d, *J* = 7.3 Hz, 1H), 3.47 (dd, *J* = 10.8, 4.8 Hz, 1H), 2.17 (s, 3H), 1.99 (s, 6H).

3. Synthesis of 1,2-cis C-aryl furanosides via deaminative cyclization.

3.1 Additional results on optimizing the deaminative cyclization using 6 as the model substrate.

Amino alcohol substrate **6** (51.1 mg, 0.2 mmol, 1.0 equiv) was added into an 8 mL glass vial, then the solvent and reagents were added according the specific conditions listed below. After being cooled to rt, the reaction mixture was concentrated *in vacuo*. The resulting residue was dissolved in 0.5 mL of CD₃OD along with 1,1,2,2-tetrachloroethane (33.6 mg, 0.2 mmol, 1.0 equiv, a singlet peak around 6.45 ppm was set as 1.00) as internal standard, and analyzed by ¹H NMR.

	NH OH MeCN, 100 °C, 4 h 6	
Entry	Reaction conditions	NMR Yield (%)
1	2.0 equiv NCS	84
2	2.1 equiv NCS	95
3	1.9 equiv NCS	70
4	2.1 equiv NIS	33
5	2.1 equiv NBS	77
6	3.0 equiv NCS	70
7	Without NCS	N.D.
8	2.0 equiv NFSI, 24 h	40%

3.1.1 Table S4. Evaluation of halogenation reagents

3.1.2 Table S5. Evaluation of reaction temperature and time

	NH 2.1 equiv NCS OH MeCN, T °C, time	
Entry	Temperature and time	NMR Yield (%)
1	15 °C, 24 h	trace
2	40 °C, 24 h	18
3	60 °C, 24 h	78
4	80 °C, 9 h	92
5	100 °C, 4 h	95

3.1.3 Table S6. Evaluation of solvents

NH NH	2.1 equiv NCS → OH Solvent, 100 °C, 4 h 6	
Entry	Solvents	NMR Yield (%)
1	MeCN	95
2	HFIP	76
3	EtOH	73
4	THF	trace
5	Dioxane	trace
6	DCE	trace
7	Toluene	trace

3.1.4 Table S7. Evaluation of additive

	NH OH 6	
Entry	Additive	NMR Yield (%)
1	None	9
2	1.0 equiv TsOH	66
3	1.0 equiv La(OTf) ₃	73
4	1.0 equiv TFA	13
5	1.0 equiv HCl (36% in water)	61
6	1.0 equiv HBr (33% in AcOH)	76
7	1.0 equiv BINOL phosphoric acid	19
8	1.0 equiv HBr (40% in water)	82
9	2.0 equiv HBr (40% in water)	85
10	3.0 equiv HBr (40% in water)	69
11	2.0 equiv HBr (40% in water) without NCS	N.D.
12	2.0 equiv Cu(OAc) ₂	N.D.

3.2 General procedure for deaminative cyclization

The linear 1-aryl polyhydroxy amines obtained from Petasis reaction (0.2 mmol, 1.0 equiv) was dissolved in MeCN (2 mL, 0.1 M) in an 8 mL glass vial. To the solution was

added NBS (74.8 mg, 0.42 mmol, 2.1 equiv). The mixture was stirred at 80 °C or 100 °C under air atmosphere and monitored by TLC analysis. After being cooled to room temperature, the reaction mixture was concentrated under reduced pressure. The resulting residue was subjected to silica gel chromatography to give the desired product.

White solid. ($R_f = 0.22$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **3** was isolated in 85% yield (43.0 mg) from **1**, and 76% yield (38.8 mg) from **2** following the general procedure of deaminative cyclization.

¹**H** NMR (600 MHz, CD₃OD) δ 7.26 (d, *J* = 7.8 Hz, 2H), 7.15 (d, *J* = 7.8 Hz, 2H), <u>5.21</u> (d, *J* = 3.2 Hz, 1H), 4.38 (d, *J* = 3.3 Hz, 1H), 4.23 (dd, *J* = 8.2, 3.4 Hz, 1H), 4.12 (d, *J* = 3.2 Hz, 1H), 4.06 – 3.95 (m, 1H), 3.88 (dd, *J* = 11.4, 3.3 Hz, 1H), 3.71 (dd, *J* = 11.5, 6.3 Hz, 1H), 2.33 (s, 3H).

¹³C NMR (151 MHz, CD₃OD) δ 137.8, 136.0, 129.4, 128.2, 84.3, 81.8, 80.0, 78.6, 71.5, 65.6, 21.2.

HRMS: calculated for C₁₃H₁₈NaO₅⁺ [M+Na⁺]: 277.1046; **found**: 277.1047.

White solid. ($R_f = 0.31$, hexane/ethyl acetate = 30/1)

Compound 4 is a known compound, and was obtained in 91% yield (48.0 mg) from the deaminative cyclization. The spectral data are consistent with those reported in literature¹.

¹H NMR (400 MHz, CDCl₃) δ 7.20 (s, 2H), 4.38 (s, 2H), 2.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.7, 132.3, 129.5, 108.9, 20.0.

White solid. ($R_f = 0.39$, hexane/ethyl acetate = 30/1)

Compound 5 is a known compound, and was obtained in 79% yield (44.0 mg) from the deaminative cyclization. The spectral data are consistent with those reported in literature².

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 (dt, J = 1.7, 0.8 Hz, 1H), 7.11 (d, J = 1.6 Hz, 1H),

3.62 (t, *J* = 8.5 Hz, 2H), 3.13 (t, *J* = 8.6 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 149.6, 132.3, 131.9, 126.7, 109.7, 103.2, 47.0, 30.9.

White solid. ($R_f = 0.21$, DCM/MeOH/H₂O = 20/2/0.3). Compound **13** was isolated in 82% yield (47.8 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 8.02 (dd, J = 8.4, 1.4 Hz, 1H), 7.88 (dd, J = 7.8, 1.7 Hz, 1H), 7.77 (t, J = 8.3 Hz, 2H), 7.57 – 7.39 (m, 3H), <u>6.01 (d, J = 3.3 Hz, 1H)</u>, 4.51 (dd, J = 3.4, 1.2 Hz, 1H), 4.41 (dd, J = 3.2, 1.2 Hz, 1H), 4.29 (dd, J = 8.3, 3.2 Hz, 1H), 4.12 – 4.02 (m, 1H), 3.94 (dd, J = 11.5, 3.3 Hz, 1H), 3.77 (dd, J = 11.5, 6.2 Hz, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 135.0, 134.6, 131.9, 129.8, 128.5, 126.9, 126.3, 125.8, 123.6, 81.6, 81.4, 79.2, 78.9, 71.5, 65.7.

HRMS: calculated for C₁₆H₁₈NaO₅⁺ [M+Na⁺]: 313.1046; **found**: 313.1046.

White solid. ($R_f = 0.23$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **14** was isolated in 70% yield (37.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.41 – 7.30 (m, 4H), 7.25 (t, J = 7.1 Hz, 1H), <u>5.24 (d,</u> <u>J = 3.2 Hz, 1H)</u>, 4.37 (d, J = 3.1 Hz, 1H), 4.23 (dd, J = 8.3, 3.3 Hz, 1H), 4.16 (d, J = 3.1 Hz, 1H), 4.04 – 3.96 (m, 1H), 3.89 (dd, J = 11.5, 3.3 Hz, 1H), 3.71 (dd, J = 11.5, 6.2 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 139.3, 128.8, 128.2, 84.4, 81.9, 80.0, 78.6, 71.5, 65.6. HRMS: calculated for C₁₂H₁₆NaO₅⁺ [M+Na⁺]: 263.0890; **found**: 263.0891.

White solid. ($R_f = 0.27$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **15** was isolated in 64% yield (33.0 mg) following the general procedure of deaminative cyclization.

¹H NMR (400 MHz, CD₃OD) δ 7.59 – 7.51 (m, 1H), 7.29 – 7.21 (m, 1H), 7.16 – 7.09

(m, 1H), 7.05 - 6.97 (m, 1H), 5.45 (d, J = 3.4 Hz, 1H), 4.33 (dd, J = 3.1, 1.2 Hz, 1H), 4.30 - 4.27 (m, 1H), 4.17 (dd, J = 8.3, 3.1 Hz, 1H), 4.02 - 3.95 (m, 1H), 3.88 (dd, J = 11.4, 3.2 Hz, 1H), 3.70 (dd, J = 11.5, 6.2 Hz, 1H).

¹³**C NMR** (101 MHz, CD₃OD) δ 161.0 (d, *J* = 243.5 Hz), 130.2 (d, *J* = 4.6 Hz), 129.6 (d, *J* = 8.2 Hz), 126.9 (d, *J* = 13.2 Hz), 124.7 (d, *J* = 3.3 Hz), 115.3 (d, *J* = 21.2 Hz), 81.5, 78.9, 78.9, 78.6, 71.4, 65.6.

¹⁹**F NMR** (376 MHz, CD₃OD) δ -120.8.

HRMS: calculated for C₁₂H₁₅FNaO₅⁺ [M+Na⁺]: 281.0796; **found**: 281.0797.

White solid. ($R_f = 0.26$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **16** was isolated in 73% yield (39.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.26 (dd, J = 8.5, 5.6 Hz, 2H), 6.93 (t, J = 8.8 Hz, 2H), <u>5.10 (d, J = 3.2 Hz, 1H)</u>, 4.25 (dd, J = 3.3, 1.2 Hz, 1H), 4.10 (dd, J = 8.3, 3.3 Hz, 1H), 4.00 (dd, J = 3.2, 1.3 Hz, 1H), 3.91 – 3.83 (m, 1H), 3.75 (dd, J = 11.4, 3.2 Hz, 1H), 3.58 (dd, J = 11.5, 6.2 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 163.5 (d, *J* = 243.1 Hz), 135.3 (d, *J* = 3.0 Hz), 130.0 (d, *J* = 8.0 Hz), 115.4 (d, *J* = 21.5 Hz), 83.8, 81.9, 79.9, 78.6, 71.5, 65.6.

¹⁹**F NMR** (376 MHz, CD₃OD) δ -118.2.

HRMS: calculated for C₁₂H₁₅FNaO₅⁺ [M+Na⁺]: 281.0796; found: 281.0794.

White solid. ($R_f = 0.28$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **17** was isolated in 61% yield (33.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.15 (t, J = 7.8 Hz, 2H), 7.09 – 6.97 (m, 1H), <u>5.17 (d,</u> J = 3.2 Hz, 1H), 4.33 (dd, J = 3.3, 1.3 Hz, 1H), 4.19 (dd, J = 8.3, 3.3 Hz, 1H), 4.11 (dd, J = 3.2, 1.3 Hz, 1H), 4.01 – 3.92 (m, 1H), 3.85 (dd, J = 11.4, 3.3 Hz, 1H), 3.68 (dd, J = 11.5, 6.1 Hz, 1H), 2.23 (s, 3H).

¹³**C NMR** (101 MHz, CD₃OD) δ 162.5 (d, J = 242.3 Hz), 139.6 (d, J = 7.5 Hz), 131.8 (d, J = 5.3 Hz), 124.3 (d, J = 17.3 Hz), 123.5 (d, J = 3.2 Hz), 114.7 (d, J = 23.5 Hz), 83.7, 81.9, 80.0, 78.6, 71.5, 65.6, 14.2 (d, J = 3.7 Hz).

¹⁹**F NMR** (376 MHz, CD₃OD) δ -120.8.

HRMS: calculated for C₁₃H₁₇FNaO₅⁺ [M+Na⁺]: 295.0952; **found**: 295.0959.

White solid. ($R_f = 0.24$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **18** was isolated in 77% yield (42.0 mg) following the general procedure of deaminative cyclization

¹**H NMR** (400 MHz, CD₃OD) δ 7.38 – 7.28 (m, 4H), <u>5.19 (d, *J* = 3.2 Hz, 1H)</u>, 4.34 (dd, *J* = 3.3, 1.3 Hz, 1H), 4.20 (dd, *J* = 8.3, 3.2 Hz, 1H), 4.12 (dd, *J* = 3.3, 1.3 Hz, 1H), 4.00 – 3.93 (m, 1H), 3.85 (dd, *J* = 11.5, 3.3 Hz, 1H), 3.68 (dd, *J* = 11.4, 6.2 Hz, 1H). ¹³**C NMR** (101 MHz, CD₃OD) δ 138.4, 133.7, 129.8, 128.8, 83.8, 82.0, 79.9, 78.6, 71.5, 65.6.

HRMS: calculated for C₁₂H₁₅ClNaO₅⁺ [M+Na⁺]: 297.0500; **found**: 297.0502.

White solid. ($R_f = 0.29$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **19** was isolated in 79% yield (50.0 mg) following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 7.45 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), <u>5.18</u> (d, J = 3.2 Hz, 1H), 4.33 (dd, J = 3.3, 1.3 Hz, 1H), 4.20 (dd, J = 8.3, 3.3 Hz, 1H), 4.12 (dd, J = 3.2, 1.3 Hz, 1H), 4.04 – 3.91 (m, 1H), 3.85 (dd, J = 11.4, 3.2 Hz, 1H), 3.68 (dd, J = 11.5, 6.2 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 138.9, 131.8, 130.1, 121.7, 83.8, 82.0, 79.9, 78.6, 71.4, 65.6.

HRMS: calculated for C₁₂H₁₅BrNaO₅⁺ [M+Na⁺]: 340.9995; **found**: 340.9997.

White solid. ($R_f = 0.23$, DCM/MeOH/H₂O = 5/1/0.3).

Compound **20** was isolated in 80% yield (43.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.38 – 7.27 (m, 4H), <u>5.22 (d, *J* = 3.2 Hz, 1H)</u>, 4.58 (s, 2H), 4.35 (dd, *J* = 3.3, 1.3 Hz, 1H), 4.21 (dd, *J* = 8.3, 3.3 Hz, 1H), 4.12 (dd, *J* = 3.2, 1.3 Hz, 1H), 4.02 – 3.94 (m, 1H), 3.86 (dd, *J* = 11.4, 3.3 Hz, 1H), 3.68 (dd, *J* = 11.5, 6.2 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 141.5, 138.4, 128.2, 127.6, 84.2, 81.9, 80.0, 78.6, 71.5,

65.6, 65.1. HRMS: calculated for C₁₃H₁₈NaO₆⁺ [M+Na⁺]: 293.0996; found: 293.0996.

White solid. ($R_f = 0.23$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **21** was isolated in 75% yield (40.0 mg) following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 7.39 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 6.72 (dd, J = 17.6, 10.9 Hz, 1H), 5.74 (dd, J = 17.7, 1.1 Hz, 1H), 5.20 (d, J = 3.4 Hz, 1H), 5.20 – 5.16 (m, 1H), 4.35 (dd, J = 3.3, 1.3 Hz, 1H), 4.21 (dd, J = 8.3, 3.3 Hz, 1H), 4.13 (dd, J = 3.3, 1.2 Hz, 1H), 4.01 – 3.94 (m, 1H), 3.86 (dd, J = 11.5, 3.3 Hz, 1H), 3.69 (dd, J = 11.5, 6.2 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 139.1, 138.1, 138.0, 128.4, 126.7, 113.5, 84.2, 82.0, 80.0, 78.6, 71.5, 65.6.

HRMS: calculated for C₁₄H₁₈NaO₅⁺ [M+Na⁺]: 289.1046; **found**: 289.1046.

White solid. ($R_f = 0.25$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **22** was isolated in 71% yield (40.0 mg) following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 7.70 (d, J = 2.2 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.43 (d, J = 8.6 Hz, 1H), 7.29 (dd, J = 8.5, 1.7 Hz, 1H), 6.80 (dd, J = 2.2, 1.0 Hz, 1H), 5.33 (d, J = 3.1 Hz, 1H), 4.38 (dd, J = 3.3, 1.2 Hz, 1H), 4.25 (dd, J = 8.2, 3.3 Hz, 1H), 4.14 (dd, J = 3.1, 1.2 Hz, 1H), 4.04 – 3.96 (m, 1H), 3.88 (dd, J = 11.5, 3.3 Hz, 1H), 3.71 (dd, J = 11.5, 6.2 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 155.9, 146.5, 133.7, 128.5, 124.7, 120.9, 111.3, 107.6, 84.5, 81.9, 80.1, 78.7, 71.5, 65.6.

HRMS: calculated for C₁₄H₁₆NaO₆⁺ [M+Na⁺]: 303.0839; **found**: 303.0838.

White solid. ($R_f = 0.25$, DCM/MeOH/H₂O = 20/2/0.3). Compound **23** was isolated in 70% yield (39.0 mg) following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 7.58 – 7.49 (m, 1H), 7.43 (d, J = 7.4 Hz, 1H), 7.25 – 7.20 (m, 1H), 7.19 – 7.15 (m, 1H), 6.78 (s, 1H), 5.30 (d, J = 3.3 Hz, 1H), 4.37 (dd, J = 3.3, 1.5 Hz, 1H), 4.32 (dd, J = 3.5, 1.5 Hz, 1H), 4.23 (dd, J = 8.3, 3.3 Hz, 1H), 4.01 – 3.93 (m, 1H), 3.86 (dd, J = 11.5, 3.3 Hz, 1H), 3.69 (dd, J = 11.5, 6.2 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 156.3, 156.1, 129.8, 124.7, 123.6, 121.8, 111.8, 105.7, 81.8, 79.3, 79.2, 78.4, 71.4, 65.5.

HRMS: calculated for C₁₄H₁₆NaO₆⁺ [M+Na⁺]: 303.0839; **found**: 303.0839.

White solid. ($R_f = 0.27$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **24** was isolated in 69% yield (41.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.94 – 7.85 (m, 1H), 7.85 – 7.79 (m, 1H), 7.58 (d, *J* = 1.1 Hz, 1H), 7.43 – 7.32 (m, 2H), **5.60 (dd,** *J* **= 2.8, 1.2 Hz, 1H)**, 4.42 (d, *J* = 2.9 Hz, 2H), 4.28 (dd, *J* = 8.4, 3.0 Hz, 1H), 4.08 – 4.01 (m, 1H), 3.92 (dd, *J* = 11.5, 3.2 Hz, 1H), 3.75 (dd, *J* = 11.5, 6.1 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 142.0, 138.9, 134.0, 125.2, 124.9, 124.7, 123.7, 122.8, 81.2, 80.8, 78.9, 78.6, 71.4, 65.6.

HRMS: calculated for C₁₄H₁₆NaO₅S⁺ [M+Na⁺]: 319.0611; **found**: 319.0610.

White solid. ($R_f = 0.27$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **25** was isolated in 74% yield (44.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.82 – 7.78 (m, 1H), 7.75 – 7.70 (m, 1H), 7.34 – 7.22 (m, 3H), <u>5.49 (d, *J* = 2.8 Hz, 1H)</u>, 4.38 (dd, *J* = 3.4, 1.3 Hz, 1H), 4.22 (dd, *J* = 8.3, 3.4 Hz, 1H), 4.19 (dd, *J* = 3.1, 1.3 Hz, 1H), 4.01 – 3.93 (m, 1H), 3.85 (dd, *J* = 11.5, 3.3 Hz, 1H), 3.67 (dd, *J* = 11.5, 6.4 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 143.3, 141.6, 140.9, 124.9, 124.8, 124.2, 123.0, 122.8, 81.9, 81.3, 80.1, 78.5, 71.5, 65.5.

HRMS: calculated for C₁₄H₁₆NaO₅S⁺ [M+Na⁺]: 319.0611; **found**: 319.0611.

White solid. ($R_f = 0.26$, DCM/MeOH/H₂O = 20/2/0.3). Compound **26** was isolated in 70% yield (61.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.93 (dd, J = 8.3, 0.9 Hz, 1H), 7.80 – 7.71 (m, 2.5H), 7.66 (dd, J = 11.0, 1.1 Hz, 1H), 7.56 (d, J = 7.8 Hz, 0.5H), 7.33 – 7.25 (m, 1H), 7.25 – 7.16 (m, 3H), <u>5.42 (dd, J = 3.1, 1.2 Hz, 0.5H</u>), 4.88 – 4.83 (m, 0.5H), 4.39 (dd, J = 3.4, 1.2 Hz, 0.5H), 4.30 – 4.22 (m, 1.5H), 4.18 (dd, J = 3.8, 1.4 Hz, 0.5H), 4.13 – 4.07 (m, 0.5H), 4.07 – 3.97 (m, 1H), 3.90 – 3.82 (m, 1H), 3.76 – 3.66 (m, 1H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CD₃OD) δ 146.6, 146.5, 136.8, 136.5, 136.4, 136.3, 131.0, 130.9, 130.9, 130.5, 128.0, 127.9, 125.8, 125.7, 125.5, 124.8, 124.3, 124.2, 123.7, 121.6, 121.4, 121.0, 114.7, 114.5, 84.0, 82.8, 82.2, 81.3, 79.8, 79.1, 78.6, 78.6, 71.5, 65.5, 65.3, 21.4. **HRMS**: calculated for C₂₁H₂₃NNaO₇S⁺ [M+Na⁺]: 456.1087; found: 456.1089.

White solid. ($R_f = 0.28$, DCM/MeOH/H₂O = 20/2/0.3).

Compound 27a was isolated in 44% yield (24.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.31 – 7.22 (m, 2H), 6.93 – 6.83 (m, 2H), <u>5.16 (d, *J* = 3.1 Hz, 1H)</u>, 4.34 (dd, *J* = 3.4, 1.3 Hz, 1H), 4.19 (dd, *J* = 8.3, 3.4 Hz, 1H), 4.06 (dd, *J* = 3.2, 1.3 Hz, 1H), 3.99 – 3.93 (m, 1H), 3.84 (dd, *J* = 11.5, 3.3 Hz, 1H), 3.77 (s, 3H), 3.67 (dd, *J* = 11.5, 6.3 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 160.5, 131.0, 129.5, 114.3, 84.1, 81.8, 80.0, 78.6, 71.6, 65.6, 55.6.

HRMS: calculated for C₁₃H₁₈NaO₆⁺ [M+Na⁺]: 293.0996; **found**: 293.0997.

White solid. ($R_f = 0.21$, DCM/MeOH/H₂O = 20/2/0.3).

Compound 27β was isolated in 22% yield (12.0 mg) following the general procedure of deaminative cyclization.

¹H NMR (400 MHz, CD₃OD) δ 7.39 – 7.33 (m, 2H), 6.89 – 6.85 (m, 2H), <u>4.53 (d, *J* =</u>

<u>**4.2 Hz, 1H)**</u>, 4.20 (dd, J = 3.9, 1.8 Hz, 1H), 4.05 (m, 1H), 3.99 – 3.94 (m, 2H), 3.83 (dd, J = 11.4, 3.4 Hz, 1H), 3.77 (s, 3H), 3.67 (dd, J = 11.5, 6.0 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 160.7, 134.0, 128.9, 114.5, 88.6, 86.2, 82.1, 79.7, 71.5, 65.2, 55.7.

HRMS: calculated for C₁₃H₁₈NaO₆⁺ [M+Na⁺]: 293.0996; **found**: 293.0997.

28 (α/β = 2/1)

White solid. ($R_f = 0.26$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **28** was isolated in 72% yield (43.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.54 – 7.45 (m, 2H), 7.39 (d, *J* = 8.6 Hz, 0.68H), 7.30 (d, *J* = 8.4 Hz, 1.34H), <u>5.18 (d, *J* = 3.1 Hz, 0.68H)</u>, <u>4.57 (d, *J* = 4.1 Hz, 0.34H)</u>, 4.35 (dd, *J* = 3.3, 1.3 Hz, 0.68H), 4.25 – 4.18 (m, 1H), 4.13 – 4.09 (m, 0.68H), 4.09 – 4.04 (m, 0.34H), 4.02 – 3.94 (m, 1.34H), 3.89 – 3.81 (m, 1H), 3.68 (dd, *J* = 11.5, 6.2 Hz, 1H), 2.10 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 171.6, 139.1, 138.8, 137.8, 135.1, 128.6, 127.9, 120.9, 120.7, 88.5, 86.1, 84.1, 82.2, 81.9, 80.0, 79.6, 78.6, 71.5, 71.4, 65.5, 65.2, 23.8, 23.8. HRMS: calculated for C₁₄H₁₉NNaO₆⁺ [M+Na⁺]: 320.1105; **found**: 320.1105.

White solid. ($R_f = 0.27$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **29** was isolated in 75% yield (38.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.29 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), <u>5.03</u> (d, J = 3.0 Hz, 1H), 4.24 (dd, J = 2.2, 1.1 Hz, 1H), 4.00 (t, J = 2.4 Hz, 1H), 3.90 (dd, J = 3.2, 1.1 Hz, 1H), 3.88 – 3.83 (m, 1H), 3.78 – 3.66 (m, 2H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 138.0, 135.3, 129.4, 128.2, 86.8, 84.7, 81.0, 80.0, 73.5, 64.4, 21.2.

HRMS: calculated for C₁₃H₁₈NaO₅⁺ [M+Na⁺]: 277.1046; **found**: 277.1045.

White solid. ($R_f = 0.24$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **30** was isolated in 60% yield (29.1 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.44 (dd, J = 8.5, 5.7 Hz, 2H), 7.04 (t, J = 8.9 Hz, 2H), **5.06** (d, J = 3.1 Hz, 1H), 4.11 (dd, J = 2.3, 1.1 Hz, 1H), 4.04 – 3.96 (m, 1H), 3.92 (dd, J = 3.2, 1.1 Hz, 1H), 3.72 (dd, J = 4.3, 2.3 Hz, 1H), 1.32 (d, J = 6.5 Hz, 3H).

¹³**C NMR** (151 MHz, CD₃OD) δ 163.0, 161.4, 133.1 (d, *J* = 2.7 Hz), 128.8 (d, *J* = 7.8 Hz), 114.0 (d, *J* = 21.6 Hz), 89.6, 82.7, 79.7, 78.8, 67.7, 18.6.

¹⁹**F NMR** (376 MHz, CD₃OD) δ -117.9.

HRMS: calculated for C₁₂H₁₅FNaO₄⁺ [M+Na⁺]: 265.0847; **found**: 265.0847.

White solid. ($R_f = 0.22$, DCM/MeOH/H₂O = 6/2/0.5). Compound **31** was isolated in 78% yield (65.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.23 (d, J = 7.9 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), <u>5.18</u> (d, J = 3.0 Hz, 1H), 4.45 – 4.33 (m, 2H), 4.16 – 4.03 (m, 3H), 3.90 – 3.66 (m, 5H), 3.63 (dd, J = 9.7, 2.1 Hz, 1H), 3.50 – 3.42 (m, 2H), 2.33 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 137.8, 136.0, 129.5, 128.2, 99.8, 84.3, 81.0, 80.2, 78.1, 75.3, 73.9, 73.2, 71.3, 70.0, 69.1, 62.1, 21.2.

HRMS: calculated for C₁₉H₂₈NaO₁₀⁺ [M+Na⁺]: 439.1575; **found**: 439.1576.

White solid. ($R_f = 0.25$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **32** was isolated in 87% yield (39.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.31 (d, J = 7.9 Hz, 2H), 7.16 (d, J = 7.8 Hz, 2H), <u>5.07</u> (d, J = 3.3 Hz, 1H), 4.14 (dd, J = 2.2, 1.1 Hz, 1H), 4.00 – 3.92 (m, 2H), 3.89 – 3.75 (m, 2H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 138.1, 135.3, 129.5, 128.4, 87.6, 84.8, 80.5, 80.2, 63.7, 21.2.

HRMS: calculated for C₁₂H₁₆NaO₄⁺ [M+Na⁺]: 247.0941; found: 247.0939.

White solid. ($R_f = 0.21$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **33** was isolated in 89% yield (40.1 mg) following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 7.28 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 7.9 Hz, 2H), <u>5.19</u> (d, J = 3.2 Hz, 1H), 4.43 – 4.34 (m, 1H), 4.29 (dd, J = 3.7, 1.4 Hz, 1H), 4.09 (dd, J = 3.3, 1.3 Hz, 1H), 3.94 – 3.77 (m, 2H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 137.9, 136.1, 129.5, 128.3, 84.0, 82.6, 80.3, 78.7, 62.0, 21.2.

HRMS: calculated for $C_{12}H_{16}NaO_4^+$ [M+Na⁺]: 247.0941; found: 247.0939.

White solid. ($R_f = 0.22$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **34** was isolated in 80% yield (40.1 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.56 – 7.50 (m, 1H), 7.47 – 7.38 (m, 1H), 7.27 – 7.12 (m, 2H), 6.80 (s, 1H), <u>5.29 (d, *J* = 3.5 Hz, 1H)</u>, 4.43 – 4.36 (m, 1H), 4.35 – 4.29 (m, 2H), 3.90 – 3.79 (m, 2H).

¹³C NMR (101 MHz, CD₃OD) δ 156.3, 156.2, 129.8, 124.8, 123.6, 121.8, 111.8, 105.8, 82.5, 79.5, 78.8, 78.4, 61.9.

HRMS: calculated for C₁₃H₁₄NaO₅⁺ [M+Na⁺]: 273.0733; **found**: 273.0734.

White solid. ($R_f = 0.25$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **35** was isolated in 76% yield (34.1 mg) following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 7.26 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), <u>5.03</u> (d, J = 3.0 Hz, 1H), 4.31 (dd, J = 8.3, 4.4 Hz, 1H), 4.11 (dd, J = 4.3, 3.0 Hz, 1H), 4.07 – 4.00 (m, 1H), 3.85 (dd, J = 12.0, 2.7 Hz, 1H), 3.67 (dd, J = 12.0, 4.6 Hz, 1H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 137.9, 136.4, 129.4, 128.3, 84.2, 83.7, 75.4, 74.1, 63.3, 21.2.

HRMS: calculated for C₁₂H₁₆NaO₄⁺ [M+Na⁺]: 247.0941; **found**: 247.0940.

White solid. ($R_f = 0.21$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **36** was isolated in 77% yield (37.0 mg) following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 7.37 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), <u>5.08</u> (d, J = 3.0 Hz, 1H), 4.58 (s, 2H), 4.32 (dd, J = 8.3, 4.4 Hz, 1H), 4.15 (dd, J = 4.3, 3.1 Hz, 1H), 4.09 – 4.02 (m, 1H), 3.86 (dd, J = 12.0, 2.7 Hz, 1H), 3.68 (dd, J = 12.0, 4.6 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 141.7, 138.6, 128.4, 127.5, 84.2, 83.8, 75.4, 74.2, 65.1, 63.3.

HRMS: calculated for C₁₂H₁₆NaO₅⁺ [M+Na⁺]: 263.0890; **found**: 263.0890.

White solid. ($R_f = 0.27$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **37** was isolated in 75% yield (34.0 mg) following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 7.44 – 7.34 (m, 2H), 7.10 – 6.96 (m, 2H), <u>5.06 (d, J = 3.0 Hz, 1H)</u>, 4.32 (dd, J = 8.4, 4.3 Hz, 1H), 4.13 (dd, J = 4.3, 3.1 Hz, 1H), 4.08 – 4.02 (m, 1H), 3.85 (dd, J = 12.0, 2.7 Hz, 1H), 3.67 (dd, J = 12.0, 4.6 Hz, 1H).

¹³**C NMR** (101 MHz, CD₃OD) δ 163.6 (d, *J* = 243.2 Hz), 135.6 (d, *J* = 3.0 Hz), 130.2 (d, *J* = 8.1 Hz), 115.4 (d, *J* = 21.5 Hz), 83.8, 83.7, 75.3, 74.1, 63.2.

¹⁹**F NMR** (376 MHz, CD₃OD) δ -118.0.

HRMS: calculated for C₁₁H₁₃FNaO₄⁺ [M+Na⁺]: 251.0690; **found**: 251.0690.

White solid. ($R_f = 0.25$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **38** was isolated in 71% yield (37.0 mg) following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 8.00 (d, J = 7.8 Hz, 1H), 7.87 (dd, J = 7.7, 1.8 Hz, 1H),

7.78 (d, J = 7.7 Hz, 2H), 7.54 – 7.38 (m, 3H), <u>5.88 (d, J = 3.0 Hz, 1H)</u>, 4.51 (dd, J = 4.5, 3.1 Hz, 1H), 4.46 (dd, J = 8.3, 4.4 Hz, 1H), 4.18 – 4.07 (m, 1H), 3.95 (dd, J = 12.0, 2.7 Hz, 1H), 3.76 (dd, J = 12.0, 4.7 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 135.0, 134.9, 131.9, 129.7, 128.6, 126.9, 126.3, 126.3, 126.0, 123.7, 83.2, 81.3, 74.4, 74.2, 63.4.

HRMS: calculated for C₁₅H₁₆NaO₄⁺ [M+Na⁺]: 283.0941; **found**: 283.0940.

White solid. ($R_f = 0.24$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **39** was isolated in 74% yield (37.0 mg) following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 7.71 (d, J = 2.2 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.44 (d, J = 8.6 Hz, 1H), 7.32 (dd, J = 8.6, 1.7 Hz, 1H), 6.80 (dd, J = 2.3, 1.0 Hz, 1H), 5.18 (d, J = 3.0 Hz, 1H), 4.35 (dd, J = 8.4, 4.3 Hz, 1H), 4.16 (dd, J = 4.3, 3.0 Hz, 1H), 4.13 – 4.05 (m, 1H), 3.88 (dd, J = 12.0, 2.7 Hz, 1H), 3.70 (dd, J = 12.0, 4.6 Hz, 1H).

¹³C NMR (101 MHz, CD₃OD) δ 156.0, 146.5, 134.0, 128.5, 124.9, 121.1, 111.3, 107.6, 84.4, 83.8, 75.5, 74.2, 63.3.

HRMS: calculated for C₁₃H₁₄NaO₅⁺ [M+Na⁺]: 273.0733; **found**: 273.0733.

White solid. ($R_f = 0.28$, DCM/MeOH/H₂O = 20/2/0.3). Compound **40** α was isolated in 24% yield (12.0 mg) from **40-s-1**, and 28% yield (14.0 mg) from **40-s-2** following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 7.27 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), <u>4.72</u> (d, J = 8.5 Hz, 1H), 4.28 (t, J = 3.7 Hz, 1H), 4.12 (dd, J = 8.2, 3.3 Hz, 1H), 4.03 – 3.94 (m, 2H), 3.81 (dd, J = 11.5, 3.3 Hz, 1H), 3.64 (dd, J = 11.5, 6.0 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CD₃OD) δ 139.8, 138.3, 129.9, 127.1, 83.8, 81.6, 81.0, 73.7, 71.8, 64.9, 21.2.

HRMS: calculated for C₁₃H₁₈NaO₅⁺ [M+Na⁺]: 277.1046; **found**: 277.1047.

White solid. ($R_f = 0.21$, DCM/MeOH/H₂O = 20/2/0.3).

Compound 40β was isolated in 61% yield (31.0 mg) from 40-s-1, and 43% yield (22.0 mg) from 40-s-2 following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.26 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), <u>4.51</u> (t, J = 5.5 Hz, 1H), 4.25 (t, J = 5.1 Hz, 1H), 4.14 – 4.06 (m, 1H), 3.89 (dd, J = 7.2, 5.8 Hz, 1H), 3.85 (dd, J = 11.5, 3.5 Hz, 1H), 3.70 (dd, J = 11.5, 6.1 Hz, 1H), 2.31 (s, 3H). ¹³**C NMR** (101 MHz, CD₃OD) δ 138.0, 135.9, 129.3, 128.6, 84.0, 80.5, 74.4, 74.0, 72.7, 64.9, 21.2.

HRMS: calculated for C₁₃H₁₈NaO₅⁺ [M+Na⁺]: 277.1046; **found**: 277.1045.

White solid. ($R_f = 0.27$, DCM/MeOH/H₂O = 30/2/0.3).

Compound 41a was isolated in 25% yield (12.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.27 (d, J = 7.8 Hz, 2H), 7.15 (d, J = 7.7 Hz, 2H), <u>4.70</u> (d, J = 8.5 Hz, 1H), 4.29 (t, J = 3.8 Hz, 1H), 4.12 – 4.02 (m, 1H), 3.98 (dd, J = 8.6, 4.2 Hz, 1H), 3.92 – 3.84 (m, 1H), 2.31 (s, 3H), 1.29 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 139.8, 138.3, 129.9, 127.1, 85.8, 83.7, 81.1, 73.6, 67.3, 21.2, 20.4.

HRMS: calculated for C₁₃H₁₈NaO₄⁺ [M+Na⁺]: 261.1097; **found**: 261.1097.

White solid. ($R_f = 0.22$, DCM/MeOH/H₂O = 30/2/0.3).

Compound 41β was isolated in 52% yield (25.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.26 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), <u>4.81</u> (d, J = 4.8 Hz, 1H), 4.52 (t, J = 5.5 Hz, 1H), 4.29 – 4.13 (m, 2H), 3.66 (dd, J = 7.3, 6.0 Hz, 1H), 2.31 (s, 3H), 1.32 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 138.0, 136.0, 129.4, 128.6, 84.2, 83.8, 74.5, 74.2, 68.2, 21.2, 20.5.

HRMS: calculated for C₁₃H₁₈NaO₄⁺ [M+Na⁺]: 261.1097; **found**: 261.1099.

White solid. ($R_f = 0.29$, DCM/MeOH/H₂O = 30/2/0.3).
Compound 42a was isolated in 20% yield (9.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.28 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), <u>4.73</u> (d, J = 7.9 Hz, 1H), 4.33 – 4.27 (m, 1H), 4.24 (t, J = 4.2 Hz, 1H), 3.98 (dd, J = 7.9, 4.4 Hz, 1H), 3.89 – 3.74 (m, 2H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 139.6, 138.3, 129.9, 127.1, 83.9, 82.6, 80.7, 73.5, 62.3, 21.2.

HRMS: calculated for C₁₂H₁₆NaO₄⁺ [M+Na⁺]: 247.0941; **found**: 247.0940.

White solid. ($R_f = 0.23$, DCM/MeOH/H₂O = 30/2/0.3).

Compound 42β was isolated in 51% yield (23.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.30 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), <u>4.85</u> (<u>1H)</u>, 4.58 (dd, J = 7.5, 5.0 Hz, 1H), 4.15 – 4.06 (m, 2H), 3.88 – 3.76 (m, 2H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 138.0, 135.9, 129.4, 128.5, 83.5, 81.2, 74.4, 74.2, 61.9, 21.2.

HRMS: calculated for $C_{12}H_{16}NaO_4^+$ [M+Na⁺]: 247.0941; found: 247.0941.

3.3 stereochemical assignment of the products of deaminative cyclization

¹H-¹H COSY spectrum of compound **30** (600 MHz, CD₃OD) H₂₋₅ was determined by ¹H-¹H COSY spectrum.

H₁ and H₄ was determined by HMBC spectrum.

 1 H- 1 H COSY spectrum of compound **41** β (600 MHz, CD₃OD) H₂₋₅ was determined by 1 H- 1 H COSY spectrum.

NOESY spectrum of compound 41β (600 MHz, CD₃OD)

H₂₋₅ was determined by ¹H-¹H COSY spectrum.

Compound **27** (54.1 mg, 0.2 mmol, 1.0 equiv, $\alpha/\beta = 2/1$) was dissolved in pyridine (1 mL, 0.2 M) in an 8 mL glass vial. To the solution was added acetic anhydride (102.1 mg, 1.0 mmol, 5.0 equiv) and DMAP (2.5 mg, 0.02 mmol, 0.1 equiv). The mixture was stirred at rt under air atmosphere and monitored by TLC analysis. The reaction mixture was concentrated under reduced pressure. The resulting residue was subjected to silica gel chromatography to give the desired product **OAc-27**(71.0 mg, 81%, $\alpha/\beta = 2/1$). White solid. (R_f = 0.23, Hexane/ethyl acetate = 10/1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.6 Hz, 2H, β-H_{Ar}), 7.20 (d, J = 8.5 Hz, 4H, α-H_{Ar}), 6.89 (d, J = 8.8 Hz, 2H, β-H_{Ar}), 6.85 (d, J = 8.8 Hz, 4H,α-H_{Ar}), 5.53 (dd, J =3.7, 1.2 Hz, 2H, α-H₃), 5.45 – 5.38 (m, 2H,β-H₃, β-H₅), 5.36 (dd, J = 3.6, 1.2 Hz, 2H, α-H₁), 5.32 – 5.25 (m, 4H, α-H₂, α-H₅), 4.98 (dd, J = 3.0, 1.0 Hz, 1H, β-H₁), 4.89 (d, J =3.0 Hz, 1H, β-H₂), 4.70 – 4.65 (m, 2H, α-H₆), 4.64 (d, J = 2.5 Hz, 1H, β-H₆), 4.56 (dd, J = 9.6, 3.7 Hz, 2H, α-H₄), 4.37 (dd, J = 9.2, 3.5 Hz, 1H, β-H₄), 4.21 (dd, J = 12.2, 5.5 Hz, 3H, α-H₆/β-H₆), 3.81 (s, 3H, β-OMe), 3.79 (s, 6H,α-OMe), 2.15 (s, 3H, β-OAc), 2.13 (s, 6H, α-OAc), 2.10 (s, 6H, α-OAc), 2.10 (s, 3H, β-OAc). The spectral data are consistent with those reported in literature¹⁴. 4. Mechanistic study using enantio-enriched amino alcohol (R)-6

Step 1: Phenylbutanoic acid (1.8 g, 10.0 mmol, 1.0 equiv) was dissolved in methanol. Acetyl chloride (942.0 mg, 12.0 mmol, 1.2 equiv) was added dropwise and the reaction mixture was stirred at rt for 10 h. The reaction mixture was diluted by dichloromethane, washed with Brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure to obtain the corresponding methyl esters S-5 (1.9 g, 98%). S-5 was pure enough to use in the next step without further purification.

Step 2: **S-5** (1.2 g, 6.0 mmol, 1.0 equiv) was added to a solution of RuCl(pcymene)[(S,S)-Ts-DPEN] (5 mol%) in a mixture of formic acid/triethylamine (5/2, 10 mL) under argon and stirred at 30 °C for 48 h. Saturated NaHCO₃ solution was added and the reaction mixture was extracted with DCM. The combined organic layers were washed with water and brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give a nonseparable mixture of alcohol and lactone **S-6** (782.1 mg, approx 70%).

Step 3: LiAlH₄ (607.3 mg, 16.0 mmol, 4.0 equiv) was suspended in try THF (20 mL), and the mixture was cooled to 0 °C. The mixture of alcohol and lactone **S-6** (782.1 mg, approx 4.0 mmol total, 1.0 equiv) in try THF (5 mL) was added dropwise. The reaction mixture was allowing to warm to room temperature and stirred overnight. After 12 h, the reaction mixture was cooled to 0 °C and quenched by successive dropwise addition of H₂O, 15% NaOH (aq), and H₂O. After stirring at room temperature for another 1 h, MgSO₄ was added, and the mixture was filtered through a plug of celite (washing with THF). The filtrate was concentrated under reduced pressure to give a clear oil that solidified upon standing. A white solid was isolated and carried forward without purification. The **step 1-3** were following a reported procedure³.

Step 4: Imidazole (816.8 mg, 12.0 mmol, 1.2 equiv) and TBSCl (1.8 g, 11.0 mmol, 1.1 equiv) were added to a solution of the product obtained in the **step 3** (1.7g, 10.0 mmol, 1.0 equiv) in CH_2Cl_2 (50 mL) at room temperature. After 9 h, the reaction was quenched by addition of saturated NH₄Cl solution (50 mL). The reaction mixture was extracted with CH_2Cl_2 . The organic extracts were dried over Na₂SO₄ and concentrated. Purification of the residue by flash column chromatography gave TBS ether **S-7** as a colorless oil (2.0 g, 71%).

Step 5: Under nitrogen atmosphere, the mixture of p-toluidine (1.1 g, 10 mmol, 1.0 equiv) in pyridine (0.25 M) was stirred at 0 °C. 4-Nitrobenzenesulfonyl chloride (2.7 g, 12 mmol, 1.2 equiv) was added slowly, and then the mixture was stirred for 8 h at room temperature. The reaction solution was diluted with EtOAc (100 mL), and washed with 1N HCl (three times). The organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The resulting crude material was purified by flash column chromatography to afford the desired product **S-9** in quantitative yields (2.9 g).

Step 6: An oven-dried, three-necked round-bottomed flask was equipped with a Tefloncoated magnetic stir bar, an internal thermometer, a pressure-equalizing dropping funnel sealed with a rubber septum, and fitted with nitrogen gas inlet adaptor. The flask is evacuated and refilled with nitrogen three times, then charged with **S-9** (2.3 g, 7.7 mmol, 1.1 equiv), triphenylphosphine (2.4 g, 9.1 mmol, 1.3 equiv), and THF (30 mL). **S-7** (2.0 g, 7.0 mmol, 1.0 equiv) was added and the solution was stirred in an ice bath for 10 min. Diethyl azodicarboxylate (1.5 g, 8.4 mmol, 1.2 equiv) was added dropwise from dropping funnel over 20 min, such that the internal temperature does not exceed 0 °C. The solution becomes cloudy during the addition. The mixture was stirred at 0 °C overnight, then the solution is evaporated. *n*-Hexane was added at room temperature and the white solid that precipitates was removed in a sintered-glass Büchner funnel (diameter 80 mm) using suction filtration and washed with *n*-hexane, and the filtrate was evaporated to give of the crude product as a clear, yellow oil. This material was purified by silica gel column chromatography to give the desired product **S-8** (2.4 g, 70%).

Step 7: Thioglycolic acid (736.9 mg, 8.0 mmol, 2.0 equiv) was added to a solution of **S-8** (2.2 g, 4.0 mmol, 1.0 equiv) and 1,8-diazabicyclo(5.4.0)undec-7-ene (2.4 g, 16.0 mmol, 4.0 equiv) in MeCN (20 mL). The solution was stirred at rt for 2 h and concentrated *in vacuo*. Then DCM (20 mL) and 10% aqueous solution of Na₂CO₃ (20 mL) were added. The organic layer was separated and the aqueous layer was extracted with DCM. The combined organic layers were dried over MgSO₄, filtered and evaporated under vacuum. A yellow solid was isolated and carried forward without purification.

Step 8: To a stirred solution of the product obtained in the **step 7** (1.0 equiv) in dry THF (20 mL) was added tetrabutylammonium fluoride (TBAF, 5.0 g, 16 mmol, 4.0 equiv) at room temperature, and the resulting mixture was stirred for 9 h. The reaction mixture

was quenched with water and extracted with EtOAc. The organic extract was washed with brine, dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography gave the desired product (R)-6 (868.2 mg, 85%).

Ccolourles oil. ($R_f = 0.20$, hexane/ethyl acetate = 10/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.08 (m, 5H), 5.61 – 5.41 (m, 0.4H), 4.88 – 4.63 (m, 0.6H), 3.66 (d, J = 5.9 Hz, 1.8H), 2.70 – 2.58 (m, 1.2H), 2.49 – 2.39 (m, 1.3H), 2.32 (d, J = 5.3 Hz, 0.6H), 2.24 – 2.14 (m, 0.5H), 2.11 – 2.01 (m, 1.3H).

Ccolourles oil. ($R_f = 0.40$, hexane/ethyl acetate = 10/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.30 (m, 4H), 7.30 – 7.20 (m, 1H), 4.70 (dd, J = 7.7, 5.0 Hz, 1H), 3.86 – 3.56 (m, 2H), 3.09 (s, 1H), 1.93 – 1.77 (m, 2H), 1.73 – 1.56 (m, 2H), 0.91 (s, 9H), 0.07 (s, 6H).

White solid. ($R_f = 0.30$, hexane/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.8 Hz, 2H), 7.78 (d, J = 8.8 Hz, 2H), 7.26 – 7.18 (m, 3H), 7.03 (d, J = 6.2 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 6.45 (d, J = 7.9 Hz, 2H), 5.53 (t, J = 7.8 Hz, 1H), 3.67 – 3.54 (m, 2H), 2.32 (s, 3H), 1.99 – 1.87 (m, 1H), 1.87 – 1.75 (m, 1H), 1.66 – 1.57 (m, 1H), 1.52 – 1.43 (m, 1H), 0.86 (s, 9H), 0.02 (s, 3H), 0.01 (s, 3H).

White solid. ($R_f = 0.30$, hexane/ethyl acetate = 3/1).

¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.9 Hz, 2H), 7.90 (d, *J* = 8.9 Hz, 2H), 7.07 (d, *J* = 8.2 Hz, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 6.75 (s, 1H), 2.30 (s, 3H). The spectral data are consistent with those reported in literature⁴.

White solid. ($R_f = 0.20$, hexane/ethyl acetate = 3/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 4H), 7.24 – 7.17 (m, 1H), 6.89 (d, J = 8.1 Hz, 2H), 6.44 (d, J = 8.4 Hz, 2H), 4.30 (t, J = 6.7 Hz, 1H), 3.65 (t, J = 6.3 Hz, 2H), 2.17 (s, 3H), 1.93 – 1.82 (m, 2H), 1.76 – 1.65 (m, 1H), 1.65 – 1.54 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 145.1, 144.2, 129.7, 128.7, 127.1, 126.7, 126.5, 113.7, 62.8, 58.6, 35.4, 29.7, 20.5.

The ee value was determined by HPLC analysis (Chiralcel AD-H, *i*-PrOH/Hexane = 10/90, 1.0 mL/min, 254 nm), retention time: $t_{minor} = 12.497$ min, $t_{major} = 10.297$ min, ee = 85%.

HRMS: calculated for $C_{17}H_{22}NO^+$ [M+H⁺]: 256.1696; found: 256.1700.

Figure S1. HPLC chromatogram of (*R*)-6

Figure S2. HPLC chromatogram of racemic 6

4.2 Isolation and cyclization of the chlorinated intermediate

Compound (*R*)-6 (510.7 mg, 2 mmol, 1.0 equiv) was dissolved in MeCN (20 mL, 0.1 M) in a 50 mL glass vial. To the solution was added NCS (561.0 mg, 4.2 mmol, 2.1 equiv). The mixture was stirred at 100 °C under air atmosphere, and then cooled to room temperature after 40 minutes. The reaction mixture was concentrated under reduced pressure. The resulting residue was subjected to silica gel chromatography.

Colorless oil. ($R_f = 0.24$, hexane/ethyl acetate = 30/1)

Compound (S)-7 is a known compound, and was obtained in 28% yield (82.0 mg). The spectral data are consistent with those reported in literature⁵.

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 4H), 7.28 – 7.19 (m, 1H), 4.89 (t, *J* = 7.2 Hz, 1H), 4.14 – 4.04 (m, 1H), 3.98 – 3.88 (m, 1H), 2.38 – 2.25 (m, 1H), 2.05 – 1.95

(m, 2H), 1.87 – 1.74 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 143.6, 128.4, 127.2, 125.8, 80.8, 68.8, 34.7, 26.2. The ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/Hexane = 1/99, 1.0 mL/min, 215 nm), retention time: $t_{minor} = 6.515 \text{ min}$, $t_{major} = 5.630 \text{ min}$, ee = 78%.

Figure S3. HPLC chromatogram of (S)-7

Figure S4. HPLC chromatogram of racemic 7

White solid. ($R_f = 0.29$, hexane/ethyl acetate = 3/1). Compound (*R*)-**8** was isolated in 59% yield (380.0 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.21 (m, 4H), 7.21 – 7.12 (m, 1H), 6.94 (d, J = 0.8 Hz, 2H), 4.85 (t, J = 7.1 Hz, 1H), 3.63 (t, J = 6.4 Hz, 2H), 2.14 (s, 3H), 2.06 – 1.95 (m, 1H), 1.94 – 1.82 (m, 1H), 1.71 – 1.62 (m, 1H), 1.61 – 1.49 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 143.0, 138.7, 132.0, 129.3, 128.4, 127.3, 126.9, 126.1, 62.8, 60.5, 34.1, 30.0, 20.2.

The ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/Hexane = 10/90, 1.0 mL/min, 254 nm), retention time: $t_{minor} = 6.125$ min, $t_{major} = 6.865$ min, ee = 84%.

HRMS: calculated for C₁₇H₂₀Cl₂NO⁺ [M+H⁺]: 324.0916; **found**: 324.0917.

Figure S5. HPLC chromatogram of racemic 8

Figure S6. HPLC chromatogram of (*R*)-8

White solid. ($R_f = 0.33$, hexane/ethyl acetate = 30/1) Compound **9** is a known compound, and was obtained in 31% yield (109.0 mg). The spectral data are consistent with those reported in literature⁶. ¹H NMR (400 MHz, CDCl₃) δ 7.00 (s, 2H), 4.28 (s, 2H), 2.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.7, 128.4, 119.6, 29.9, 20.2.

The ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/Hexane = 1/99, 1.0 mL/min, 210 nm), retention time: $t_{minor} = 6.637 \text{ min}$, $t_{major} = 5.748 \text{ min}$, ee = 75%.

Figure S7. HPLC chromatogram of (S)-7

The ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/Hexane = 1/99, 1.0 mL/min, 210 nm), retention time: $t_{minor} = 6.480 \text{ min}$, $t_{major} = 5.792 \text{ min}$, ee = 83%.

Figure S8. HPLC chromatogram of (S)-7

The ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/Hexane = 1/99, 1.0 mL/min, 210 nm), retention time: $t_{minor} = 6.572 \text{ min}$, $t_{major} = 5.717 \text{ min}$, ee = 58%.

Figure S9. HPLC chromatogram of (S)-7

The ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/Hexane = 1/99, 1.0 mL/min, 210 nm), retention time: $t_{minor} = 6.607 \text{ min}$, $t_{major} = 5.510 \text{ min}$, ee = 59%.

Figure S10. HPLC chromatogram of (S)-7

The ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/Hexane = 1/99, 1.0 mL/min, 210 nm), retention time: $t_{minor} = 6.565 \text{ min}$, $t_{major} = 5.800 \text{ min}$, ee = 84%.

Figure S11. HPLC chromatogram of (S)-7

4.3 Verification of N-Cl amine intermediate 9-X by ¹H spectroscopy.

The 2,6-dichloro-4-toluidine (35.3 mg, 0.2 mmol, 1.0 equiv) was dissolved in CD_2Cl_2 (0.5 mL, 0.4 M) in a 4 mL glass vial. To the solution was added NCS (32.0 mg, 0.24 mmol, 1.2 equiv) and stir vigorously for 30 s. The solution was transferred into an oven dried NMR tube, and the reaction mixture was analyzed by ¹H spectroscopy.

Figure S12. ¹H NMR of N-Cl amine intermediate 9-X

4.4 Verification experiment of another possible pathway.

There is another possible pathway for the deaminative cyclization process, in which halogenation occurs at the para position of the amino group, and the amine motif leaves in the form of an $\text{imine}^{[15]}$. If the hypothesis is correct, the reaction would likely fail if aniline were used instead of toluidine. To test this hypothesis, aniline was employed as the amine source in the synthesis of C-aryl furanoside. The reaction afforded the desired C-aryl furanoside product **3** in 77% yield, along with 80% of 2,4,6-trichloroaniline. Thus, this pathway can be tentatively excluded.

White solid. ($R_f = 0.44$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **S-10** was isolated in 41% yield (28.5 mg) following the general procedure of Petasis reaction.

¹**H** NMR (400 MHz, CD₃OD) δ 7.29 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 7.8 Hz, 2H), 6.97 (dd, *J* = 8.4, 7.3 Hz, 2H), 6.60 – 6.44 (m, 3H), 4.60 (d, *J* = 6.0 Hz, 1H), 3.97 (d, *J* = 4.9 Hz, 2H), 3.71 (dd, *J* = 10.9, 3.0 Hz, 1H), 3.69 – 3.62 (m, 2H), 3.57 (dd, *J* = 10.9, 4.9 Hz, 1H), 2.27 (s, 3H).

¹³C NMR (151 MHz, CD₃OD) δ 147.8, 137.8, 136.2, 128.5, 128.3, 127.6, 116.3, 113.2, 75.7, 74.0, 71.6, 68.3, 63.3, 60.2, 19.7.

HRMS: calculated for $C_{19}H_{26}NO_5^+$ [M+H⁺]: 348.1805; found: 348.1807.

White solid. ($R_f = 0.51$, hexane/ethyl acetate = 30/1)

Compound S-11 is a known compound, and was obtained in 80% yield (31.4mg). The spectral data are consistent with those reported in literature⁶.

¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 2H), 4.43 (s, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 139.0, 127.6, 121.9, 119.7.

5. Synthesis of amino alcohol substrates.

Step 1: LiAlH₄ (759.0 mg, 20.0 mmol, 4.0 equiv) was suspended in THF, and the mixture was cooled to 0 °C. Benzoylpropionic acid (5.0 mmol, 1.0 equiv) in THF was added dropwise. The reaction mixture was stirred overnight, allowing to warm to room temperature. After 12 h, the reaction mixture was cooled to 0 °C and quenched by successive dropwise addition of H₂O, 15% NaOH (aq), and H₂O. The resulting mixture was stirred at room temperature for 1 h, then MgSO₄ was added, and the mixture was filtered through a plug of celite (washing with THF). The filtrate was concentrated under reduced pressure to give a clear oil that solidified upon standing. A white solid was isolated and carried forward without purification.

Steps 2-6 were conducted following the same procedure as the steps 4-8 for preparation of enantio-enriched amino alcohol substrate.

White solid (200.0 mg, 69%) ($R_f = 0.24$, hexane/ethyl acetate = 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.17 (m, 3H), 7.15 (d, J = 6.3 Hz, 2H), 6.72 (s, 2H), 4.04 (t, J = 7.2 Hz, 1H), 3.63 (t, J = 5.6 Hz, 2H), 2.18 (s, 3H), 2.09 (s, 6H), 2.06 – 2.01 (m, 1H), 2.00 – 1.91 (m, 1H), 1.72 – 1.60 (m, 1H), 1.60 – 1.50 (m, 1H). HRMS: calculated for C₁₉H₂₆NO⁺ [M+H⁺]: 284.2009; **found**: 284.2015.

White solid (330 mg, 82%) ($R_f = 0.27$, hexane/ethyl acetate = 3/1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 6H), 7.25 – 7.21 (m, 1H), 6.51 (d, J = 8.5 Hz, 2H), 4.36 (t, J = 6.8 Hz, 1H), 3.68 (td, J = 6.3, 1.8 Hz, 2H), 1.99 – 1.85 (m, 2H), 1.76 – 1.66 (m, 1H), 1.65 – 1.55 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 149.9, 143.1, 128.9, 127.5, 126.6 (q, *J* = 3.7 Hz), 126.4, 112.6, 62.6, 58.0, 35.1, 29.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -61.0.

HRMS: calculated for $C_{17}H_{19}F_3NO^+$ [M+H⁺]: 310.1413; found: 310.1414.

White solid (420 mg, 78%) ($R_f = 0.24$, hexane/ethyl acetate = 3/1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 4H), 7.24 – 7.18 (m, 1H), 7.06 (s, 1H), 6.75 (d, J = 8.6 Hz, 1H), 6.32 (d, J = 8.2 Hz, 1H), 4.35 (t, J = 6.8 Hz, 1H), 3.66 (t, J = 6.3 Hz, 2H), 2.15 (s, 3H), 1.98 – 1.88 (m, 2H), 1.80 – 1.68 (m, 1H), 1.66 – 1.56 (m, 1H).

HRMS: calculated for $C_{17}H_{21}CINO^+$ [M+H⁺]: 290.1306; found: 290.1306.

6. Derivation of the 1,2-*cis* C-aryl furanosides and synthetic applications.6.1 Procedure for synthesis of 1,2-*cis* C-aryl furanosides' derivatives

Compound **3** (50.9 mg, 0.2 mmol, 1.0 equiv) was dissolved in pyridine (1 mL, 0.2 M) in an 8 mL glass vial. To the solution was added hexamethylphosphorous triamide (39.2 mg, 0.24 mmol, 1.2 equiv). The mixture was stirred at 100 °C under air atmosphere and monitored by TLC analysis. After being cooled to room temperature, the reaction mixture was concentrated under reduced pressure. The resulting residue was subjected to silica gel chromatography to give the desired product **3-P** (30.0 mg, 53%).

White solid. ($R_f = 0.23$, Hexane/ethyl acetate = 5/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 5.54 (d, *J* = 2.6 Hz, 1H), 4.95 – 4.85 (m, 1H), 4.53 (d, *J* = 3.5 Hz, 1H), 4.33 – 4.24 (m, 2H), 4.15 (s, 1H), 4.02 – 3.85 (m, 1H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.3, 132.3, 129.7, 126.6, 84.2, 78.8, 78.7, 77.9, 77.2, 75.0, 75.0, 72.5, 72.5, 66.6, 66.5, 21.3.

³¹**P NMR** (162 MHz, CDCl₃) δ 117.6.

HRMS: calculated for $C_{13}H_{15}NaO_5P^+$ [M+Na⁺]: 305.0549; found: 305.0549.

Compound **40** α (45.8 mg, 0.18 mmol, 1.0 equiv) was dissolved in acetone(4 mL, 0.05 M) in an 8 mL glass vial. To the solution was added 2-methoxyproene (65.0 mg, 0.9 mmol, 5.0 equiv) and PTSA (3.1 mg, 0.018 mmol, 0.1 equiv). The mixture was stirred at room temperature under air atmosphere and monitored by TLC analysis. The reaction mixture was concentrated under reduced pressure. The resulting residue was subjected to silica gel chromatography to give the desired product **40'** α (45.0 mg, 75% yield). White solid. (R_f = 0.26, hexane/acetone = 10/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.09 (m, 4H), 5.17 (s, 1H), 4.96 (d, J = 5.9 Hz, 1H), 4.76 (dd, J = 6.0, 3.8 Hz, 1H), 4.58 – 4.43 (m, 1H), 4.28 – 4.10 (m, 2H), 3.86 (dd, J = 7.7, 3.7 Hz, 1H), 2.34 (s, 3H), 1.58 (s, 3H), 1.44 (s, 3H), 1.39 (s, 3H), 1.38 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 137.3, 135.4, 129.5, 125.6, 112.9, 109.3, 87.5, 85.0, 81.4, 81.2, 73.6, 67.2, 29.8, 27.0, 26.3, 25.3, 24.9, 21.2.

Compound $40'\beta$ (71.1 mg, 0.28 mmol, 1.0 equiv) was synthesized in 80% yield (80.0 mg) following the same procedure as compound $40'\alpha$.

White solid. ($R_f = 0.22$, hexane/acetone = 10/1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 4.87 (dd, J = 6.0, 3.7 Hz, 1H), 4.78 (dd, J = 6.0, 3.7 Hz, 1H), 4.63 – 4.52 (m, 2H), 4.34 – 4.10 (m, 2H), 3.71 (dd, J = 7.2, 3.8 Hz, 1H), 2.36 (s, 3H), 1.51 (s, 3H), 1.49 (s, 3H), 1.44 (s, 3H), 1.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.7, 132.4, 128.8, 127.5, 112.5, 109.1, 83.7, 82.4, 81.6, 80.9, 73.4, 67.1, 27.0, 25.7, 25.5, 24.3, 21.4.

6.2 Synthetic procedure for preparation the analogues of dapagliflozin

Step 1: To a solution of **43-s-1** (2.9 g, 9.0 mmol, 1.0 equiv) in dry THF (20 mL) was added a solution of sec-BuLi in n-hexane (1.3 M, 7 mL, 9.0 mmol, 1.0 equiv) dropwise at -78 °C under Ar. The reaction mixture was stirred for 30 min. To this mixture was added triisopropyl borate (935.0 mg, 9.0 mmol, 1.0 equiv) over 1 min, and the reaction mixture was warmed to rt. To this mixture was added 1M aq. HCl (10.0 mL), and the mixture was diluted with 10 mL of ether. The organic portion was separated and extracted with 1N NaOH (2 x 10 mL). The basic extracts were combined and acidified to pH 3 by the addition of 10% aqueous HCl. The mixture was extracted with ether (3×10 mL), and the organic layer was combined and concentrated *in vacuo* to afford **43-s** as a white solid (2.0 g, 6.9 mmol, 77%).

Step 2: To a stirred solution of **43-s** (2.0 g, 6.9 mmol, 1.0 equiv) in 10 mL of methanol was added KHF₂ (2.4 g, 31.0 mmol, 4.5 equiv), and the resulting mixture was stirred for 4 h at room temperature. Then the solvent was concentrated *in vacuo*. The solid was dissolved in 10 mL of hot acetonitrile and filtered. The filtrate was concentrated to afford **43** as a white solid (2.3 g, 93%).

¹**H NMR** (400 MHz, DMSO-D₆) δ 8.15 (s, 1.5H), 7.84 – 7.58 (m, 2H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.83 (d, *J* = 8.1 Hz, 2H), 4.09 – 3.84 (m, 4H), 1.29 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, DMSO-D₆) δ 156.9, 137.6, 137.2, 135.1, 133.7, 131.4, 129.5, 128.4, 114.3, 62.9, 37.6, 14.7.

¹**H NMR** (400 MHz, MeOD) δ 7.44 – 7.39 (m, 1H), 7.34 – 7.29 (m, 1H), 7.17 (d, J = 8.3 Hz, 1H), 7.12 – 7.05 (m, 2H), 6.81 – 6.76 (m, 2H), 4.17 – 3.86 (m, 4H), 1.37 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, MeOD) δ 158.4, 138.0, 135.6, 133.8, 133.0, 132.0, 130.6, 128.8, 115.2, 64.3, 39.3, 15.2.

¹¹**B NMR** (128 MHz, MeOD) δ 4.5.

¹⁹**F NMR** (376 MHz, MeOD) δ -143.3.

White solid. ($R_f = 0.42$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **44-s** was isolated in 58% yield (61.5 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.34 – 7.27 (m, 1H), 7.27 – 7.19 (m, 2H), 7.03 – 6.95 (m, 3H), 6.93 (d, J = 7.2 Hz, 1H), 6.79 – 6.68 (m, 3H), 6.54 (t, J = 7.2 Hz, 1H), 4.96 (d, J = 10.1 Hz, 1H), 4.50 (dd, J = 10.0, 1.8 Hz, 1H), 4.21 (t, J = 2.2 Hz, 1H), 4.03 – 3.91 (m, 4H), 3.84 – 3.72 (m, 3H), 3.66 (dd, J = 11.0, 5.3 Hz, 1H), 3.41 – 3.34 (m, 1H), 3.02 – 2.90 (m, 1H), 2.87 – 2.65 (m, 2H), 1.36 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 158.7, 152.1, 139.9, 137.1, 133.7, 133.4, 132.7, 130.8, 130.5, 129.8, 129.4, 128.1, 125.3, 118.2, 115.4, 108.7, 75.6, 73.2, 72.9, 69.6, 64.7, 64.4, 61.0, 48.0, 39.1, 29.1, 15.2.

HRMS: calculated for C₂₉H₃₅ClNO₆⁺ [M+H⁺]: 528.2147; **found**: 528.2151.

White solid. ($R_f = 0.44$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **45-s** was isolated in 70% yield (71.5 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD/CDCl₃) δ 7.32 – 7.26 (m, 1H), 7.22 – 7.13 (m, 2H), 7.05 – 6.93 (m, 4H), 6.80 – 6.73 (m, 2H), 6.68 (d, *J* = 7.9 Hz, 1H), 6.56 (td, *J* = 7.4, 0.9 Hz, 1H), 4.88 (d, *J* = 10.7 Hz, 1H), 4.59 – 4.52 (m, 1H), 4.37 (s, 2H), 4.08 – 3.99 (m, 3H), 3.98 (d, *J* = 4.0 Hz, 1H), 3.96 – 3.89 (m, 2H), 3.46 (dd, *J* = 8.5, 2.5 Hz, 1H), 2.99 (td, *J* = 10.3, 8.4 Hz, 1H), 2.89 – 2.72 (m, 2H), 1.40 (t, *J* = 7.0 Hz, 3H), 1.25 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD/CDCl₃) δ 157.5, 151.0, 139.1, 136.0, 133.2, 132.3, 131.7, 130.1, 129.6, 129.3, 128.2, 127.5, 124.8, 117.5, 114.7, 107.5, 74.5, 69.7, 68.4, 66.8, 63.8, 59.6, 46.8, 38.6, 28.4, 19.5, 15.0.

HRMS: calculated for $C_{29}H_{34}CINNaO_5^+$ [M+Na⁺]: 534.2018; found: 534.2024.

White solid. ($R_f = 0.46$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **46-s** was isolated in 63% yield (63.0 mg) following the general procedure of Petasis reaction.

¹**H NMR** (400 MHz, CD₃OD) δ 7.34 – 7.22 (m, 3H), 6.98 – 6.88 (m, 4H), 6.75 – 6.69 (m, 2H), 6.53 (t, *J* = 7.1 Hz, 2H), 4.91 (d, *J* = 7.0 Hz, 1H), 4.40 (t, *J* = 6.6 Hz, 1H), 3.95 (d, *J* = 6.9 Hz, 1H), 3.91 (dd, *J* = 4.7, 2.3 Hz, 3H), 3.88 (td, *J* = 5.1, 4.2, 1.9 Hz, 1H), 3.79 (dd, *J* = 11.3, 4.2 Hz, 1H), 3.72 (t, *J* = 6.0 Hz, 1H), 3.64 (dd, *J* = 11.3, 6.0 Hz, 1H), 3.52 (td, *J* = 9.0, 5.3 Hz, 1H), 3.18 (q, *J* = 9.2 Hz, 1H), 2.87 – 2.68 (m, 2H), 1.33 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 158.6, 152.1, 139.8, 137.3, 133.8, 133.7, 132.7, 131.1, 130.8, 129.9, 129.8, 128.0, 125.3, 118.6, 115.4, 109.2, 74.3, 74.2, 73.6, 64.4, 64.3, 62.3, 49.7, 39.2, 29.2, 15.2.

HRMS: calculated for C₂₈H₃₃ClNO₅⁺ [M+H⁺]: 498.2042; **found**: 498.2047.

White solid. ($R_f = 0.24$, DCM/MeOH/H₂O = 20/2/0.3).

Compound **44** was isolated in 70% yield (57.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.31 (d, J = 8.2 Hz, 1H), 7.23 (d, J = 2.0 Hz, 1H), 7.19 (dd, J = 8.2, 2.1 Hz, 1H), 7.08 (d, J = 8.7 Hz, 2H), 6.85 – 6.72 (m, 2H), <u>5.14 (d, J = 3.1</u> <u>Hz, 1H)</u>, 4.32 (dd, J = 3.3, 1.3 Hz, 1H), 4.17 (dd, J = 8.3, 3.3 Hz, 1H), 4.08 (dd, J = 3.2, 1.2 Hz, 1H), 4.02 – 3.91 (m, 5H), 3.83 (dd, J = 11.5, 3.2 Hz, 1H), 3.66 (dd, J = 11.4, 6.2 Hz, 1H), 1.34 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 158.8, 139.6, 138.5, 133.7, 132.9, 131.1, 130.8, 129.8, 127.7, 115.4, 83.8, 82.0, 79.9, 78.6, 71.5, 65.5, 64.4, 39.2, 15.2.

HRMS: calculated for C₂₁H₂₅ClNaO₆⁺ [M+Na⁺]: 431.1232; found: 431.1234.

White solid. ($R_f = 0.22$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **45** was isolated in 60% yield (47.0 mg) following the general procedure of deaminative cyclization.

¹**H** NMR (400 MHz, CD₃OD) δ 7.35 – 7.30 (m, 2H), 7.27 (dd, J = 8.2, 2.1 Hz, 1H), 7.13 – 7.03 (m, 2H), 6.84 – 6.74 (m, 2H), <u>5.00 (d, J = 3.2 Hz, 1H)</u>, 4.09 (dd, J = 2.3, 1.1 Hz, 1H), 4.04 – 3.93 (m, 5H), 3.89 (dd, J = 3.3, 1.1 Hz, 1H), 3.70 (dd, J = 4.2, 2.3 Hz, 1H), 1.35 (t, J = 7.0 Hz, 3H), 1.28 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 158.8, 139.7, 137.7, 133.8, 132.9, 131.2, 130.8, 129.8, 127.8, 115.4, 91.0, 84.1, 81.0, 80.2, 69.1, 64.4, 39.2, 20.0, 15.2.

HRMS: calculated for C₂₁H₂₅ClNaO₅⁺ [M+Na⁺]: 415.1283; **found**: 415.1285.

White solid. ($R_f = 0.25$, DCM/MeOH/H₂O = 30/2/0.3).

Compound **46** was isolated in 66% yield (50.0 mg) following the general procedure of deaminative cyclization.

¹**H NMR** (400 MHz, CD₃OD) δ 7.31 (d, J = 8.2 Hz, 1H), 7.28 (d, J = 2.1 Hz, 1H), 7.21 (dd, J = 8.3, 2.1 Hz, 1H), 7.08 (d, J = 8.7 Hz, 2H), 6.82 – 6.73 (m, 2H), 5.00 (d, J = 3.0 Hz, 1H), 4.29 (dd, J = 8.3, 4.3 Hz, 1H), 4.10 (dd, J = 4.4, 3.1 Hz, 1H), 4.05 – 3.99 (m, 3H), 3.96 (t, J = 7.0 Hz, 2H), 3.83 (dd, J = 12.0, 2.7 Hz, 1H), 3.65 (dd, J = 12.0, 4.6 Hz,

1H), 1.34 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CD₃OD) δ 158.8, 139.6, 138.8, 133.8, 133.0, 131.3, 130.8, 129.8, 127.9, 115.4, 83.8, 83.7, 75.2, 74.1, 64.4, 63.2, 39.3, 15.2. HRMS: calculated for C₂₀H₂₃ClNaO₅⁺ [M+Na⁺]: 401.1126; found: 401.1126.

6.3 Synthesis of neopuerarin A and neopuerarin B

Step 1: A mixture of diadzein (5.0 g, 20.0 mmol, 1.0 equiv), NIS (5.0 g, 22.0 mmol, 1.1 equiv) and $In(OTf)_3$ (1.1 g, 2.0 mmol, 0.1 equiv) in DMF (300 mL) was stirred at rt in the dark (wrapped in foil) for 8 h. The reaction was monitored by TLC. After completion of the reaction, the mixture was diluted with water (300 mL) and extracted with ethyl acetate (3 x 200 mL). The combined organic phases were washed with water and brine. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel to give a mixture of **47-s-1** (6.0 g) as a white solid.

Step 2: To a stirred solution of 47-s-1 (4.0 g, 1.0 equiv) in DMF (50 mL) was added

 K_2CO_3 (4.6 g, 33.0 mmol, 3.0 equiv) at rt. The mixture was stirred for 10 min, then 2bromopropane (4.1 g, 33.0 mmol, 3.0 equiv) was added. The resulting mixture was stirred at 65 °C for 9 h. The reaction progress was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature, diluted with water (300 mL) and extracted with ethyl acetate. The combined organic phases was washed with water and brine. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel to give a mixture of 47s-2 (4.0 g) as a white solid.

Step 3: A mixture of **47-s-2** (2.0 g, 1.0 equiv), $Pd(OAc)_2$ (44.9 mg, 0.2 mmol, 0.05 equiv), $P(o-Tol)_3$ (121.7 mg, 0.4 mmol, 0.1 equiv), TEA (1.4 mL, 10.0 mmol, 2.5 equiv) and dry THF (20 mL) was stirred at 0 °C under Ar atmosphere. HBpin (558.7 mg, 4.4 mmol, 1.1 equiv) was added slowly to the reaction mixture and the resulting mixture was stirred at 60 °C for 5 h. The reaction mixture was cooled to rt, filtered thorough a pad of celite and concentrated *in vacuo*. The residue was diluted with water and extracted with EtOAc. The combined organic extracts were washed with water, dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel to give **47** (1.0 g) as a white solid.

Step 4: To a solution of pinacol ester **47** (464.0 mg, 1.0 mmol, 1.0 equiv) in methanol (3 mL) was added 4.5 M KHF₂ (aq) (1 mL, 4.5 mmol, 4.5 equiv). The resulting mixture was stirred until the pinacol ester were completely consumed monitoring by TLC, and then concentrated to dryness. The residue was used in the Petasis reaction without purification. Compound **48-s** was isolated in 66% yield (409.1 mg) following the general procedure of Petasis reaction.

Step 5: Compound **48** was isolated in 56% yield (56.1 mg, $\alpha/\beta = 1/1$) following the general procedure of deaminative cyclization.

Step 6: Compound **48** (23.1 mg, 0.05 mmol, 1.0 equiv) was dissolved in dry CH₂Cl₂ (1 mL) and BBr₃ (0.5 mL, 1.0 M in CH₂Cl₂, 0.5 mmol, 10.0 equiv) was added slowly at -20 °C under Ar. The solution was stirred for 9 h under Ar at rt. Upon completion, the reaction were quenched by the addition of MeOH (10 mL) under Ar at -20 °C. The resulting mixture was stirred vigorously for 10 min at -20 °C, and then concentrated to dryness. The residue was purified by semi-preparative HPLC (Waters Xselect CSH-C18 column, 2.1×50 mm, 2.5 µm), eluting with H₂O (0.1% formic acid)-3% MeCN, 25% MeCN and 95% MeCN successively at 1.0 mL/min with a Shimadzu LC-10AT pump. The effluents were monitored at 250 nm using a Shimadzu SPD-10A UV detector. Compounds **49** (6.5 mg, 31%) and **50** (6.5 mg, 31%) were obtained as a white solid.

White solid. ($R_f = 0.22$, hexane/ethyl acetate = 1/1).

¹**H** NMR (400 MHz, acetone-D₆) δ 8.31 (s, 1H), 8.08 (d, J = 8.7 Hz, 1H), 7.52 (d, J = 8.7 Hz, 2H), 7.13 (d, J = 8.7 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H). The spectral data are consistent with those reported in literature¹³.

White solid. ($R_f = 0.46$, hexane/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 8.32-8.17 (m, 1H), 8.03 (s, 1H), 7.96 (d, J = 2.2 Hz, 0.3H), 7.56 – 7.43 (m, 1.7H), 7.01 – 6.85 (m, 3H), 4.84 – 4.73 (m, 1H), 4.65 – 4.54 (m, 1H), 1.47 (s, 3H), 1.46 (s, 3H), 1.42 (s, 1H), 1.41 (s, 1H), 1.37 (s, 2H), 1.35 (s, 2H). HRMS: calculated for C₂₁H₂₁NaO₄⁺ [M+Na⁺]: 487.0377; found: 487.0378.

White solid. ($R_f = 0.32$, hexane/ethyl acetate = 10/1). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.9 Hz, 1H), 7.90 (s, 1H), 7.46 (d, J = 8.7Hz, 2H), 7.00 – 6.90 (m, 3H), 4.76 – 4.66 (m, 1H), 4.64 – 4.53 (m, 1H), 1.43 (s, 12H), 1.39 (s, 3H), 1.37 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 165.5, 160.0, 157.8, 152.5, 130.1, 129.7, 124.4,

124.2, 118.1, 115.8, 111.1, 84.4, 71.3, 69.9, 24.8, 22.2, 22.1.

HRMS: calculated for C₂₇H₃₄BO₆⁺ [M+H⁺]: 465.2443; **found**: 465.2450.

White solid. ($R_f = 0.39$, DCM/MeOH/H₂O = 20/2/0.3).

¹**H NMR** (400 MHz, acetone-D₆) δ 8.43 – 8.16 (m, 1H), 8.08 (d, J = 7.3 Hz, 1H), 7.63 – 7.41 (m, 2H), 7.16 (d, J = 9.1 Hz, 1H), 7.09 – 6.97 (m, 2H), 6.93 (d, J = 7.0 Hz, 2H), 6.87 (d, J = 7.2 Hz, 1H), 6.46 (d, J = 7.1 Hz, 1H), **<u>6.02</u>** (d, J = 10.4 Hz, 1H), 5.11 (d, J = 10.4 Hz, 1H), 4.97 – 4.74 (m, 1H), 4.68 – 4.59 (m, 1H), 4.13 (d, J = 2.7 Hz, 1H), 3.86 (dd, J = 7.2, 2.8 Hz, 1H), 3.82 – 3.72 (m, 3H), 3.64 (dd, J = 11.2, 5.5 Hz, 1H), 3.28 – 2.97 (m, 1H), 2.91 – 2.73 (m, 2H), 1.52 – 1.24 (m, 12H).

¹³C NMR (101 MHz, acetone-D₆) δ 176.1, 162.1, 158.6, 157.7, 153.2, 152.6, 130.9, 128.8, 127.6, 127.1, 125.1, 124.6, 124.3, 118.9, 117.2, 116.1, 112.6, 108.9, 76.6, 73.5, 72.9, 72.6, 72.3, 71.8, 70.2, 69.2, 64.6, 52.8, 29.1, 22.3.

HRMS: calculated for C₃₅H₄₂NO₉⁺ [M+H⁺]: 620.2854; **found**: 620.2855.

White solid. ($R_f = 0.27$, DCM/MeOH/H₂O = 20/2/0.3).

¹**H** NMR (400 MHz, acetone-D₆) δ 8.26 (d, J = 4.8 Hz, 1H), 8.14 (dd, J = 18.6, 8.9 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.29 (d, J = 9.2 Hz, 0.5H), 7.26 – 7.21 (m, 0.5H), 6.96 (dd, J = 8.9, 2.5 Hz, 2H), 6.00 (d, J = 4.4 Hz, 0.5H), 5.33 (d, J = 6.8 Hz, 0.5H), 4.99 – 4.88 (m, 1H), 4.75 – 4.70 (m, 0.5H), 4.70 – 4.64 (m, 1H), 4.59 (s, 0.5H), 4.50 – 4.32 (m, 2H), 4.13 (s, 1H), 4.09 – 3.94 (m, 1.5H), 3.87 – 3.75 (m, 1H), 3.73 – 3.36 (m, 3.5H), 1.45 – 1.36 (m, 6H), 1.33 (s, 3H), 1.32 (s, 3H).

¹³C NMR (151 MHz, acetone-D₆) δ 175.8, 161.7, 160.5, 158.8, 158.7, 157.2, 156.9, 153.7, 153.4, 131.0, 130.9, 128.0, 126.9, 125.4, 125.1, 124.6, 124.2, 119.5, 119.2, 116.2,

112.9, 112.2, 82.3, 81.4, 81.0, 80.1, 78.8, 78.4, 78.2, 72.8, 72.2, 71.6, 71.1, 70.2, 65.5, 64.8, 22.3, 22.2.

HRMS: calculated for C₂₇H₃₂NaO₉⁺ [M+Na⁺]: 523.1939; **found**: 523.1939.

¹**H NMR** (600 MHz, DMSO-D₆) δ 9.54 (s, 1H), 8.31 (s, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.38 (d, J = 8.1 Hz, 2H), 6.86 (d, J = 8.7 Hz, 1H), 6.81 (d, J = 8.3 Hz, 2H), 5.71 (d, J = 3.2 Hz, 1H), 5.38 (d, J = 4.3 Hz, 1H), 4.70 (d, J = 6.0 Hz, 1H), 4.56 (s, 1H), 4.30 (d, J = 3.3 Hz, 1H), 4.27 – 4.21 (m, 1H), 4.18 (d, J = 3.6 Hz, 1H), 3.85 – 3.79 (m, 1H), 3.67 – 3.58 (m, 1H), 3.56 – 3.49 (m, 1H).

¹³C NMR (151 MHz, DMSO-D₆) δ 174.9, 161.8, 157.3, 154.6, 152.6, 130.1, 125.6, 123.3, 122.5, 116.6, 115.7, 115.0, 109.6, 80.7, 79.7, 77.8, 75.1, 68.5, 64.0. HRMS: calculated for C₂₁H₁₉O₉⁻ [M-H⁺]: 415.1035; **found**: 415.1042.

¹**H NMR** (600 MHz, DMSO-D₆) δ 9.56 (s, 1H), 8.34 (s, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.41 (d, J = 8.1 Hz, 2H), 6.89 (d, J = 8.8 Hz, 1H), 6.83 (d, J = 8.1 Hz, 2H), 5.65 (s, 1H), **5.27 (d, J = 3.3 Hz, 1H)**, 4.17 (s, 1H), 4.11 (s, 1H), 3.88 – 3.76 (m, 2H), 3.65 – 3.56 (m, 1H), 3.47 – 3.41 (m, 1H).

¹³C NMR (151 MHz, DMSO-D₆) δ 174.8, 157.3, 155.0, 152.6, 130.1, 126.4, 123.3, 122.5, 116.7, 116.1, 115.0, 111.6, 81.8, 80.6, 80.1, 77.0, 68.8, 63.8.

HRMS: calculated for $C_{21}H_{19}O_{9}^{-}$ [M-H⁺]: 415.1035; found: 415.1041.

7. X-ray crystallographic data.

Figure S13. X-ray structure of compound 3-P

Single crystals for X-ray studies were grown by slow evaporation of a solution of **compound 3-P** in hexane in 4 mL tube at room temperature. The X-ray data of is deposited in the Cambridge Crystallographic Data Centre with a number of CCDC 2297443 (DOI: 10.5517/ccdc.csd.cc2h3p2d).

Table 56. Crystal data and structure refinement for compound 5-	Table S8.	Crystal	data and	structure	refinement	for com	pound 3-P.
---	-----------	---------	----------	-----------	------------	---------	------------

Identification code	compound 3-P
Empirical formula	$C_{13}H_{15}O_5P$
Formula weight	282.22
Temperature/K	113.15
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	5.7346(2)
b/Å	17.6119(6)
c/Å	25.8850(7)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
$\gamma/^{\circ}$	90
Volume/Å ³	2614.31(15)
Z	8
$\rho_{calc}g/cm^3$	1.434
μ/mm^{-1}	0.224
F(000)	1184.0
Crystal size/mm ³	0.42 imes 0.14 imes 0.12
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/ $^{\circ}$	^o 3.906 to 52.734
Index ranges	$\textbf{-7} \leq h \leq \textbf{7}, \textbf{-22} \leq k \leq \textbf{22}, \textbf{-32} \leq \textbf{l} \leq \textbf{32}$
Reflections collected	27329
Independent reflections	5335 [$R_{int} = 0.0914$, $R_{sigma} = 0.0517$]

Data/restraints/parameters	5335/0/348
Goodness-of-fit on F ²	1.035
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0373, wR_2 = 0.0873$
Final R indexes [all data]	$R_1 = 0.0418, wR_2 = 0.0914$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.27
Flack parameter	0.01(6)

Table S9. Fractional Atomic Coordinates $(x10^4)$ and Equivalent	
Isotropic Displacement Parameters ($Å^2 \times 10^3$) for Compound 3-P . U _{eq} is defined as 1/3	
of the trace of the orthogonalised U_{IJ} tensor.	

Atom	x	У	z	U(eq)
P001	2020.5(16)	8333.8(5)	4291.9(3)	33.8(2)
P002	3032.9(16)	5692.1(5)	965.0(3)	33.7(2)
O003	3565(4)	8864.2(11)	3911.7(7)	26.7(5)
O004	8093(4)	8891.9(11)	2936.1(7)	25.4(4)
O005	3497(3)	6145.4(12)	1501.7(7)	28.2(5)
O006	570(4)	6992.3(10)	2589.5(7)	26.6(5)
O007	-225(4)	5417.7(10)	2189.2(7)	27.7(5)
O008	4458(4)	7699.0(10)	3015.5(7)	26.8(5)
O009	1066(4)	5085.8(11)	1153.8(7)	30.5(5)
O00A	4019(4)	7948.0(12)	4658.1(7)	35.1(5)
O00B	1712(4)	7580.3(12)	3930.0(8)	35.7(5)
O00C	1173(4)	6242.5(13)	672.3(7)	35.2(5)
C00D	1535(5)	6472.7(15)	1777.5(9)	22.1(6)
C00E	1255(5)	5533.6(14)	3072.9(9)	22.1(6)
C00F	5476(5)	7728.0(15)	3520.4(9)	23.1(6)
C00G	4286(5)	8434.3(15)	2237.6(9)	21.6(6)
С00Н	2161(5)	6490.0(15)	2351.1(9)	22.5(6)
C00I	1723(5)	5659.8(15)	2506.8(9)	22.7(6)
C00J	4113(5)	8462.5(14)	2819.0(9)	21.0(6)
C00K	6199(5)	8100.8(15)	1993.0(10)	25.6(6)
C00L	5781(5)	8947.5(15)	3129.8(9)	21.2(6)
C00M	5630(5)	8571.4(15)	3662.5(10)	21.8(6)
C00N	609(7)	5363.5(16)	4142.2(10)	33.5(7)
C00O	2467(5)	8712.3(16)	1939.2(10)	26.6(6)
COOP	2941(6)	5186.7(15)	3373.4(10)	26.6(6)
C00Q	-1006(5)	5531.6(15)	1275.7(9)	23.3(6)
COOR	6237(6)	8041.8(16)	1457.8(11)	30.6(7)
C00S	-1087(6)	5692.8(17)	3835.9(11)	34.7(7)
C00T	4415(6)	8310.0(17)	1157.0(10)	32.6(7)
C00U	-592(5)	5956.3(15)	1778.2(9)	21.4(6)
C00V	2624(6)	5105.0(17)	3904.7(10)	32.1(7)
C00W	-797(6)	5781.9(16)	3308.0(11)	28.5(6)
C00X	4012(6)	7247.5(16)	3884.0(10)	28.2(7)

C00Y	2528(6)	8648.8(17)	1402.0(10)	31.2(7)
C00Z	4940(7)	7258.9(16)	4431.8(11)	34.8(8)
C010	-1196(5)	6070.0(17)	817.3(10)	28.1(6)
C011	257(8)	5265(2)	4719.2(12)	55.2(11)
C012	4467(8)	8217(2)	573.2(11)	53.7(11)

Table S10. Anisotro	pic Disp	lacement Parameters	s (Å2×10 ³) for

Compound **3-P**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
P001	36.2(5)	39.6(5)	25.6(3)	8.8(3)	7.1(3)	1.7(4)
P002	27.7(4)	50.2(5)	23.1(3)	-7.7(3)	-1.3(3)	2.0(4)
O003	33.5(12)	24.3(9)	22.2(9)	2.0(8)	6.9(8)	4.0(9)
O004	21.6(10)	25.1(9)	29.4(9)	-6.1(8)	4.2(9)	-5.5(9)
O005	21.9(11)	40.3(11)	22.3(9)	-2.8(8)	-1.4(8)	-3.2(9)
O006	29.3(12)	21.9(9)	28.6(10)	-6.6(8)	-2.9(8)	0.5(9)
O007	39.2(12)	24.6(10)	19.5(8)	4.4(8)	-10.1(9)	-11.9(9)
O008	43.9(13)	19.4(9)	17.2(8)	1.9(7)	-8.1(9)	-7.2(9)
O009	33.5(12)	27.6(10)	30.5(10)	-7.7(8)	-8.9(9)	6.2(10)
O00A	49.3(14)	36.4(11)	19.5(9)	2.1(9)	-2.7(9)	2.1(11)
O00B	33.9(13)	41.4(12)	31.7(11)	10.5(9)	-4.8(10)	-11.3(11)
O00C	32.0(12)	50.6(13)	23.1(9)	7.8(9)	-4.1(9)	-8.6(11)
C00D	24.5(16)	21.4(12)	20.3(12)	-0.7(10)	-1.2(10)	-1.1(12)
C00E	30.6(16)	17.0(12)	18.6(11)	-2.5(10)	-2.1(11)	-1.2(12)
C00F	30.2(16)	20.4(13)	18.7(12)	-0.5(10)	-5.9(12)	-0.7(12)
C00G	25.8(15)	19.7(12)	19.3(12)	2.7(10)	-0.7(11)	-3.2(12)
C00H	24.0(15)	22.7(13)	20.8(12)	-3.2(10)	-2.4(11)	-2.7(12)
C00I	26.9(16)	21.9(13)	19.2(11)	-3.2(10)	-5.7(11)	1.6(12)
C00J	22.9(14)	20.7(13)	19.6(12)	3.5(10)	0.1(10)	-0.9(12)
C00K	28.9(16)	24.0(13)	24.0(12)	1.7(11)	-0.7(11)	-0.6(12)
C00L	24.3(15)	18.0(12)	21.3(12)	-1.2(10)	2.6(11)	-1.2(12)
C00M	24.0(15)	21.0(12)	20.4(12)	-1.2(10)	-0.8(11)	-0.8(12)
C00N	56(2)	22.6(14)	21.8(13)	0.1(11)	2.1(14)	-2.9(15)
C00O	27.7(17)	26.6(14)	25.4(13)	5.6(11)	-2.0(11)	-2.0(12)
C00P	34.2(16)	22.9(13)	22.7(12)	-2.8(10)	-3.6(12)	3.2(13)
C00Q	23.0(15)	24.3(13)	22.6(12)	0.4(11)	-6.3(11)	1.0(12)
C00R	41.2(19)	24.6(14)	25.9(13)	-1.7(11)	6.3(13)	-1.6(14)
C00S	43(2)	28.9(15)	32.3(14)	-2.0(12)	10.7(14)	1.9(15)
C00T	50(2)	26.8(14)	20.8(13)	4.4(11)	-1.5(13)	-10.7(15)
C00U	22.6(15)	21.7(12)	19.8(12)	2.9(10)	-3.7(10)	-1.6(11)
C00V	47(2)	26.1(14)	23.5(13)	2.9(11)	-9.2(13)	3.5(14)
C00W	29.3(16)	26.6(14)	29.7(13)	3.3(12)	0.1(12)	3.6(13)
C00X	41.5(18)	21.8(13)	21.2(13)	6.4(11)	-8.9(12)	-4.4(14)

C00Y	37(2)	30.7(15)	25.7(13)	10.7(12)	-10.1(13)	-6.4(13)
C00Z	54(2)	28.6(15)	22.4(13)	5.6(11)	-9.4(14)	1.1(15)
C010	28.7(16)	32.5(15)	23.2(13)	4.4(12)	-8.0(12)	-2.2(14)
C011	93(3)	47(2)	25.2(15)	5.2(15)	11.0(18)	2(2)
C012	86(3)	55(2)	20.1(14)	0.4(15)	-3.6(17)	-11(2)

 Table S11. Bond Lengths for compound 3-P.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
P001	O003	1.620(2)	C00E	C00W	1.395(4)
P001	O00A	1.635(2)	C00F	C00M	1.533(4)
P001	O00B	1.634(2)	C00F	C00X	1.519(4)
P002	O005	1.6241(19)	C00G	C00J	1.509(3)
P002	O009	1.628(2)	C00G	C00K	1.397(4)
P002	O00C	1.628(2)	C00G	C00O	1.387(4)
O003	C00M	1.444(3)	C00H	C00I	1.537(4)
O004	C00L	1.420(3)	C00J	C00L	1.514(4)
O005	C00D	1.452(3)	C00K	COOR	1.389(4)
O006	C00H	1.413(3)	C00L	C00M	1.532(3)
O007	C00I	1.451(3)	C00N	C00S	1.382(5)
O007	C00U	1.441(3)	C00N	C00V	1.386(5)
O008	C00F	1.432(3)	C00N	C011	1.517(4)
O008	C00J	1.451(3)	C00O	C00Y	1.395(4)
O009	C00Q	1.459(3)	C00P	C00V	1.395(4)
O00A	C00Z	1.447(4)	C00Q	C00U	1.519(3)
O00B	C00X	1.448(4)	C00Q	C010	1.523(3)
O00C	C010	1.441(4)	C00R	C00T	1.386(5)
C00D	C00H	1.528(3)	C00S	C00W	1.386(4)
C00D	C00U	1.521(4)	C00T	C00Y	1.389(5)
C00E	C00I	1.506(3)	C00T	C012	1.520(4)
C00E	C00P	1.383(4)	C00X	C00Z	1.515(4)

 Table S12. Bond Angles for compound 3-P.

Atom A	tom Atom	Angle/°	Atom Atom	Atom	Angle/°
O003 P	001 O00A	102.04(12)	O008 C00J	C00L	104.5(2)
O003 P	001 O00B	100.32(10)	C00G C00J	C00L	120.5(2)
O00B P	001 O00A	94.06(11)	COOR COOK	C00G	119.7(3)
O005 P	002 0009	100.32(10)	0004 C00L	C00J	111.3(2)
O005 P	002 O00C	102.29(11)	0004 C00L	C00M	109.9(2)
0009 P	002 O00C	94.37(11)	COOJ COOL	C00M	101.4(2)
C00M O	003 P001	120.91(17)	O003 C00M	C00F	113.9(2)
C00D O	005 P002	119.25(16)	O003 C00M	C00L	107.1(2)

C00U O007 C00I	109.71(19)	C00L C00M C00F 101.9(2)
C00F O008 C00J	110.01(18)	COOS COON COOV 118.0(3)
C00Q O009 P002	106.02(16)	COOS COON CO11 121.3(3)
C00Z O00A P001	111.69(18)	C00V C00N C011 120.7(3)
C00X O00B P001	106.10(18)	C00G C00O C00Y 120.5(3)
C010 O00C P002	111.76(17)	COOE COOP COOV 120.6(3)
O005 C00D C00H	107.7(2)	O009 C00Q C00U 108.8(2)
O005 C00D C00U	112.6(2)	O009 C00Q C010 103.0(2)
C00U C00D C00H	101.5(2)	C00U C00Q C010 111.8(2)
C00P C00E C00I	119.2(3)	C00T C00R C00K 121.5(3)
COOP COOE COOW	118.9(2)	C00N C00S C00W 121.9(3)
C00W C00E C00I	121.9(2)	COOR COOT COOY 118.5(3)
O008 C00F C00M	106.1(2)	COOR COOT CO12 120.5(3)
O008 C00F C00X	108.7(2)	C00Y C00T C012 121.0(3)
COOX COOF COOM	115.0(2)	O007 C00U C00D 106.1(2)
C00K C00G C00J	121.2(3)	O007 C00U C00Q 109.3(2)
C000 C00G C00J	119.6(3)	C00Q C00U C00D 114.7(2)
C000 C00G C00K	119.1(2)	C00N C00V C00P 120.8(3)
O006 C00H C00D	106.6(2)	C00S C00W C00E 119.7(3)
O006 C00H C00I	112.0(2)	O00B C00X C00F 109.2(2)
C00D C00H C00I	101.4(2)	O00B C00X C00Z 103.7(2)
0007 C00I C00E	111.8(2)	C00Z C00X C00F 112.2(3)
O007 C00I C00H	104.9(2)	C00T C00Y C00O 120.6(3)
C00E C00I C00H	115.1(2)	O00A C00Z C00X 105.2(2)
O008 C00J C00G	108.1(2)	O00C C010 C00Q 105.5(2)

 Table S13. Torsion Angles for Compound 3-P.

A	В	С	D	Angle/°	А	В	С	D	Angle/°
P001	O003	C00M	C00F	33.6(3)	C00G	C00J	C00L	C00M	-158.6(2)
P001	O003	C00M	C00L	145.49(18)	C00G	C00K	C00R	C00T	0.3(4)
P001	O00A	C00Z	C00X	11.0(3)	C00G	C00O	C00Y	C00T	-0.3(4)
P001	O00B	C00X	C00F	-74.1(2)	C00H	C00D	C00U	O007	-32.5(3)
P001	O00B	C00X	C00Z	45.7(2)	C00H	C00D	C00U	C00Q	-153.3(2)
P002	O005	C00D	C00H	151.59(18)	C00I	O007	C00U	C00D	11.7(3)
P002	O005	C00D	C00U	40.5(3)	C00I	O007	C00U	C00Q	136.0(2)
P002	O009	C00Q	C00U	-73.2(2)	C00I	C00E	C00P	C00V	175.9(3)
P002	O009	C00Q	C010	45.6(2)	C00I	C00E	C00W	C00S	-176.2(3)
P002	O00C	C010	C00Q	10.9(3)	C00J	O008	C00F	C00M	3.8(3)
O003	P001	O00A	C00Z	-87.6(2)	C00J	O008	C00F	C00X	128.0(2)
O003	P001	O00B	C00X	67.35(17)	C00J	C00G	C00K	C00R	176.0(3)
------	------	------	------	------------	------	------	------	------	-----------
O004	C00L	C00M	O003	160.6(2)	C00J	C00G	C00O	C00Y	-176.0(3)
O004	C00L	C00M	C00F	-79.5(3)	C00J	C00L	C00M	O003	-81.5(2)
O005	P002	O009	C00Q	67.26(17)	C00J	C00L	C00M	C00F	38.4(3)
O005	P002	O00C	C010	-87.2(2)	C00K	C00G	C00J	O008	-52.2(3)
O005	C00D	C00H	O006	163.9(2)	C00K	C00G	C00J	C00L	67.6(3)
O005	C00D	С00Н	C00I	-78.8(3)	C00K	C00G	C00O	C00Y	1.1(4)
O005	C00D	C00U	O007	82.3(2)	C00K	C00R	C00T	C00Y	0.5(4)
O005	C00D	C00U	C00Q	-38.5(3)	C00K	C00R	C00T	C012	-178.2(3)
O006	C00H	C00I	O007	79.6(2)	C00M	C00F	C00X	O00B	54.4(3)
O006	C00H	C00I	C00E	-43.7(3)	C00M	C00F	C00X	C00Z	-60.1(3)
O008	C00F	C00M	O003	88.3(3)	C00N	C00S	C00W	C00E	0.1(5)
O008	C00F	C00M	C00L	-26.7(3)	C00O	C00G	C00J	O008	124.8(3)
O008	C00F	C00X	O00B	-64.4(3)	C00O	C00G	C00J	C00L	-115.4(3)
O008	C00F	C00X	C00Z	-178.8(2)	C00O	C00G	C00K	C00R	-1.0(4)
O008	C00J	C00L	O004	79.9(2)	C00P	C00E	C00I	O007	132.3(3)
O008	C00J	C00L	C00M	-37.0(3)	C00P	C00E	C00I	C00H	-108.1(3)
O009	P002	O005	C00D	-53.4(2)	C00P	C00E	C00W	C00S	1.4(4)
O009	P002	O00C	C010	14.3(2)	C00R	C00T	C00Y	C00O	-0.4(4)
O009	C00Q	C00U	O007	-61.9(3)	C00S	C00N	C00V	C00P	1.0(4)
O009	C00Q	C00U	C00D	57.1(3)	C00U	O007	C00I	C00E	139.5(2)
O009	C00Q	C010	O00C	-34.9(3)	C00U	O007	C00I	C00H	14.1(3)
000A	P001	O003	C00M	47.1(2)	C00U	C00D	C00H	O006	-77.7(2)
000A	P001	O00B	C00X	-35.68(18)	C00U	C00D	C00H	C00I	39.7(3)
O00B	P001	O003	C00M	-49.4(2)	C00U	C00Q	C010	O00C	81.8(3)
O00B	P001	O00A	C00Z	13.9(2)	C00V	C00N	C00S	C00W	-1.4(5)
O00B	C00X	C00Z	000A	-35.1(3)	C00W	C00E	C00I	O007	-50.1(3)
O00C	P002	O005	C00D	43.4(2)	C00W	C00E	C00I	C00H	69.4(3)
O00C	P002	O009	C00Q	-36.09(16)	C00W	C00E	C00P	C00V	-1.7(4)
C00D	C00H	C00I	O007	-33.7(3)	C00X	C00F	C00M	O003	-31.9(3)
C00D	C00H	C00I	C00E	-157.0(2)	C00X	C00F	C00M	C00L	-146.9(2)
C00E	C00P	C00V	C00N	0.5(4)	C010	C00Q	C00U	O007	-175.0(2)
C00F	O008	C00J	C00G	150.6(2)	C010	C00Q	C00U	C00D	-56.0(3)
C00F	O008	C00J	C00L	21.2(3)	C011	C00N	C00S	C00W	-179.6(3)
C00F	C00X	C00Z	000A	82.7(3)	C011	C00N	C00V	C00P	179.2(3)
C00G	C00J	C00L	O004	-41.7(3)	C012	C00T	C00Y	C00O	178.2(3)

Table S14. Hydrogen Atom Coordinates $(Å \times 10^4)$ and Isotropic Displacement Parameters $(Å 2 \times 10^3)$ for Compound **3-P**.

Atom	X	У	z	U(eq)
		S73		

H004	8860.39	9274.65	3028.55	38
H006	1257.34	7238.85	2821.86	40
H00D	1145.28	6990.9	1645.17	26
H00F	7086.89	7512.14	3504.22	28
H00H	3817.82	6645.4	2409.63	27
H00I	3121.6	5353.98	2407.43	27
H00J	2490.45	8621.95	2909.84	25
H00K	7469.94	7914.95	2191.62	31
H00L	5249.17	9487.84	3143.27	25
H00M	7056.8	8678.74	3872.31	26
H00O	1169.85	8947.88	2101.71	32
H00P	4327.88	5002.38	3216.47	32
H00Q	-2415.32	5199.54	1301.21	28
H00R	7541.77	7812.41	1294.21	37
H00S	-2493.05	5862.79	3991.86	42
H00U	-2004.66	6266.84	1859.47	26
H00V	3804.15	4869.17	4106.31	39
H00W	-1989.99	6011.22	3106.84	34
H00X	3900.54	6714.09	3753.93	34
H00Y	1267.99	8838.96	1202.08	37
H00A	4398.05	6807.57	4625.71	42
H00B	6666.01	7265.73	4432.72	42
H01D	-2034.2	5824.44	527.73	34
H01E	-2040.2	6538.33	916	34
H01F	1022.86	5682.34	4903.29	83
H01G	935.59	4780.64	4829.36	83
H01H	-1414.88	5268.24	4797.55	83
H01A	6051.52	8309.46	446.33	81
H01B	3393.63	8582.51	414.82	81
H01C	3987.46	7700.19	482.2	81

Figure S14. X-ray structure of compound 34

Single crystals for X-ray studies were grown by slow evaporation of a solution of

compound 34 in Toluene/hexane in 4 mL tube at room temperature. The X-ray data of is deposited in the Cambridge Crystallographic Data Centre with a number of CCDC 2387663 (DOI: 10.5517/ccdc.csd.cc2l4kdq).

Identification code	compound 34
Empirical formula	$C_{13}H_{14}O_5$
Formula weight	250.24
Temperature/K	100.00(10)
Crystal system	orthorhombic
Space group	P212121
a/Å	5.90450(10)
b/Å	10.9096(2)
c/Å	17.4397(3)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	1123.39(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.480
μ/mm^{-1}	0.961
F(000)	528.0
Crystal size/mm ³	$0.26 \times 0.23 \times 0.17$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	9.562 to 148.396
Index ranges	$\textbf{-4} \le h \le 7, \textbf{-13} \le k \le 13, \textbf{-21} \le \textbf{1} \le 21$
Reflections collected	7591
Independent reflections	2145 [$R_{int} = 0.0153$, $R_{sigma} = 0.0131$]
Data/restraints/parameters	2145/0/167
Goodness-of-fit on F ²	1.053
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0266, wR_2 = 0.0704$
Final R indexes [all data]	$R_1 = 0.0269, wR_2 = 0.0708$
Largest diff. peak/hole / e Å ⁻³	0.51/-0.15
Flack parameter	-0.02(6)

Table S15. Crystal data and structure refinement for compound 34.

Table S16. Fractional Atomic Coordinates $(x10^4)$ and Equivalent Isotropic Displacement Parameters $(Å^2 \times 10^3)$ for Compound **34**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	ζ	U(eq)
09	1263(2)	4555.6(12)	5448.9(7)	19.2(3)

Atom	x	У	Ζ	U(eq)
O10	5588(2)	3502.9(11)	2239.4(7)	15.5(3)
O16	8843(2)	2521.9(13)	555.5(7)	19.5(3)
O17	4576(2)	1073.7(11)	2861.8(7)	18.7(3)
O18	3242(2)	2149.5(13)	949.9(7)	18.2(3)
C1	1582(3)	4256.4(15)	4691.0(10)	16.0(4)
C2	17(3)	4415.2(16)	4115.5(10)	17.8(4)
C3	662(3)	4010.9(16)	3389.8(10)	16.5(4)
C4	2793(3)	3474.7(16)	3256.5(10)	14.6(4)
C5	4341(3)	3335.8(15)	3849.1(10)	14.3(3)
C6	3735(3)	3740.3(15)	4583.0(10)	14.9(4)
C7	4779(3)	3746.4(15)	5334.0(10)	17.1(4)
C8	3237(3)	4223.6(16)	5813.9(11)	19.3(4)
C11	3349(3)	3075.3(15)	2449.1(10)	13.6(4)
C12	3399(3)	1699.3(15)	2273.4(9)	14.1(3)
C13	4757(3)	1712.1(15)	1522.4(9)	14.2(4)
C14	6624(3)	2629.8(15)	1721.2(9)	13.6(4)
C15	7654(3)	3331.5(17)	1055.9(10)	17.0(4)

Table S17. Anisotropic Displacement Parameters (Å2×10³) for Compound **34**. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
09	20.7(7)	19.1(6)	18.0(6)	-4.1(5)	3.3(5)	0.6(5)
O10	15.6(6)	12.3(5)	18.4(6)	-2.6(5)	3.6(5)	-2.0(5)
O16	14.3(7)	29.2(7)	15.1(6)	-0.3(5)	0.4(5)	4.2(6)
O17	27.9(7)	11.4(6)	16.8(6)	1.1(5)	-3.0(5)	0.3(5)
O18	14.4(6)	27.4(7)	12.8(5)	0.9(5)	-1.4(5)	0.4(6)
C1	17.9(9)	12.5(7)	17.8(8)	-1.4(6)	4.9(7)	-1.0(7)
C2	14.0(9)	15.1(8)	24.2(9)	-1.1(7)	2.6(7)	1.5(7)
C3	15.3(9)	13.8(7)	20.3(8)	0.1(7)	-1.8(7)	-0.4(7)
C4	15.5(9)	10.9(7)	17.6(8)	-0.6(6)	1.2(7)	-1.2(7)
C5	12.8(8)	10.8(7)	19.3(8)	-0.9(6)	2.1(7)	0.2(7)
C6	14.4(9)	12.1(8)	18.2(8)	1.0(6)	-0.4(7)	-1.5(7)
C7	17.9(9)	15.5(8)	17.8(8)	-0.4(7)	-0.5(7)	-1.7(7)
C8	22.4(10)	16.8(8)	18.7(9)	-1.2(7)	-0.4(8)	-2.1(8)
C11	12.4(8)	13.3(8)	15.2(8)	0.8(6)	1.0(7)	-0.2(6)
C12	15.6(8)	12.3(7)	14.4(8)	0.7(6)	-1.3(7)	-1.3(7)
C13	13.7(9)	13.6(7)	15.3(8)	-0.4(6)	-1.6(6)	0.8(7)
C14	13.0(9)	12.8(7)	15.1(7)	-1.1(6)	0.6(7)	2.6(7)
C15	15.7(9)	17.0(8)	18.3(8)	1.3(7)	2.0(7)	-0.3(7)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
09	C1	1.374(2)	C3	C4	1.407(3)
09	C8	1.377(2)	C4	C5	1.388(3)
O10	C11	1.449(2)	C4	C11	1.510(2)
O10	C14	1.449(2)	C5	C6	1.400(2)
O16	C15	1.426(2)	C6	C7	1.448(3)
O17	C12	1.415(2)	C7	C8	1.342(3)
O18	C13	1.423(2)	C11	C12	1.532(2)
C1	C2	1.375(3)	C12	C13	1.536(2)
C1	C6	1.403(3)	C13	C14	1.529(2)
C2	C3	1.393(3)	C14	C15	1.517(2)

Table S18. Bond Lengths for compound 34.

 Table S19. Bond Angles for compound 34.

Atom Atom Angle/°				Atom Atom Angle/°			
C1	09	C8	105.44(14)	C7	C8	09	112.83(16)
C14	O10	C11	109.33(12)	O10	C11	C4	109.92(14)
09	C1	C2	125.44(17)	O10	C11	C12	104.33(14)
09	C1	C6	110.41(16)	C4	C11	C12	118.24(14)
C2	C1	C6	124.14(16)	O17	C12	C11	109.70(13)
C1	C2	C3	116.06(17)	O17	C12	C13	111.50(14)
C2	C3	C4	121.75(17)	C11	C12	C13	99.88(13)
C3	C4	C11	117.93(16)	O18	C13	C12	105.85(14)
C5	C4	C3	120.75(16)	018	C13	C14	113.13(14)
C5	C4	C11	121.31(16)	C14	C13	C12	100.89(13)
C4	C5	C6	118.54(16)	O10	C14	C13	105.52(14)
C1	C6	C7	105.21(16)	O10	C14	C15	108.33(13)
C5	C6	C1	118.75(17)	C15	C14	C13	116.47(14)
C5	C6	C7	136.02(17)	016	C15	C14	110.66(14)
C8	C7	C6	106.10(16)				

Table S20. Torsion Angles for Compound 34.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
09	C1	C2	C3	-177.94(16)	C4	C5	C6	C7	178.45(18)
09	C1	C6	C5	177.78(14)	C4	C11	C12	017	-44.7(2)
09	C1	C6	C7	-0.61(19)	C4	C11	C12	C13	-161.89(15)
O10	C11	C12	017	77.77(16)	C5	C4	C11	O10	-46.3(2)

O10	C11	C12	C13	-39.45(15)	C5	C4	C11	C12	73.3(2)
O10	C14	C15	016	175.75(14)	C5	C6	C7	C8	-177.06(19)
O17	C12	C13	018	169.25(13)	C6	C1	C2	C3	0.9(3)
O17	C12	C13	C14	-72.68(16)	C6	C7	C8	09	-0.9(2)
O18	C13	C14	O10	80.03(16)	C8	09	C1	C2	179.07(17)
O18	C13	C14	C15	-40.2(2)	C8	09	C1	C6	0.08(18)
C1	09	C8	C7	0.55(19)	C11	O10	C14	C13	8.12(17)
C1	C2	C3	C4	-0.1(3)	C11	O10	C14	C15	133.53(14)
C1	C6	C7	C8	0.91(19)	C11	C4	C5	C6	179.12(15)
C2	C1	C6	C5	-1.2(3)	C11	C12	C13	018	-74.88(15)
C2	C1	C6	C7	-179.62(17)	C11	C12	C13	C14	43.19(16)
C2	C3	C4	C5	-0.3(3)	C12	C13	C14	O10	-32.59(16)
C2	C3	C4	C11	-179.44(16)	C12	C13	C14	C15	-152.79(14)
C3	C4	C5	C6	0.1(3)	C13	C14	C15	016	-65.57(19)
C3	C4	C11	O10	132.79(16)	C14	O10	C11	C4	147.77(13)
C3	C4	C11	C12	-107.65(19)	C14	O10	C11	C12	20.04(16)
C4	C5	C6	C1	0.7(2)					

Table S21. Hydrogen Atom Coordinates $(Å \times 10^4)$ and Isotropic Displacement Parameters $(Å 2 \times 10^3)$ for Compound **34**.

Atom	X	у	Z	U(eq)
H16	10103.69	2344.24	749.11	29
H17	4396.33	314.7	2808.38	28
H18	3892.09	2141.55	521.47	27
H2	-1419.08	4779.13	4207.31	21
H3	-363.78	4099.8	2973.98	20
H5	5780.45	2974.36	3758.8	17
H7	6256.43	3468.58	5461.35	20
H8	3481.89	4321.99	6348.8	23
H11	2231.12	3467.72	2095.1	16
H12	1840.87	1361.2	2197.21	17
H13	5380.92	885.28	1393.28	17
H14	7860.51	2188.99	1999.68	16
H15A	6439.76	3754.55	767.29	20
H15B	8708.7	3960.92	1254.88	20

Figure S15. X-ray structure of compound 39

Single crystals for X-ray studies were grown by slow evaporation of a solution of **compound 39** in EA/hexane in 4 mL tube at room temperature. The X-ray data of is deposited in the Cambridge Crystallographic Data Centre with a number of CCDC 2297325 (DOI: 10.5517/ccdc.csd.cc2h3k8g).

Table S22. Crysta	l data and structure	e refinement for	compound 39.
-------------------	----------------------	------------------	--------------

Identification code	compound 39
Empirical formula	$C_{13}H_{14}O_5$
Formula weight	250.24
Temperature/K	113.15
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	5.26399(4)
b/Å	9.67070(7)
c/Å	22.73664(17)
$\alpha/_{\circ}$	90
β/°	90
γ/°	90
Volume/Å ³	1157.443(15)
Z	4
$\rho_{calc}g/cm^3$	1.436
μ/mm^{-1}	0.932
F(000)	528.0
Crystal size/mm ³	$0.25\times0.22\times0.16$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/	"° 7.776 to 157.854
Index ranges	$\textbf{-6} \leq h \leq 6, \textbf{-12} \leq k \leq 12, \textbf{-24} \leq \textbf{l} \leq 28$
Reflections collected	6827
Independent reflections	2401 [$R_{int} = 0.0176, R_{sigma} = 0.0153$]
Data/restraints/parameters	2401/0/167
Goodness-of-fit on F ²	1.050

Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0283, wR_2 = 0.0759$
Final R indexes [all data]	$R_1 = 0.0285, wR_2 = 0.0760$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.13
Flack parameter	0.06(7)

Table S23. Fractional Atomic Coordinates $(x10^4)$ and Equivalent Isotropic Displacement Parameters $(Å^2 \times 10^3)$ for Compound **39**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	z	U(eq)
O001	7235(2)	3100.7(12)	6095.4(5)	26.4(3)
O002	3940(2)	2593.2(13)	5199.9(5)	28.9(3)
O003	1807(2)	7001.9(12)	5082.8(6)	31.6(3)
O004	4064(3)	5602.9(12)	6110.9(5)	37.6(4)
O005	10666(3)	5584.0(15)	8436.6(6)	37.8(3)
C00A	7304(4)	4466.8(17)	8030.0(7)	28.3(4)
C00B	4604(3)	3208.0(16)	6233.4(7)	22.3(3)
COOC	7710(3)	5918.2(18)	6983.1(7)	27.0(4)
C00D	4025(3)	4553.6(17)	6557.9(7)	25.6(3)
C00E	5590(4)	4197.5(17)	7577.7(7)	27.8(4)
C00F	9410(3)	6225.4(18)	7430.9(8)	29.1(4)
C00G	9155(4)	5474.2(17)	7944.0(7)	27.3(4)
C00H	7753(5)	3920(2)	8612.2(8)	41.0(5)
C00I	9746(5)	4605(2)	8826.5(8)	45.9(6)
C006	3516(3)	4987.4(16)	5552.1(7)	23.3(3)
C007	1209(3)	5637.8(16)	5275.5(7)	25.1(3)
C008	3111(3)	3441.6(16)	5670.1(7)	22.0(3)
C009	5821(3)	4914.5(16)	7050.9(7)	24.3(3)

Table S24. Anisotropic Displacement Parameters (Å2×10³) for

Compound **39**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U22	U33	U23	U13	U12
O001	19.7(6)	28.4(6)	31.1(6)	1.9(5)	3.7(5)	4.6(5)
O002	25.2(5)	33.5(6)	28.1(6)	-10.8(5)	-1.6(5)	3.4(5)
O003	30.7(6)	25.9(6)	38.2(6)	9.5(5)	-4.5(6)	-0.6(5)
O004	61.1(9)	22.1(6)	29.7(6)	-1.0(5)	-18.5(6)	5.4(6)
O005	43.5(8)	40.6(7)	29.4(6)	-7.4(5)	-7.8(6)	-5.6(7)
C00A	37.4(10)	23.9(8)	23.7(7)	-2.1(6)	0.7(7)	-0.4(7)
C00B	19.8(7)	22.5(7)	24.4(7)	1.9(6)	3.8(6)	-0.7(6)
C00C	28.8(9)	27.6(8)	24.7(7)	1.5(6)	4.6(7)	4.2(7)
C00D	25.3(7)	28.4(8)	23.1(7)	-1.6(6)	0.2(6)	6.2(7)
C00E	32.9(9)	25.8(7)	24.8(7)	-1.6(6)	0.3(7)	-3.7(7)

C00F	27.9(9)	26.9(8)	32.3(8)	-3.0(6)	5.8(7)	-1.8(7)
C00G	29.8(8)	27.0(8)	25.1(7)	-7.5(6)	-2.2(7)	2.0(7)
C00H	60.5(14)	38.0(10)	24.5(8)	3.0(7)	-5.6(9)	-9.1(10)
C00I	65.7(15)	46.4(11)	25.4(8)	0.4(8)	-11.6(9)	-5.1(11)
C006	23.4(8)	24.0(7)	22.6(7)	0.4(6)	-0.7(6)	0.0(6)
C007	24.9(8)	24.0(7)	26.3(7)	3.1(6)	-0.3(6)	-0.6(6)
C008	20.1(7)	22.8(7)	23.0(7)	-1.3(6)	2.6(6)	1.5(6)
C009	25.0(8)	24.0(7)	23.8(7)	-3.2(6)	1.4(6)	6.5(7)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O001	C00B	1.4237(19)	C00B	C00D	1.527(2)
O002	C008	1.4164(18)	C00B	C008	1.519(2)
O003	C007	1.4253(19)	C00C	C00F	1.388(3)
O004	C00D	1.436(2)	C00C	C009	1.398(3)
O004	C006	1.4325(19)	C00D	C009	1.507(2)
O005	C00G	1.378(2)	C00E	C009	1.389(2)
O005	C00I	1.384(3)	C00F	C00G	1.381(2)
C00A	C00E	1.393(2)	C00H	C00I	1.333(3)
C00A	C00G	1.392(3)	C006	C007	1.505(2)
C00A	C00H	1.445(2)	C006	C008	1.534(2)

 Table S26. Bond Angles for compound 39.

Atom Atom Angle/°	Atom Atom Angle/°
C006 O004 C00D 109.34(12)	O005 C00G C00F 126.18(16)
C00G O005 C00I 105.43(15)	C00F C00G C00A 123.71(16)
C00E C00A C00H 135.55(18)	C00I C00H C00A 106.33(18)
C00G C00A C00E 118.72(15)	C00HC00I O005 112.42(17)
C00G C00A C00H 105.71(16)	O004 C006 C007 111.07(14)
O001 C00B C00D 111.28(14)	O004 C006 C008 106.13(12)
O001 C00B C008 109.17(13)	C007 C006 C008 111.61(13)
C008 C00B C00D 100.22(12)	O003 C007 C006 109.70(14)
C00F C00C C009 121.75(16)	O002 C008 C00B 113.00(13)
O004 C00D C00B 104.91(12)	O002 C008 C006 112.94(13)
O004 C00D C009 110.71(14)	C00B C008 C006 102.74(12)
C009 C00D C00B 115.57(14)	C00C C009 C00D 121.65(15)
C009 C00E C00A 119.12(16)	C00E C009 C00C 120.26(16)
C00G C00F C00C 116.42(16)	C00E C009 C00D 118.07(15)
O005 C00G C00A 110.10(15)	

 Table S27. Torsion Angles for Compound 39.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
O001	C00B	C00D	O004	76.41(17)	C00E	C00A	C00G	C00F	-0.4(3)
O001	C00B	C00D	C009	-45.80(19)	C00E	C00A	C00H	C00I	178.8(2)
O001	C00B	C008	O002	42.96(18)	C00F	C00C	C009	C00D	-178.22(15)
O001	C00B	C008	C006	-79.05(15)	C00F	C00C	C009	C00E	0.4(2)
O004	C00D	C009	C00C	-16.3(2)	C00G	O005	C00I	C00H	-1.1(2)
O004	C00D	C009	C00E	165.07(15)	C00G	C00A	C00E	C009	1.7(3)
O004	C006	C007	O003	71.59(17)	C00G	C00A	C00H	C00I	0.1(2)
O004	C006	C008	O002	-146.75(14)	C00H	C00A	C00E	C009	-176.9(2)
O004	C006	C008	C00B	-24.70(16)	C00H	C00A	C00G	O005	-0.8(2)
C00A	C00E	C009	C00C	-1.7(3)	C00H	C00A	C00G	C00F	178.52(18)
C00A	C00E	C009	C00D	177.01(15)	C00I	O005	C00G	C00A	1.1(2)
C00A	C00H	C00I	O005	0.6(3)	C00I	O005	C00G	C00F	-178.16(18)
C00B	C00D	C009	C00C	102.78(18)	C006	O004	C00D	C00B	24.77(19)
C00B	C00D	C009	C00E	-75.87(19)	C006	O004	C00D	C009	150.09(14)
C00C	C00F	C00G	O005	178.35(16)	C007	C006	C008	O002	92.11(16)
C00C	C00F	C00G	C00A	-0.8(3)	C007	C006	C008	C00B	-145.84(13)
C00D	O004	C006	C007	121.52(15)	C008	C00B	C00D	O004	-38.94(16)
C00D	O004	C006	C008	0.03(19)	C008	C00B	C00D	C009	-161.16(14)
C00D	C00B	C008	O002	159.90(13)	C008	C006	C007	O003	-170.20(12)
C00D	C00B	C008	C006	37.89(15)	C009	C00C	C00F	C00G	0.8(2)
C00E	C00A	C00G	O005	-179.70(15)					

Table S28. Hydrogen Atom Coordinates ($Å \times 10^4$) andIsotropic Displacement Parameters ($Å 2 \times 10^3$) for Compound **39**.

Atom	X	У	z	U(eq)
H001	7840.62	2390.49	6255.39	40
H002	2706.11	2416.39	4977.97	43
H003	459.06	7426.67	5002.04	47
H00B	3979.44	2381.5	6454.53	27
H00C	7833.33	6402.78	6620.72	32
H00D	2265.67	4495.09	6721.88	31
H00E	4280.69	3532.28	7628.62	33
H00F	10679.68	6915.56	7386.93	35
H00H	6814.09	3212.3	8804.15	49
H00I	10454.39	4440.84	9204.34	55
H006	5008.73	5109.93	5285.13	28
H00A	642.7	5073.36	4936.72	30
H00G	-193.03	5672.83	5565.37	30
H008	1268.25	3265.77	5746.22	26

Figure S16 X-ray structure of compound 40-s

Single crystals for X-ray studies were grown by slow evaporation of a solution of compound 40-s in MeOD in 4 mL tube at room temperature. The X-ray data of is deposited in the Cambridge Crystallographic Data Centre with a number of CCDC 2297387 (DOI: 10.5517/ccdc.csd.cc2h3m8j).

Table S29. Crystal data and s	structure refinement for 40-s .
Identification code	Compound 40-s
Empirical formula	$C_{21}H_{21}D_{10}NO_6$
Formula weight	403.53
Temperature/K	294.15
Crystal system	orthorhombic
Space group	P212121
a/Å	6.11364(4)
b/Å	10.29889(7)
c/Å	33.4418(2)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2105.62(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.273
µ/mm ⁻¹	0.742
F(000)	848.0
Crystal size/mm ³	0.24 imes 0.22 imes 0.2
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/	° 8.984 to 157.898
Index ranges	$-6 \le h \le 7, -12 \le k \le 12, -42 \le l \le 41$
Reflections collected	20460
Independent reflections	$4458 \; [R_{int} = 0.0238, R_{sigma} = 0.0197]$
Data/restraints/parameters	4458/2/270

Table S29.	Crystal o	data and	structure	refinement	for 40-s .
					101 10 50

Goodness-of-fit on F ²	1.034
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0321, wR_2 = 0.0912$
Final R indexes [all data]	$R_1 = 0.0330, wR_2 = 0.0920$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.17
Flack parameter	0.05(5)

Table S30. Fractional Atomic Coordinates $(x10^4)$ and Equivalent Isotropic Displacement Parameters $(Å^2 \times 10^3)$ for Compound **40-s**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Z	U(eq)
O001	4257(2)	11432.6(12)	5372.1(4)	49.7(3)
D001	4970.22	12106.66	5364.7	75
O002	2506(2)	7335.1(15)	5751.4(4)	53.1(3)
D002	1795.7	7083.47	5558.4	80
O003	4692(2)	8443.1(14)	4820.3(4)	54.2(3)
D003	3850.05	7823.64	4815.29	81
O004	7726(2)	8717.0(12)	5437.9(5)	55.3(4)
D004	8321.73	9373.82	5523.55	83
O005	1464(3)	11078.7(14)	4681.5(4)	57.7(4)
D005	979.12	10646.2	4495.69	86
N006	5558(3)	5492.7(14)	6050.7(5)	46.1(3)
D006	4100(20)	5410(20)	6074(6)	50(6)
C00A	5446(3)	8765.0(16)	5526.4(5)	40.2(3)
C00B	6744(3)	4758.6(16)	6333.3(5)	41.6(4)
COOC	4853(3)	10627.5(17)	5042.7(5)	44.1(4)
C00D	4760(3)	7386.4(17)	5647.9(5)	42.4(4)
C00E	5301(4)	9164.9(19)	7088.2(6)	52.2(4)
C00F	8806(3)	5123.7(19)	6465.2(7)	54.8(5)
C00G	7462(3)	8445.0(19)	6524.3(6)	49.6(4)
C00H	6090(3)	6879.8(16)	6004.2(5)	42.3(4)
C00I	5912(3)	3583.8(18)	6468.8(6)	49.7(4)
C00J	3869(3)	7638(2)	6606.0(6)	57.1(5)
C00K	7101(4)	2819(2)	6729.9(6)	54.9(5)
C00L	7228(4)	9174(2)	6870.4(6)	55.6(5)
C00M	9967(3)	4346(2)	6725.0(7)	55.1(5)
C00N	3785(4)	11103(2)	4660.8(6)	56.8(5)
C00O	9149(4)	3180.7(19)	6865.6(6)	51.8(4)
COOP	3642(4)	8374(2)	6949.7(6)	62.3(5)
C00Q	5030(5)	9981(3)	7459.7(7)	70.4(6)
COOR	10478(5)	2341(2)	7143.6(8)	71.6(6)
C008	5782(3)	7669.4(16)	6384.3(5)	41.8(4)
C009	4204(3)	9241.1(15)	5157.0(5)	38.4(3)
O007	10086(3)	10813.9(17)	5667.2(6)	78.7(5)

D007	11240(40)	10980(30)	5529(9)	99(11)
C00S	10553(9)	11108(4)	6060.9(10)	132.0(18)
D00A	11139.64	11970.75	6076.89	198
D00B	11605.91	10499.98	6162.49	198
D00C	9237.98	11056.59	6217.01	198

Table S31. Anisotro	pic Disp	olacement Param	eters ($(Å2 \times 10^{3})$) for

Compound **40-s**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
O001	60.0(8)	35.7(6)	53.4(7)	-5.9(5)	7.2(6)	-7.1(5)
O002	38.1(6)	61.6(8)	59.5(7)	1.3(6)	-11.4(5)	-7.8(6)
O003	57.4(8)	54.3(7)	50.9(7)	-19.1(6)	12.4(6)	-10.0(6)
O004	35.9(6)	35.9(6)	94.0(10)	-4.5(6)	-6.0(6)	-1.7(5)
O005	64.3(9)	49.8(7)	58.8(8)	-2.0(6)	-7.5(6)	9.7(7)
N006	40.8(7)	35.3(7)	62.2(9)	1.7(6)	-10.6(7)	-3.5(6)
C00A	36.2(8)	33.9(7)	50.5(8)	-5.9(6)	-4.2(6)	2.4(6)
C00B	40.9(8)	35.0(8)	48.8(8)	-2.2(7)	-2.7(7)	0.3(7)
C00C	46.1(9)	40.9(8)	45.3(8)	-1.3(7)	8.7(7)	-2.4(7)
C00D	39.5(8)	37.3(8)	50.4(8)	-3.3(7)	-7.6(7)	-1.6(6)
C00E	64.5(12)	47.7(9)	44.5(8)	6.0(7)	-7.6(8)	4.4(9)
C00F	47.2(10)	42.3(9)	74.9(12)	7.7(9)	-14.5(9)	-5.9(8)
C00G	43.1(9)	45.9(9)	59.9(10)	-5.2(8)	-1.0(8)	-7.0(8)
C00H	38.6(8)	34.7(8)	53.7(9)	-0.3(6)	-6.6(7)	-2.1(6)
C00I	44.6(9)	41.9(9)	62.5(10)	0.8(8)	-3.2(8)	-4.1(8)
C00J	45.0(10)	66.4(12)	59.9(11)	-3.4(9)	-3.1(8)	-13.9(9)
C00K	56.0(11)	42.7(9)	66.1(11)	8.9(8)	-1.1(9)	-3.6(8)
C00L	57.4(11)	47.4(10)	62.1(11)	-5.9(9)	-9.8(9)	-8.5(9)
C00M	47.2(10)	50.5(10)	67.7(11)	1.0(9)	-14.5(9)	0.4(9)
C00N	68.0(13)	53.0(10)	49.4(10)	8.5(8)	7.2(9)	-1.3(9)
C00O	55.5(11)	46.7(9)	53.4(10)	-1.2(8)	-4.3(8)	8.6(8)
C00P	53.3(11)	78.0(14)	55.6(11)	1.1(10)	5.5(9)	-3.9(11)
C00Q	94.2(17)	68.6(13)	48.2(10)	-0.6(10)	-3.8(10)	6.1(13)
C00R	77.9(16)	62.0(13)	75.0(14)	12.0(11)	-21.8(12)	7.1(12)
C008	38.9(8)	36.8(8)	49.7(8)	3.6(7)	-8.1(7)	-1.4(7)
C009	38.3(8)	37.2(7)	39.7(7)	-6.7(6)	3.6(6)	1.2(6)
O007	68.8(10)	60.5(9)	106.7(14)	-21.7(9)	30.0(10)	-16.6(8)
C00S	189(5)	120(3)	87(2)	-26(2)	47(3)	-80(3)

Table S32. Bond Lengths for compound 40-s.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O001	D001	0.8200	C00D	C00H	1.534(2)

O001	C00C	1.426(2)	C00E	C00L	1.385(3)
O002	D002	0.8200	C00E	C00P	1.380(3)
O002	C00D	1.422(2)	C00E	C00Q	1.509(3)
O003	D003	0.8200	C00F	C00M	1.379(3)
O003	C009	1.4257(19)	C00G	C00L	1.387(3)
O004	D004	0.8200	C00G	C008	1.383(2)
O004	C00A	1.426(2)	C00H	C008	1.521(2)
O005	D005	0.8200	C00I	C00K	1.382(3)
O005	C00N	1.421(3)	C00J	C00P	1.384(3)
N006	D006	0.898(12)	C00J	C008	1.385(3)
N006	C00B	1.411(2)	C00K	C00O	1.383(3)
N006	C00H	1.473(2)	C00M	C00O	1.382(3)
C00A	C00D	1.535(2)	C00O	C00R	1.507(3)
C00A	C009	1.530(2)	O007	D007	0.862(13)
C00B	C00F	1.388(3)	O007	C00S	1.381(4)
C00B	C00I	1.388(3)	C00S	D00A	0.9600
C00C	C00N	1.516(3)	C00S	D00B	0.9600
C00C	C009	1.530(2)	C00S	D00C	0.9600

 Table S33. Bond Angles for Compound 40-s.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C00C	O001	D001	109.5	N006	C00H	C008	113.77(15)
C00D	O002	D002	109.5	C008	C00H	C00D	113.69(14)
C009	O003	D003	109.5	C00K	C00I	C00B	120.69(18)
C00A	O004	D004	109.5	C00P	C00J	C008	121.08(19)
C00N	O005	D005	109.5	C00I	C00K	C00O	121.98(19)
C00B	N006	D006	113.5(14)	C00E	C00L	C00G	121.54(19)
C00B	N006	C00H	118.47(14)	C00F	C00M	C00O	122.18(19)
C00H	N006	D006	108.9(15)	O005	C00N	C00C	112.54(16)
O004	C00A	C00D	106.85(13)	C00K	C00O	C00R	122.4(2)
O004	C00A	C009	109.18(15)	C00M	C00O	C00K	116.73(18)
C009	C00A	C00D	111.99(13)	C00M	C00O	C00R	120.9(2)
C00F	C00B	N006	122.33(16)	C00E	C00P	C00J	121.9(2)
C00F	C00B	C00I	117.71(17)	C00G	C008	C00H	119.99(17)
C00I	C00B	N006	119.84(16)	C00G	C008	C00J	117.36(17)
O001	C00C	C00N	110.67(16)	C00J	C008	C00H	122.64(16)
O001	C00C	C009	106.46(13)	O003	C009	C00A	110.42(14)
C00N	C00C	C009	113.60(16)	O003	C009	C00C	106.63(13)
O002	C00D	C00A	111.31(14)	C00C	C009	C00A	111.84(14)
O002	C00D	C00H	108.17(15)	C00S	O007	D007	107(2)
C00H	C00D	C00A	112.05(13)	O007	C00S	D00A	109.5

C00L	C00E	C00Q	121.5(2)	O007	C00S	D00B	109.5
C00P	C00E	C00L	116.89(19)	O007	C00S	D00C	109.5
C00P	C00E	C00Q	121.6(2)	D00A	C00S	D00B	109.5
C00M	C00F	C00B	120.71(18)	D00A	C00S	D00C	109.5
C008	C00G	C00L	121.22(19)	D00B	C00S	D00C	109.5
N006	C00H	C00D	107.13(14)				

Table S34. Torsion Angles for Compound 40-s.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
O001	C00C	C00N	O005	-61.1(2)	C00F	C00B	C00I	C00K	0.7(3)
O001	C00C	C009	O003	177.04(14)	C00F	C00M	C00O	C00K	0.6(3)
O001	C00C	C009	C00A	-62.16(18)	C00F	C00M	C00O	C00R	178.9(2)
O002	C00D	C00H	N006	66.12(18)	C00H	N006	C00B	C00F	-22.8(3)
O002	C00D	C00H	C008	-60.45(19)	C00H	N006	C00B	C00I	161.48(17)
O004	C00A	C00D	O002	178.71(14)	C00I	C00B	C00F	C00M	-0.6(3)
O004	C00A	C00D	C00H	57.43(19)	C00I	C00K	C00O	C00M	-0.5(3)
O004	C00A	C009	O003	55.36(17)	C00I	C00K	C00O	C00R	-178.7(2)
O004	C00A	C009	C00C	-63.21(17)	C00L	C00E	C00P	C00J	-1.0(3)
N006	C00B	C00F	C00M	-176.4(2)	C00L	C00G	C008	C00H	-179.90(17)
N006	C00B	C00I	C00K	176.65(18)	C00L	C00G	C008	C00J	-0.8(3)
N006	C00H	C008	C00G	127.91(18)	C00N	C00C	C009	O003	55.0(2)
N006	C00H	C008	C00J	-51.2(2)	C00N	C00C	C009	C00A	175.79(15)
C00A	C00D	C00H	N006	-170.82(14)	C00P	C00E	C00L	C00G	1.4(3)
C00A	C00D	C00H	C008	62.62(19)	C00P	C00J	C008	C00G	1.2(3)
C00B	N006	C00H	C00D	173.43(16)	C00P	C00J	C008	C00H	-179.69(19)
C00B	N006	C00H	C008	-60.0(2)	C00Q	C00E	C00L	C00G	-178.7(2)
C00B	C00F	C00M	C00O	-0.1(4)	C00Q	C00E	C00P	C00J	179.1(2)
C00B	C00I	C00K	C00O	-0.2(3)	C008	C00G	C00L	C00E	-0.5(3)
C00D	C00A	C009	O003	-62.77(18)	C008	C00J	C00P	C00E	-0.4(4)
C00D	C00A	C009	C00C	178.66(13)	C009	C00A	C00D	O002	-61.78(18)
C00D	C00H	C008	C00G	-109.10(19)	C009	C00A	C00D	C00H	176.94(14)
C00D	C00H	C008	C00J	71.8(2)	C009	C00C	C00N	O005	58.6(2)

Table S35. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å 2 \times 10^3$) for Compound **40-s**.

Atom	X	у	z	U(eq)
H00A	5191.24	9362.16	5749.72	48
H00C	6444.67	10662.48	5009.4	53
H00D	5006.39	6806.55	5419.9	51

H00F	9411.48	5901.49	6377.44	66
H00G	8773.68	8478.35	6383.78	60
H00H	7639.17	6936.22	5930.85	51
H00I	4541.24	3308.78	6383.15	60
H00J	2718.78	7112.51	6522.57	69
H00K	6505.51	2037.27	6816.83	66
H00L	8391.29	9680.76	6958.23	67
H00M	11346.35	4613.58	6808.45	66
H00B	4264.32	11984.15	4607.48	68
H00E	4261.81	10562.48	4439.82	68
H00P	2334.25	8335.92	7091.27	75
H00N	6435.7	10128.18	7579.4	106
H00O	4103.12	9534.44	7646.3	106
H00Q	4379.72	10798.1	7389.89	106
H00R	9519.16	1906.9	7327.54	107
H00S	11489.9	2872.96	7289.61	107
H00T	11270.63	1707.62	6990.7	107
H009	2628.85	9210.21	5210.3	46

Figure S17. X-ray structure of compound 40'a

Single crystals for X-ray studies were grown by slow evaporation of a solution of **compound 40'** α in hexane in 4 mL tube at room temperature. The X-ray data of is deposited in the Cambridge Crystallographic Data Centre with a number of CCDC 2297359 (DOI: 10.5517/ccdc.csd.cc2h3lcl).

Table S36. Crystal data and structure refinement for compound $40'\alpha$.

Identification code	Compound 40' α
Empirical formula	$C_{19}H_{26}O_5$
Formula weight	334.40
Temperature/K	294.15
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	5.85420(10)

b/Å	10.33480(10)
c/Å	29.2959(2)
α/\circ	90
β/°	90
γ/°	90
Volume/Å ³	1772.46(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.253
μ/mm^{-1}	0.732
F(000)	720.0
Crystal size/mm ³	$0.34 \times 0.22 \times 0.18$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	9.074 to 157.912
Index ranges	$-3 \le h \le 6, -12 \le k \le 12, -37 \le l \le 37$
Reflections collected	16661
Independent reflections	$3673 [R_{int} = 0.0208, R_{sigma} = 0.0156]$
Data/restraints/parameters	3673/0/223
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0376, wR_2 = 0.1072$
Final R indexes [all data]	$R_1 = 0.0383, wR_2 = 0.1080$
Largest diff. peak/hole / e Å ⁻³	0.28/-0.16
Flack parameter	-0.04(4)

Table S37. Fractional Atomic Coordinates $(x10^4)$ and Equivalent Isotropic Displacement Parameters $(Å^2 \times 10^3)$ for Compound **40'a**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	у	z	U(eq)
O001	3150(2)	7462.2(13)	6089.7(5)	49.4(3)
O002	5183(3)	10133.3(13)	5813.2(5)	56.6(4)
O003	2772(3)	8621.1(18)	7398.6(5)	67.6(5)
O004	5148(4)	8750.6(16)	5209.1(5)	70.2(5)
O005	4702(4)	9903.6(18)	6918.3(6)	80.5(6)
C006	4545(3)	6908.3(19)	5730.6(6)	47.0(4)
C007	5821(3)	5738.7(18)	5907.0(6)	44.2(4)
C008	4614(4)	8298.1(18)	6343.1(6)	45.1(4)
C009	4240(4)	9955(2)	5367.9(6)	51.7(5)
C00A	4769(4)	4533(2)	5897.0(7)	52.5(5)
C00B	3964(5)	9817(2)	7379.2(7)	57.1(5)
C00C	6076(4)	8027(2)	5570.9(6)	51.1(5)
C00D	6111(4)	8964.6(19)	5981.7(6)	47.4(4)
C00E	7989(4)	5813(2)	6101.9(7)	52.7(5)

C00F	7931(5)	3530(2)	6281.8(7)	59.4(6)
C00G	9012(4)	4724(2)	6288.9(8)	58.3(5)
C00H	3186(4)	9174(2)	6638.2(7)	56.5(5)
C00I	5809(5)	3455(2)	6078.4(8)	60.1(6)
C00J	1680(5)	8443(3)	6978.4(8)	66.3(7)
C00K	5138(6)	11002(3)	5062.9(8)	68.8(7)
C00L	9041(7)	2357(3)	6495.4(11)	90.6(10)
C00M	2419(7)	10936(3)	7494.9(10)	85.6(9)
C00N	1701(5)	9906(4)	5389.0(10)	89.5(10)
C00O	5995(6)	9761(4)	7691.0(12)	90.2(9)

Table S38. Anisotropic Displacement Parameters ($Å2 \times 10^3$) for

Compound **40'a**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
O001	49.1(7)	49.1(7)	49.9(7)	-7.8(6)	4.0(6)	-5.3(6)
O002	87.5(11)	43.7(7)	38.6(7)	0.1(5)	-5.7(7)	-3.5(7)
O003	82.0(12)	67.9(10)	52.9(8)	7.1(7)	11.7(8)	-10.2(9)
O004	117.9(15)	56.1(8)	36.6(6)	-1.9(6)	-3.1(8)	8.6(10)
O005	108.7(15)	83.5(11)	49.2(8)	-22.9(8)	31.6(9)	-44.7(12)
C006	52.2(11)	48.3(9)	40.5(8)	-7.4(7)	-2.5(8)	-0.6(8)
C007	49.2(10)	46.3(9)	37.0(8)	-5.0(7)	0.6(7)	-2.1(8)
C008	52.6(11)	45.6(9)	37.2(8)	-0.1(7)	0.1(7)	-5.1(8)
C009	63.3(12)	55.3(11)	36.3(8)	0.7(8)	2.8(8)	-1.3(9)
C00A	55.9(11)	52.9(11)	48.6(10)	-6.0(8)	-3.3(9)	-8.4(9)
C00B	71.4(14)	58.7(11)	41.3(9)	-4.4(8)	11.1(10)	-3.8(10)
C00C	64.6(12)	49.5(10)	39.3(8)	-0.3(7)	3.9(8)	-0.6(9)
C00D	54.4(11)	51.3(10)	36.6(8)	0.6(7)	1.4(8)	-6.3(8)
C00E	51.4(11)	51.7(11)	55.0(11)	-4.7(9)	-1.3(9)	-4.5(9)
C00F	74.7(15)	55.6(12)	48.0(10)	0.1(9)	5.1(10)	12.4(11)
C00G	52.2(11)	68.5(13)	54.3(11)	-5.1(10)	-4.4(10)	7.5(10)
C00H	72.5(14)	51.9(11)	45.2(10)	-5.7(8)	12.3(10)	-7.0(10)
C00I	76.8(16)	45.8(10)	57.6(11)	-2.0(9)	2.7(11)	-6.8(10)
C00J	70.9(16)	74.5(16)	53.6(12)	-8.5(10)	18.6(11)	-17.4(12)
C00K	89.8(18)	69.2(14)	47.3(10)	10.3(10)	9.8(11)	2.1(14)
C00L	113(3)	74.1(17)	85.0(19)	14.3(15)	-2.1(19)	27.5(17)
C00M	112(2)	75.1(17)	69.1(15)	-11.1(14)	3.3(16)	24.6(17)
C00N	62.4(16)	144(3)	62.6(15)	-4.9(18)	0.1(12)	-7.6(18)
C00O	80.7(19)	100(2)	90(2)	-12.8(17)	-12.7(18)	4.2(17)

Table S39. Bond Lengths for compound $40^{\prime}\alpha.$

Atom	Atom	Length/Å	Atom	Atom	Length/Å	
O001	C006	1.450(2)	C008	C00D	1.537(3)	
O001	C008	1.425(2)	C008	C00H	1.505(3)	
O002	C009	1.428(2)	C009	C00K	1.499(3)	
O002	C00D	1.413(2)	C009	C00N	1.489(4)	
O003	C00B	1.421(3)	C00A	C00I	1.376(3)	
O003	C00J	1.399(3)	C00B	C00M	1.507(4)	
O004	C009	1.431(3)	C00B	C00O	1.500(4)	
O004	C00C	1.406(3)	C00C	C00D	1.545(3)	
O005	C00B	1.420(2)	C00E	C00G	1.387(3)	
O005	C00H	1.424(3)	C00F	C00G	1.387(4)	
C006	C007	1.512(3)	C00F	C00I	1.380(4)	
C006	C00C	1.536(3)	C00F	C00L	1.511(3)	
C007	C00A	1.390(3)	C00H	C00J	1.530(3)	
C007	C00E	1.394(3)				

Table S40. Bond Angles for compound $40^{\prime}\alpha.$

Atom Atom Angle/°	Atom Atom Angle/°
C008 O001 C006 106.17(14)	O003 C00B C00O 109.3(2)
C00D O002 C009 110.93(15)	O005 C00B O003 104.02(17)
C00J O003 C00B 107.66(18)	O005 C00B C00M 110.4(2)
C00C O004 C009 111.15(14)	O005 C00B C00O 109.9(2)
C00B O005 C00H 108.97(18)	C000 C00B C00M 111.6(2)
O001 C006 C007 110.24(15)	O004 C00C C006 113.8(2)
O001 C006 C00C 104.62(15)	O004 C00C C00D 105.00(16)
C007 C006 C00C 114.68(18)	C006 C00C C00D 104.04(15)
C00A C007 C006 119.36(18)	O002 C00D C008 113.85(18)
C00A C007 C00E 117.46(19)	O002 C00D C00C 105.00(15)
C00E C007 C006 123.10(18)	C008 C00D C00C 104.36(16)
O001 C008 C00D 104.81(14)	C00G C00E C007 120.7(2)
O001 C008 C00H 109.27(17)	C00G C00F C00L 120.8(3)
C00HC008 C00D 116.26(17)	C00I C00F C00G 117.8(2)
O002 C009 O004 105.39(17)	C00I C00F C00L 121.4(3)
O002 C009 C00K 108.41(19)	C00E C00G C00F 121.3(2)
O002 C009 C00N 110.6(2)	O005 C00H C008 107.7(2)
O004 C009 C00K 107.68(18)	O005 C00HC00J 104.17(17)
O004 C009 C00N 110.8(2)	C008 C00HC00J 113.38(19)
C00N C009 C00K 113.6(3)	C00A C00I C00F 121.3(2)
C00I C00A C007 121.4(2)	O003 C00J C00H 104.2(2)
O003 C00B C00M 111.3(2)	

Table S41. Torsion Angles for Compound 40'α.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
P001	O003	C00M	C00F	33.6(3)	C00G	C00J	C00L	C00M	-158.6(2)
O001	C006	C007	C00A	86.5(2)	C00A	C007	C00E	C00G	-1.7(3)
O001	C006	C007	C00E	-90.4(2)	C00B	O003	C00J	C00H	28.3(3)
O001	C006	C00C	O004	-91.12(19)	C00B	O005	C00H	C008	-129.9(2)
O001	C006	C00C	C00D	22.6(2)	C00B	O005	C00H	C00J	-9.2(3)
O001	C008	C00D	O002	90.11(19)	C00C	O004	C009	O002	15.9(3)
O001	C008	C00D	C00C	-23.8(2)	C00C	O004	C009	C00K	131.4(2)
O001	C008	C00H	O005	174.37(16)	C00C	O004	C009	C00N	-103.8(2)
O001	C008	C00H	C00J	59.7(2)	C00C	C006	C007	C00A	-155.76(17)
O004	C00C	C00D	O002	0.3(2)	C00C	C006	C007	C00E	27.4(2)
O004	C00C	C00D	C008	120.35(19)	C00D	O002	C009	O004	-15.6(2)
O005	C00H	C00J	O003	-11.5(3)	C00D	O002	C009	C00K	-130.7(2)
C006	O001	C008	C00D	39.62(19)	C00D	O002	C009	C00N	104.2(3)
C006	O001	C008	C00H	164.87(15)	C00D	C008	C00H	O005	-67.3(2)
C006	C007	C00A	C00I	-176.10(19)	C00D	C008	C00H	C00J	178.00(19)
C006	C007	C00E	C00G	175.19(19)	C00E	C007	C00A	C00I	1.0(3)
C006	C00C	C00D	O002	-119.59(18)	C00G	C00F	C00I	C00A	-1.4(3)
C006	C00C	C00D	C008	0.5(2)	C00H	O005	C00B	O003	26.4(3)
C007	C006	C00C	O004	147.99(16)	C00H	O005	C00B	C00M	-93.1(3)
C007	C006	C00C	C00D	-98.30(19)	C00H	O005	C00B	C00O	143.3(2)
C007	C00A	C00I	C00F	0.6(3)	C00H	C008	C00D	O002	-30.6(2)
C007	C00E	C00G	C00F	1.0(3)	C00H	C008	C00D	C00C	-144.53(19)
C008	O001	C006	C007	84.47(18)	C00I	C00F	C00G	C00E	0.6(3)
C008	O001	C006	C00C	-39.32(19)	C00J	O003	C00B	O005	-34.4(3)
C008	C00H	C00J	O003	105.2(2)	C00J	O003	C00B	C00M	84.4(2)
C009	O002	C00D	C008	-103.98(19)	C00J	O003	C00B	C00O	-151.8(2)
C009	O002	C00D	C00C	9.6(2)	C00L	C00F	C00G	C00E	-178.7(2)
C009	O004	C00C	C006	103.1(2)	C00L	C00F	C00I	C00A	177.9(2)
C009	O004	C00C	C00D	-10.0(3)					

Table S42. Hydrogen Atom Coordinates $(Å \times 10^4)$ and Isotropic Displacement Parameters $(Å 2 \times 10^3)$ for Compound **40'** α .

Atom	X	у	Ζ	U(eq)
H006	3554.96	6642.18	5477.7	56
H008	5593.93	7770.27	6540.23	54
H00A	3331.53	4453.6	5764.85	63
H00C	7617.52	7721.51	5497.39	61

H00D	7670.32	9093.26	6094.42	57
H00E	8757.95	6599.88	6106.56	63
H00G	10449.39	4796.86	6421.48	70
H00H	2256.86	9752.25	6448.8	68
H00I	5066.48	2660.71	6063.64	72
H00B	147.61	8799.77	6984.31	80
H00F	1593.85	7532.16	6900.98	80
H00J	4654.84	11829.28	5176.33	103
H00K	4557.65	10879.91	4759.43	103
H00L	6776.34	10967.15	5057.48	103
H00M	10645.72	2359.1	6427.51	136
H00N	8357.29	1585.98	6374.17	136
H00O	8826.64	2381.04	6820.13	136
H00P	1139.21	10942.69	7290	128
H00Q	3250.38	11732.24	7465.48	128
H00R	1882.75	10845.83	7802.94	128
H00S	1235.98	9206.68	5583.78	134
H00T	1098.92	9771.28	5087.86	134
H00U	1129.72	10707.43	5508.88	134
H00V	5488.24	9628.53	7999.14	135
H00W	6826.19	10559.65	7672.08	135
H00X	6969.02	9058.29	7601.24	135

Figure S18. X-ray structure of compound 40'β

Single crystals for X-ray studies were grown by slow evaporation of a solution of **compound 40'\beta** in hexane in 4 mL tube at room temperature. The X-ray data of is deposited in the Cambridge Crystallographic Data Centre with a number of CCDC 2297392 (DOI: 10.5517/ccdc.csd.cc2h3mfp).

Table S43. Crystal data and structure refinement for compound 40'β.

Identification code	Compound $40'\beta$
Empirical formula	$C_{19}H_{26}O_5$
Formula weight	334.40
Temperature/K	294.15
Crystal system	monoclinic

Space group	P21
a/Å	10.97750(10)
b/Å	6.32230(10)
c/Å	13.5853(2)
α/\circ	90
β/°	98.8380(10)
$\gamma/^{\circ}$	90
Volume/Å ³	931.67(2)
Z	2
$\rho_{calc}g/cm^3$	1.192
μ/mm^{-1}	0.697
F(000)	360.0
Crystal size/mm ³	0.24 imes 0.22 imes 0.17
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	6.584 to 158.81
Index ranges	$-13 \le h \le 13, -7 \le k \le 7, -17 \le l \le 17$
Reflections collected	17881
Independent reflections	$3930 \ [R_{int} = 0.0375, R_{sigma} = 0.0284]$
Data/restraints/parameters	3930/1/223
Goodness-of-fit on F ²	1.043
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0453, wR_2 = 0.1304$
Final R indexes [all data]	$R_1 = 0.0473, wR_2 = 0.1337$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.17
Flack parameter	0.08(10)

Table S44. Fractional Atomic Coordinates $(x10^4)$ and Equivalent	
Isotropic Displacement Parameters ($Å^2 \times 10^3$) for Compound 40' β . U _{eq} is	defined as 1/3
of the trace of the orthogonalised U_{IJ} tensor.	

Atom	X	У	z	U(eq)
O001	5882.8(13)	6088(3)	3213.7(11)	61.6(4)
O002	3744.2(14)	3222(3)	2255.2(13)	76.5(5)
O003	5276.0(14)	3545(3)	1337.0(12)	69.6(5)
O004	9311.6(17)	6814(4)	2751.2(16)	90.6(7)
O005	8135.5(17)	4780(4)	1616.5(16)	91.9(7)
C00A	5873.8(19)	2969(4)	2293.8(15)	61.1(5)
C00B	4013(2)	2980(4)	1268.4(17)	65.0(5)
C00C	3395(2)	5128(4)	4682.5(16)	60.2(5)
C00D	2376(2)	6241(4)	4915.7(17)	63.9(5)
C00E	3574(2)	7653(4)	3410.6(16)	61.6(5)
C00F	6695.0(18)	4755(4)	2765.3(16)	60.9(5)
C00G	2579(2)	8750(4)	3659.6(18)	65.3(5)

C00H	7315.6(19)	6079(5)	2058.8(18)	69.9(6)
C00I	3803(3)	713(5)	923(2)	84.6(8)
C00J	9375(2)	5461(5)	1942(2)	77.6(7)
C00K	8146(2)	7794(6)	2580(3)	85.6(8)
C00L	900(2)	9319(5)	4696(2)	79.5(7)
C00M	3256(3)	4526(5)	597(3)	92.3(9)
C00N	10175(4)	3620(10)	2303(4)	126.1(15)
C00O	9837(3)	6624(9)	1100(3)	114.3(14)
C006	4005.2(17)	5857(3)	3926.4(13)	52.2(4)
C007	1968.4(18)	8069(4)	4418.8(16)	59.3(5)
C008	4833(2)	2860(4)	2933.3(16)	62.6(5)
C009	5108.6(19)	4685(4)	3675.4(14)	56.3(5)

Table S45. Anisotropic Displacement Parameters ($Å2 \times 10^3$) for

Compound **40'B**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atom	U11	U22	U33	U23	U13	U12
O001	51.6(7)	68.3(8)	68.0(8)	-12.5(7)	18.8(6)	-6.4(6)
O002	54.4(8)	103.3(13)	73.2(9)	-30.6(10)	14.2(6)	-12.2(9)
O003	57.4(8)	91.3(11)	60.2(8)	-3.4(7)	9.7(6)	-8.8(8)
O004	54.8(9)	121.2(18)	94.9(13)	-20.8(12)	8.7(8)	-8.6(10)
O005	58.1(9)	127.4(16)	95.9(13)	-40.8(13)	30.4(9)	-12.4(11)
C00A	56.9(10)	65.0(12)	62.3(10)	-5.3(9)	12.0(8)	9.2(9)
C00B	58.3(10)	71.3(13)	65.1(11)	-13.6(11)	8.7(8)	-9.6(9)
C00C	62.4(11)	62.4(11)	57.0(10)	6.7(9)	13.5(8)	-1.1(9)
C00D	56.9(10)	76.0(13)	62.4(10)	2.8(10)	20.0(8)	-6.2(10)
C00E	65.0(11)	65.2(12)	58.2(10)	8.9(9)	20.7(9)	-1.4(9)
C00F	47.2(9)	76.1(13)	59.3(10)	-5.6(10)	8.0(7)	7.1(9)
C00G	63.6(12)	65.2(12)	68.4(12)	10.0(10)	14.0(9)	5.6(9)
C00H	47.9(9)	94.7(16)	68.8(12)	-8.8(13)	14.5(8)	-0.9(11)
C00I	109(2)	74.5(17)	71.3(13)	-16.2(12)	16.1(13)	-18.6(15)
C00J	48.7(10)	104(2)	82.4(14)	-3.6(14)	17.0(9)	3.2(11)
C00K	57.8(12)	98(2)	105.6(19)	-22.0(17)	26.1(12)	-9.1(13)
C00L	57.9(12)	95.3(19)	86.2(16)	-10.2(14)	14.2(11)	11.4(12)
C00M	80.5(17)	86.8(19)	101(2)	-10.0(17)	-12.4(15)	4.0(15)
C00N	101(3)	133(4)	146(4)	25(3)	26(2)	37(3)
C00O	83(2)	149(4)	119(3)	21(3)	42.6(19)	10(2)
C006	49.9(8)	58.2(10)	48.6(8)	-4.3(8)	8.0(7)	-6.3(8)
C007	46.8(8)	70.8(12)	60.2(10)	-6.8(9)	7.5(7)	-2.8(9)
C008	67.3(11)	58.4(11)	64.2(11)	-3.4(10)	17.1(9)	-2.8(9)
C009	53.5(9)	62.7(11)	53.3(9)	-0.4(8)	10.1(7)	-0.2(8)

Table S46. Bond Lengths for compound 40'β.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O001	C00F	1.429(3)	C00C	C00D	1.399(3)
O001	C009	1.438(3)	C00C	C006	1.388(3)
O002	C00B	1.424(3)	C00D	C007	1.378(4)
O002	C008	1.411(3)	C00E	C00G	1.379(3)
O003	C00A	1.411(3)	C00E	C006	1.379(3)
O003	C00B	1.420(3)	C00F	C00H	1.512(4)
O004	C00J	1.403(4)	C00G	C007	1.382(3)
O004	C00K	1.408(4)	C00H	C00K	1.520(4)
O005	C00H	1.419(3)	C00J	C00N	1.495(5)
O005	C00J	1.430(3)	C00J	C00O	1.512(5)
C00A	C00F	1.524(3)	C00L	C007	1.510(3)
C00A	C008	1.540(3)	C006	C009	1.503(3)
C00B	C00I	1.515(4)	C008	C009	1.531(3)
C00B	C00M	1.498(4)			

Table S47. Bond Angles for compound 40'β.

Atom Atom Atom Angle/°

C00F O001 C009	105.75(17)	O005 C00H
C008 O002 C00B	108.65(17)	C00F C00H
C00A O003 C00B	107.86(18)	O004 C00J
C00J 0004 C00K	107.0(2)	O004 C00J
C00H O005 C00J	109.3(2)	O004 C00J
O003 C00A C00F	110.9(2)	O005 C00J
O003 C00A C008	104.53(17)	O005 C00J
C00F C00A C008	103.79(16)	C00N C00J
O002 C00B C00I	110.5(2)	O004 C00K
O002 C00B C00M	109.0(2)	C00C C006
O003 C00B O002	104.63(16)	C00E C006
O003 C00B C00I	111.0(2)	C00E C006
O003 C00B C00M	108.7(2)	C00DC007
C00M C00B C00I	112.6(2)	C00DC007
C006 C00C C00D	119.6(2)	C00GC007
C007 C00DC00C	121.5(2)	O002 C008
C00G C00E C006	120.83(19)	O002 C008
O001 C00F C00A	104.41(16)	C009 C008
O001 C00F C00H	108.4(2)	O001 C009
C00H C00F C00A	116.02(18)	O001 C009
C00E C00GC007	121.3(2)	C006 C009
O005 C00HC00F	109.0(2)	

Atom Atom Atom Angle/°

O005 C00HC00K 103.67(18)
C00F C00H C00K 113.3(2)
O004 C00J O005 105.46(19)
O004 C00J C00N 108.3(3)
O004 C00J C00O 111.1(3)
O005 C00J C00N 110.5(3)
O005 C00J C00O 109.0(3)
C00N C00J C00O 112.2(3)
O004 C00K C00H 103.1(3)
C00C C006 C009 120.08(19)
C00E C006 C00C 118.83(19)
C00E C006 C009 121.09(18)
C00DC007 C00G118.0(2)
C00DC007 C00L 121.6(2)
C00G C007 C00L 120.5(2)
O002 C008 C00A 104.59(16)
O002 C008 C009 111.69(18)
C009 C008 C00A 104.42(17)
O001 C009 C006 110.23(18)
O001 C009 C008 104.36(16)
C006 C009 C008 115.85(17)

Table S48. Torsion Angles for Compound 40'β.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
O001	C00F	C00H	O005	179.35(16)	C00E	C006	C009	O001	25.0(2)
O001	C00F	C00H	C00K	64.5(2)	C00E	C006	C009	C008	-93.2(2)
O002	C008	C009	O001	-91.4(2)	C00F	O001	C009	C006	-164.59(15)
O002	C008	C009	C006	30.0(3)	C00F	O001	C009	C008	-39.6(2)
O003	C00A	C00F	O001	84.9(2)	C00F	C00A	C008	O002	120.79(19)
O003	C00A	C00F	C00H	-34.3(3)	C00F	C00A	C008	C009	3.3(2)
O003	C00A	C008	O002	4.4(2)	C00F	C00H	C00K	O004	93.1(3)
O003	C00A	C008	C009	-113.0(2)	C00G	C00E	C006	C00C	2.1(3)
O005	C00H	C00K	O004	-24.9(3)	C00G	C00E	C006	C009	-178.4(2)
C00A	O003	C00B	O002	31.8(3)	C00H	O005	C00J	O004	13.8(3)
C00A	O003	C00B	C00I	-87.3(2)	C00H	O005	C00J	C00N	130.6(3)
C00A	O003	C00B	C00M	148.2(2)	C00H	O005	C00J	C00O	-105.6(3)
C00A	C00F	C00H	O005	-63.6(2)	C00J	O004	C00K	C00H	34.4(3)
C00A	C00F	C00H	C00K	-178.5(2)	C00J	O005	C00H	C00F	-114.0(2)
C00A	C008	C009	O001	21.1(2)	C00J	O005	C00H	C00K	6.9(3)
C00A	C008	C009	C006	142.48(19)	C00K	O004	C00J	O005	-30.7(3)
C00B	O002	C008	C00A	15.0(3)	C00K	O004	C00J	C00N	-149.0(3)
C00B	O002	C008	C009	127.3(2)	C00K	O004	C00J	C00O	87.3(3)
C00B	O003	C00A	C00F	-133.56(19)	C006	C00C	C00D	C007	-0.8(3)
C00B	O003	C00A	C008	-22.3(2)	C006	C00E	C00G	C007	-1.2(4)
C00C	C00D	C007	C00G	1.7(3)	C008	O002	C00B	O003	-28.9(3)
C00C	C00D	C007	C00L	-177.6(2)	C008	O002	C00B	C00I	90.7(2)
C00C	C006	C009	O001	-155.54(17)	C008	O002	C00B	C00M	-145.0(2)
C00C	C006	C009	C008	86.3(2)	C008	C00A	C00F	O001	-26.9(2)
C00D	C00C	C006	C00E	-1.1(3)	C008	C00A	C00F	C00H	-146.1(2)
C00D	C00C	C006	C009	179.5(2)	C009	O001	C00F	C00A	42.0(2)
C00E	C00G	C007	C00D	-0.6(4)	C009	O001	C00F	C00H	166.23(15)
C00E	C00G	C007	C00L	178.6(2)					

Table S49. Hydrogen Atom Coordinates $(\text{Å} \times 10^4)$ and Isotropic Displacement Parameters $(\text{Å} 2 \times 10^3)$ for Compound **40'** β .

Atom	X	У	Z	U(eq)
H00A	6320.24	1627.29	2289.51	73
H00C	3663.04	3907.13	5032.06	72
H00D	1964.25	5735.68	5417.04	77

H00E	3958.47	8129.61	2888.24	74
H00F	7323	4173.09	3285.45	73
H00G	2313.63	9972.63	3310.03	78
H00H	6697.07	6703.34	1543.66	84
H00B	4359.55	-199.97	1340.33	127
H00I	3948.28	591.11	246.09	127
H00J	2968.9	312.37	963.1	127
H00K	8155.68	9031.66	2159.31	103
H00L	7882.39	8208.93	3201.83	103
H00M	183.22	9089.39	4205.82	119
H00N	1102.92	10797.1	4720.93	119
H00O	733.02	8866.56	5336.21	119
H00P	2396.31	4219.08	581.82	138
H00Q	3459.08	4414.15	-62.96	138
H00R	3425.72	5935.49	843.74	138
H00S	10997.67	4108.3	2534.98	189
H00T	10189.47	2634.63	1767.68	189
H00U	9853.4	2936.35	2839.45	189
H00V	9380.9	7914.54	963.95	171
H00W	9726.57	5751.95	514.38	171
H00X	10695.95	6944.51	1286.27	171
H008	4815.12	1492.84	3270.54	75
H009	5582.1	4134.48	4292.61	68

Figure S19. X-ray structure of compound 49-Na

Single crystals for X-ray studies were grown by slow evaporation of a solution of **compound 49-Na** in DCM/MeOH in 4 mL tube at room temperature. The X-ray data of is deposited in the Cambridge Crystallographic Data Centre with a number of CCDC 2337769 (DOI: 10.5517/ccdc.csd.cc2jgmxk).

Identification code	49-Na
Empirical formula	$C_{23.71}H_{29.83}NaO_{11.71}$
Formula weight	525.10
Temperature/K	113.15
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	7.8330(2)
b/Å	9.9927(2)
c/Å	32.0086(6)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
$\gamma/^{\circ}$	90
Volume/Å ³	2505.40(9)
Z	4
$\rho_{calc}g/cm^3$	1.392
μ/mm^{-1}	0.126
F(000)	1107.0
Crystal size/mm ³	0.29 imes 0.26 imes 0.2
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/	^o 4.27 to 52.73
Index ranges	$-7 \le h \le 9, -10 \le k \le 12, -40 \le l \le 25$
Reflections collected	12762
Independent reflections	$5072 \ [R_{int} = 0.0298, R_{sigma} = 0.0372]$
Data/restraints/parameters	5072/76/380
Goodness-of-fit on F ²	1.040
Final R indexes [I>= 2σ (I)]	$R_1 \!\!= 0.0379, wR_2 \!= 0.0888$
Final R indexes [all data]	$R_1 = 0.0399, wR_2 = 0.0899$
Largest diff. peak/hole / e Å ⁻³	3 0.25/-0.19
Flack parameter	0.27(16)

 Table S50. Crystal data and structure refinement for compound 49-Na.

Table S51. Fractional Atomic Coordinates $(x10^4)$ and Equivalent
Isotropic Displacement Parameters ($Å^{2} \times 10^{3}$) for Compound 49-Na . U _{eq} is defined as
1/3 of the trace of the orthogonalised U _{IJ} tensor.

Atom	X	У	z	U(eq)
Nal	1875.0(12)	4525.5(10)	7274.5(3)	15.3(2)
O002	5897(2)	5764.6(16)	6584.2(5)	13.0(4)
O003	7344(2)	3826.5(16)	5606.7(5)	14.5(4)
O004	6489(2)	3221.2(17)	7055.4(5)	14.2(4)
O005	8563(2)	7833.7(17)	6535.2(5)	19.8(4)

O006	7964(2)	562.7(19)	3424.4(5)	17.4(4)
O007	2973(2)	6630.2(17)	7277.5(5)	16.4(4)
O008	6015(2)	8390.3(19)	7379.3(6)	20.2(4)
O009	9320(2)	4483.6(18)	6952.1(5)	17.5(4)
O00A	5799(3)	6.7(19)	5351.5(6)	26.7(5)
O00B	488(3)	4752(2)	7904.0(6)	31.6(5)
C00C	6405(3)	2773(2)	6671.3(7)	12.5(5)
C00D	6841(3)	3015(2)	5931.4(7)	12.3(5)
C00E	6536(3)	6528(2)	6936.4(7)	12.5(5)
C00F	6875(3)	3584(2)	6329.3(7)	12.3(5)
C00G	8408(3)	6764(2)	6826.1(7)	14.1(5)
C00H	7411(3)	3311(3)	5217.8(7)	15.7(5)
C00I	7135(3)	1616(2)	4667.4(7)	15.2(5)
C00J	7312(3)	5059(2)	6380.5(7)	12.6(5)
C00K	5481(3)	7799(2)	6992.8(7)	14.0(5)
C00L	7683(3)	876(3)	3837.2(7)	14.5(5)
C00M	6666(4)	1962(3)	3929.4(8)	20.0(6)
C00N	6335(3)	1691(3)	5854.3(7)	14.6(5)
C00O	6391(4)	2331(3)	4342.1(8)	18.9(6)
C00P	6317(3)	1152(3)	5432.5(8)	17.1(5)
C00Q	6948(3)	2059(2)	5109.1(7)	15.3(5)
COOR	8106(3)	491(3)	4570.3(8)	18.0(5)
C00S	3565(4)	7583(2)	6978.9(7)	14.9(5)
C00T	5856(3)	1434(3)	6593.4(8)	17.6(5)
C00U	8374(3)	117(3)	4159.4(8)	17.0(5)
C00V	8902(3)	5411(2)	6634.3(7)	14.2(5)
C00X	5824(4)	920(2)	6199.1(8)	18.5(6)
C00Z	-437(5)	5857(3)	8044.2(10)	35.6(8)
O10	9805(4)	6493(4)	5338.9(10)	39.7(10)
C010	8236(7)	7053(5)	5206.0(19)	42.9(14)
O0AA	11181(4)	7695(3)	6005.8(9)	31.1(8)
C12	11689(12)	8958(6)	5871.3(17)	81(3)
O11	7406(12)	7702(7)	5747(2)	40(2)
C13	8600(30)	7310(20)	5439(6)	84(5)

Table S52. Anisotropic Displacement Parameters (Å2×10 ³) for
Compound 49-Na . The Anisotropic displacement factor exponent takes the form
$-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+].$

U11	U22	U33	U23	U13	U12
15.6(5)	16.7(5)	13.7(5)	-0.2(4)	-1.5(4)	0.5(4)
13.4(8)	14.0(8)	11.6(8)	-5.5(7)	0.2(7)	1.8(7)
22.3(9)	11.4(8)	9.9(8)	-1.1(7)	3.1(7)	-1.4(7)
17.1(9)	17.0(8)	8.3(7)	-0.5(7)	1.7(7)	-0.1(8)
	U11 15.6(5) 13.4(8) 22.3(9) 17.1(9)	$\begin{array}{ccc} U_{11} & U_{22} \\ 15.6(5) & 16.7(5) \\ 13.4(8) & 14.0(8) \\ 22.3(9) & 11.4(8) \\ 17.1(9) & 17.0(8) \end{array}$	$\begin{array}{c cccc} U_{11} & U_{22} & U_{33} \\ 15.6(5) & 16.7(5) & 13.7(5) \\ 13.4(8) & 14.0(8) & 11.6(8) \\ 22.3(9) & 11.4(8) & 9.9(8) \\ 17.1(9) & 17.0(8) & 8.3(7) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

S100

O005	25.6(10)	15.0(8)	18.9(9)	-2.5(7)	9.3(8)	-2.5(8)
O006	14.0(9)	27.1(9)	11.2(8)	-6.8(8)	1.4(7)	2.1(8)
O007	19.8(9)	16.7(8)	12.6(8)	-4.9(7)	2.4(7)	-4.1(8)
O008	17.0(10)	25.1(10)	18.3(9)	-11.9(8)	7.5(8)	-7.6(8)
O009	13.8(9)	20.6(9)	18.1(9)	4.3(8)	-2.1(7)	-2.2(8)
O00A	44.3(13)	17.8(9)	18.0(9)	-6.7(8)	5.1(9)	-11.0(9)
O00B	47.2(13)	27.5(11)	20.1(10)	3.5(9)	7.5(10)	15.3(11)
C00C	12.0(12)	14.3(11)	11.3(11)	-1.0(9)	-1.2(9)	2.4(10)
C00D	13.3(12)	13.3(11)	10.3(11)	1.7(9)	1.8(9)	2.6(10)
C00E	16.5(12)	11.4(11)	9.6(10)	-2.6(9)	-0.3(9)	-2.6(11)
C00F	12.8(12)	11.0(11)	12.9(11)	-1.6(9)	0.2(9)	2.6(10)
C00G	14.9(12)	13.8(11)	13.6(11)	-1.8(10)	0.6(10)	-2.3(11)
C00H	19.8(13)	18.0(12)	9.4(11)	-0.6(10)	3.8(10)	1.7(11)
C00I	18.4(13)	15.2(12)	11.9(11)	-2.2(10)	2.6(10)	-3.4(11)
C00J	16.1(12)	11.1(11)	10.7(11)	0.1(9)	2.4(9)	1.6(10)
C00K	18.6(13)	12.4(11)	11.0(11)	-1.8(9)	4.3(10)	0.2(11)
C00L	12.3(12)	20.0(12)	11.2(11)	-5.1(10)	2.1(10)	-4.9(11)
C00M	23.0(14)	24.4(14)	12.6(12)	1.0(10)	-2.2(10)	3.9(13)
C00N	17.0(12)	15.2(12)	11.7(11)	-1.3(10)	0.8(10)	0.8(11)
C00O	22.7(14)	16.8(12)	17.2(12)	-4.3(10)	2.6(11)	5.4(11)
C00P	21.6(14)	16.1(12)	13.5(12)	-2.5(10)	0.5(10)	-1.4(11)
C00Q	16.6(13)	17.3(12)	11.9(11)	-1.8(10)	0.0(10)	2.4(11)
COOR	22.0(13)	17.9(12)	14.0(12)	1.3(10)	0.0(10)	1.0(12)
C00S	18.6(13)	12.9(11)	13.3(11)	-2.4(9)	0.0(10)	3.3(10)
C00T	23.4(14)	16.1(12)	13.2(11)	4.9(10)	1.7(10)	-2.4(11)
C00U	18.8(13)	15.3(12)	17.0(12)	-2.7(10)	3.0(10)	1.7(11)
C00V	14.4(12)	15.1(12)	13.0(11)	-0.7(10)	1.7(9)	0.1(10)
C00X	26.1(14)	10.9(11)	18.6(13)	0.1(10)	0.9(11)	-4.3(12)
C00Z	49(2)	24.2(15)	33.3(16)	1.8(13)	12.6(15)	8.0(15)
O10	33.6(18)	48(2)	38.0(19)	-26.3(16)	-4.2(14)	12.9(16)
C010	52(3)	23(2)	53(3)	-5(2)	-13(3)	9(2)
O0AA	34.6(18)	35.9(17)	22.8(15)	-8.3(13)	7.5(13)	-4.6(14)
C12	140(7)	67(4)	37(3)	-13(3)	28(4)	-69(5)
O11	72(6)	24(4)	25(4)	10(3)	-1(4)	9(4)
C13	105(11)	79(10)	68(9)	12(9)	4(9)	1(10)

Table S53. Bond Lengths for compound 49-Na.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Nal	O006 ¹	2.396(2)	C00E	C00G	1.527(4)
Nal	O007	2.272(2)	C00E	C00K	1.526(3)
Nal	$O008^{2}$	2.291(2)	C00F	C00J	1.522(3)
Nal	O009 ³	2.252(2)	C00G	C00V	1.535(3)
Na1	O00B	2.300(2)	C00H	C00Q	1.348(4)

O002	C00E	1.450(3)	C00I	C00O	1.391(4)
O002	C00J	1.467(3)	C00I	C00Q	1.489(3)
O003	C00D	1.376(3)	C00I	COOR	1.392(4)
O003	C00H	1.348(3)	C00J	C00V	1.528(3)
O004	C00C	1.310(3)	C00K	COOS	1.517(4)
O005	C00G	1.423(3)	C00L	C00M	1.378(4)
O006	C00L	1.376(3)	C00L	C00U	1.390(4)
O007	C00S	1.426(3)	C00M	C00O	1.388(3)
O008	C00K	1.433(3)	C00N	C00P	1.454(3)
O009	C00V	1.414(3)	C00N	C00X	1.405(3)
O00A	C00P	1.242(3)	COOP	C00Q	1.462(3)
O00B	C00Z	1.395(4)	COOR	C00U	1.383(3)
C00C	C00F	1.411(3)	COOT	C00X	1.363(3)
C00C	C00T	1.428(4)	O10	C010	1.416(6)
C00D	C00F	1.395(3)	O0AA	C12	1.391(6)
C00D	C00N	1.403(3)	O11	C13	1.416(12)

¹-1/2+X,1/2-Y,1-Z; ²1-X,-1/2+Y,3/2-Z; ³-1+X,+Y,+Z

 Table S54. Bond Angles for compound 49-Na.

2

Atom Atom Atom	Angle/°	Atom	Atom	Atom	Angle/°
O007 Na1 O006	84.45(7)	C00Q	C00H	O003	125.6(2)
O007 Na1 O008 ²	² 100.56(8)	C000	C00I	C00Q	121.1(2)
O007 Na1 O00B	94.82(8)	C000	C00I	C00R	118.5(2)
O008 ² Na1 O006 ¹	100.17(7)	C00R	C00I	C00Q	120.4(2)
O008 ² Na1 O00B	88.03(8)	O002	C00J	C00F	110.1(2)
O009 ³ Na1 O006 ¹	83.56(7)	O002	C00J	C00V	105.61(
O009 ³ Na1 O007	110.83(8)	C00F	C00J	C00V	117.6(2)
O009 ³ Na1 O008 ²	² 148.62(9)	O008	C00K	C00E	106.7(2)
O009 ³ Na1 O00B	89.06(8)	O008	C00K	C00S	111.9(2)
O00B Na1 O006 ¹	171.76(9)	C00S	C00K	C00E	114.5(2)
C00E O002 C00J	109.72(18)	O006	C00L	C00M	118.5(2)
C00H O003 C00D	118.90(19)	O006	C00L	C00U	121.7(2)
C00L O006 Na1 ⁴	148.03(16)	C00M	C00L	C00U	119.7(2)
C00S 0007 Na1	137.56(14)	C00L	C00M	C00O	120.2(2)
C00K O008 Na1 ⁵	146.35(16)	C00D	C00N	C00P	121.1(2)
C00V O009 Na1 ⁶	121.56(15)	C00D	C00N	C00X	117.4(2)
C00Z O00BNa1	127.22(18)	C00X	C00N	C00P	121.6(2)
O004 C00C C00F	121.3(2)	C00M	C00O	C00I	120.7(2)
O004 C00C C00T	119.9(2)	000A	C00P	C00N	122.6(2)

C00Q	C00H	O003	125.6(2)
C00O	C00I	C00Q	121.1(2)
C00O	C00I	C00R	118.5(2)
C00R	C00I	C00Q	120.4(2)
O002	C00J	C00F	110.1(2)
O002	C00J	C00V	105.61(18)
C00F	C00J	C00V	117.6(2)
0008	C00K	C00E	106.7(2)
0008	C00K	C00S	111.9(2)
C00S	C00K	C00E	114.5(2)
0006	C00L	C00M	118.5(2)
0006	C00L	C00U	121.7(2)
C00M	C00L	C00U	119.7(2)
C00L	C00M	C00O	120.2(2)
C00D	C00N	C00P	121.1(2)
C00D	C00N	C00X	117.4(2)
C00X	C00N	C00P	121.6(2)
C00M	C00O	C00I	120.7(2)
000A	C00P	C00N	122.6(2)

Atom Atom Angle/°	Atom Atom Atom Angle/°
C00F C00C C00T 118.8(2)	O00A C00P C00Q 122.3(2)
O003 C00DC00F 116.4(2)	C00N C00P C00Q 115.1(2)
O003 C00D C00N 120.2(2)	C00H C00Q C00I 119.7(2)
C00F C00D C00N 123.4(2)	C00H C00Q C00P 118.9(2)
O002 C00E C00G 103.49(18)	C00P C00Q C00I 121.4(2)
O002 C00E C00K 110.04(19)	C00U C00R C00I 120.9(2)
C00K C00E C00G 114.8(2)	O007 C00S C00K 113.4(2)
C00C C00F C00J 122.1(2)	C00X C00T C00C 121.4(2)
C00D C00F C00C 118.0(2)	C00R C00U C00L 119.9(2)
C00D C00F C00J 119.8(2)	O009 C00V C00G 110.36(19)
O005 C00G C00E 110.4(2)	O009 C00V C00J 114.9(2)
O005 C00G C00V 112.25(19)	C00J C00V C00G 102.1(2)
C00E C00G C00V 101.42(19)	C00T C00X C00N 121.0(2)

¹-1/2+X,1/2-Y,1-Z; ²1-X,-1/2+Y,3/2-Z; ³-1+X,+Y,+Z; ⁴1/2+X,1/2-Y,1-Z; ⁵1-X,1/2+Y,3/2-Z; ⁶1+X,+Y,+Z

 Table S55. Torsion Angles for Compound 49-Na.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
Na1 ¹	O006	C00L	C00M	-34.8(4)	C00E	O002	C00J	C00V	0.9(2)
Na1 ¹	O006	C00L	C00U	144.2(2)	C00E	C00G	C00V	O009	-82.9(2)
Na1	O007	C00S	C00K	-110.1(2)	C00E	C00G	C00V	C00J	39.7(2)
Na1 ²	O008	C00K	C00E	72.4(3)	C00E	C00K	C00S	O007	56.2(3)
Na1 ²	O008	C00K	C00S	-161.7(2)	C00F	C00C	C00T	C00X	1.8(4)
Na1 ³	O009	C00V	C00G	-78.6(2)	C00F	C00D	C00N	C00P	179.7(2)
Na1 ³	O009	C00V	C00J	166.62(15)	C00F	C00D	C00N	C00X	0.7(4)
O002	C00E	C00G	O005	79.5(2)	C00F	C00J	C00V	O009	-29.5(3)
O002	C00E	C00G	C00V	-39.7(2)	C00F	C00J	C00V	C00G	-149.0(2)
O002	C00E	C00K	O008	171.54(19)	C00G	C00E	C00K	O008	-72.3(2)
O002	C00E	C00K	C00S	47.2(3)	C00G	C00E	C00K	C00S	163.4(2)
O002	C00J	C00V	O009	93.8(2)	C00H	O003	C00D	C00F	177.0(2)
O002	C00J	C00V	C00G	-25.7(2)	C00H	O003	C00D	C00N	-2.8(3)
O003	C00D	C00F	C00C	-178.6(2)	C00I	C00R	C00U	C00L	0.7(4)
O003	C00D	C00F	C00J	4.8(3)	C00J	O002	C00E	C00G	24.5(2)
O003	C00D	C00N	C00P	-0.5(4)	C00J	O002	C00E	C00K	147.57(19)
O003	C00D	C00N	C00X	-179.5(2)	C00K	C00E	C00G	O005	-40.4(3)
O003	C00H	C00Q	C00I	-178.4(2)	C00K	C00E	C00G	C00V	-159.59(19)
O003	C00H	C00Q	C00P	-0.2(4)	C00L	C00M	C00O	C00I	0.1(4)
				:	S103				

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
O004	C00C	C00F	C00D	176.5(2)	C00M	C00L	C00U	C00R	.1(4)
O004	C00C	C00F	C00J	-6.9(4)	C00N	C00D	C00F	C00C	1.2(4)
O004	C00C	C00T	C00X	-177.2(2)	C00N	C00D	C00F	C00J	-175.4(2)
O005	C00G	C00V	O009	159.2(2)	C00N	C00P	C00Q	C00H	-3.1(4)
O005	C00G	C00V	C00J	-78.2(2)	C00N	C00P	C00Q	C00I	175.2(2)
O006	C00L	C00M	C00O	-178.3(2)	C00O	C00I	C00Q	C00H	-55.0(4)
O006	C00L	C00U	C00R	177.9(2)	C000	C00I	C00Q	C00P	126.8(3)
O008	C00K	C00S	O007	-65.3(3)	C00O	C00I	C00R	C00U	2.1(4)
000A	COOP	C00Q	C00H	176.8(3)	C00P	C00N	C00X	C00T	179.6(3)
000A	COOP	C00Q	C00I	-5.0(4)	C00Q	C00I	C00O	C00M	175.6(3)
C00C	C00F	C00J	O002	-55.7(3)	C00Q	C00I	C00R	C00U	-176.0(2)
C00C	C00F	C00J	C00V	65.2(3)	C00R	C00I	C00O	C00M	-2.5(4)
C00C	C00T	C00X	C00N	0.1(4)	C00R	C00I	C00Q	C00H	123.1(3)
C00D	O003	C00H	C00Q	3.2(4)	C00R	C00I	C00Q	C00P	-55.1(4)
C00D	C00F	C00J	O002	120.8(2)	C00T	C00C	C00F	C00D	-2.4(4)
C00D	C00F	C00J	C00V	-118.3(3)	C00T	C00C	C00F	C00J	174.1(2)
C00D	C00N	C00P	000A	-176.5(3)	C00U	C00L	C00M	C00O	2.7(4)
C00D	C00N	C00P	C00Q	3.4(4)	C00X	C00N	C00P	000A	2.5(4)
C00D	C00N	COOX	C00T	-1.4(4)	C00X	C00N	C00P	C00Q	-177.7(2)
C00E	O002	C00J	C00F	128.9(2)					

¹1/2+X,1/2-Y,1-Z; ²1-X,1/2+Y,3/2-Z; ³1+X,+Y,+Z

Table S56. Hydrogen Atom Coordinates $(Å \times 10^4)$ and
Isotropic Displacement Parameters (Å2×10 ³) for Compound 49-Na .

Atom	X	У	z	U(eq)
H008	5240(40)	8270(30)	7545(10)	21(8)
H005	9394.61	7687.92	6375.83	30
H006	8900(50)	90(30)	3410(10)	31(9)
H007	3100(40)	7060(30)	7500(6)	25
H009	8410(40)	4080(30)	7037(8)	12(7)
H00B	850(50)	4190(40)	8125(12)	45(10)
H00E	6462.18	5971.62	7195.52	15
H00G	9095.29	6947.36	7083.17	17
H00H	7819.38	3878.34	5001.72	19
H00J	7456.62	5448.8	6094.98	15
H00K	5788.54	8429.19	6762.23	17
H00M	6152.29	2459.58	3710.01	24
H00O	5686.61	3079.78	4403.04	23
H00R	8591.14	-26.23	4789.16	22

H00A	2986.53	8448.66	7030	18
H00C	3241.52	7276.5	6695.67	18
H00T	5505.97	890	6821.22	21
H00U	9029.68	-658.28	4097.51	20
H00V	9898.8	5529.45	6442.71	17
H00X	5450.5	25.37	6156.84	22
H00D	-1273.32	5567.66	8253.24	53
H00F	-1032.44	6271.03	7807.96	53
H00I	344.44	6508.56	8169.81	53
H10	10157.57	5950.77	5157.82	60
H01A	8392.42	7486.8	4934.09	64
H01B	7851.46	7716.62	5410.85	64
H01C	7378.25	6343.53	5181.04	64
H0AA	10763.33	7268.95	5803.94	47
H12A	12713.89	8875.28	5697.67	122
H12B	11941.04	9521.4	6114.22	122
H12C	10769.8	9366.71	5707.42	122
H11	6834.72	8354.77	5658.21	60
H13A	8529.24	7916.46	5199.34	126
H13B	8346.86	6393.25	5347.16	126
H13C	9755.73	7339.83	5556.38	126

Table S57. Atomic Occupancy for 49-Na.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
O10	0.707(4)	H10	0.707(4)	C010	0.707(4)
H01A	0.707(4)	H01B	0.707(4)	H01C	0.707(4)
O0AA	0.707(4)	H0AA	0.707(4)	C12	0.707(4)
H12A	0.707(4)	H12B	0.707(4)	H12C	0.707(4)
011	0.293(4)	H11	0.293(4)	C13	0.293(4)
H13A	0.293(4)	H13B	0.293(4)	H13C	0.293(4)

8. References

[1]. K. Zhao, et al. Construction of Stable Helical Metal-Organic Frameworks with a Conformationally Rigid "Concave Ligand". *Chem.-Eur. J.* **27**, 10833-10838 (2021).

[2]. M. G. Ricardo, M. Schwark, D. Llanes, T. H. J. Niedermeyer, B. Westermann, Total Synthesis of Aetokthonotoxin, the Cyanobacterial Neurotoxin Causing Vacuolar Myelinopathy. *Chem.-Eur. J.* **27**, 12032-12035 (2021).

[3] A. Bunrit, et al. Brønsted Acid-Catalyzed Intramolecular Nucleophilic Substitution of the Hydroxyl Group in Stereogenic Alcohols with Chirality Transfer. *J. Am. Chem. Soc.* **137**, 4646-4649 (2015).

[4] X. Xiong, & Y.-Y. Yeung, Highly ortho-Selective Chlorination of Anilines Using a Secondary Ammonium Salt Organocatalyst. *Angew. Chem., Int. Ed.* **55**, 16101-16105 (2016).

[5]. S. Sun, Y. Yang, R. Zhao, D. Zhang, L. Liu, Site- and Enantiodifferentiating C(sp³)– H Oxidation Enables Asymmetric Access to Structurally and Stereochemically Diverse Saturated Cyclic Ethers. *J. Am. Chem. Soc.* **142**, 19346-19353 (2020).

[6]. Z. Lu, et al. CFBSA: a novel and practical chlorinating reagent. *Chem. Comm.* **51**, 14852-14855 (2015).

[7]. S. K. Rodrigo, H. Guan, Quick Installation of a 1,4-Difunctionality via Regioselective Nickel-Catalyzed Reductive Coupling of Ynoates and Aldehydes. *J. Org. Chem.* **77**, 8303-8309 (2012).

[8]. D. Rosas Vargas, S. P. Cook, Palladium nanoparticles: Chemoselective control for reductive Heck with aryl triflates and 2,3-dihydrofuran. *Tetrahedron* **74**, 3314-3317 (2018).

[9]. D. Liu, C. Liu, H. Li, A. Lei, Direct Functionalization of Tetrahydrofuran and 1,4-Dioxane: Nickel-Catalyzed Oxidative C(sp³)-H Arylation. *Angew. Chem., Int. Ed.* **52**, 4453-4456 (2013).

[10]. R. Lindroth, A. Ondrejková, C.-J. Wallentin, Visible-Light Mediated Oxidative Fragmentation of Ethers and Acetals by Means of Fe(III) Catalysis. *Org. Lett.* **24**, 1662-1667 (2022).

[11]. H. Shigehisa, et al. Catalytic Synthesis of Saturated Oxygen Heterocycles by Hydrofunctionalization of Unactivated Olefins: Unprotected and Protected Strategies. *J. Am. Chem. Soc.* **138**, 10597-10604 (2016).

[12]. H. Im, D. Kang, S. Choi, S. Shin, S. Hong, Visible-Light-Induced C–O Bond Formation for the Construction of Five- and Six-Membered Cyclic Ethers and Lactones. *Org. Lett.* **20**, 7437-7441 (2018).

[13] C.-Y. Zhou, J. Li, S. Peddibhotla, D. Romo, Mild Arming and Derivatization of Natural Products via an In(OTf)₃-Catalyzed Arene Iodination. *Org. Lett.* **12**, 2104-2107 (2010).

[14] Frick, W., Schmidt, R.R. Einfache Synthese Von Cβ-D-Glucopyranosylaromaten -Synthese Des 5,7,4'-Tri-O-Methylvitexins. *Liebigs Annalen der Chemie*, **1989**, 565-570 (1989).

[15] Qu, Z.-W., Zhu, H., Grimme, S. Mechanistic Insights for Aniline-Catalyzed Halogenation Reactions *ChemCatChem*, **12**, 5369-5373 (2020).

9. NMR Spectra

¹H NMR of compound **1** (400 MHz, CD₃OD)

¹³C NMR of compound **1** (101 MHz, CD₃OD)

¹H NMR of compound **2** (400 MHz, CD₃OD)

¹³C NMR of compound **2** (101 MHz, CD₃OD)

¹³C NMR of compound **3** (151 MHz, CD₃OD)

 ^1H NMR of compound 3-P (400 MHz, CDCl_3)

 ^{13}C NMR of compound **3-P** (101 MHz, CDCl₃)

 ^{31}P NMR of compound **3-P** (162 MHz, CDCl₃)

 $^1\mathrm{H}$ NMR of compound 4 (400 MHz, CDCl₃)

 ^{13}C NMR of compound $\boldsymbol{5}$ (101 MHz, CDCl_3)

¹H NMR of compound **S-6** (400 MHz, CDCl₃)

¹H NMR of compound **S-9** (400 MHz, CDCl₃)

¹H NMR of compound (*R*)-6 (400 MHz, CDCl₃)

¹³C NMR of compound (*R*)-6 (101 MHz, CDCl₃)

¹H NMR of compound (S)-7 (400 MHz, CDCl₃)

¹³C NMR of compound (S)-7 (101 MHz, CDCl₃)

¹H NMR of compound (*R*)-8 (400 MHz, CDCl₃)

¹³C NMR of compound (*R*)-8 (101 MHz, CDCl₃)

 $^1\mathrm{H}$ NMR of compound 9 (400 MHz, CDCl₃)

 ^{13}C NMR of compound 9 (101 MHz, CDCl₃)

¹H NMR of compound **10** (400 MHz, CDCl₃)

¹H NMR of compound **11** (400 MHz, CDCl₃)

¹³C NMR of compound **11** (101 MHz, CDCl₃)

¹⁹F NMR of compound **11** (376 MHz, CDCl₃)

¹H NMR of compound **13-s** (400 MHz, CD₃OD)

¹³C NMR of compound **13-s** (101 MHz, CD₃OD)

¹H NMR of compound **13** (400 MHz, CD₃OD)

¹³C NMR of compound **13** (101 MHz, CD₃OD)

¹H NMR of compound **14-s** (400 MHz, CD₃OD)

¹³C NMR of compound **14-s** (101 MHz, CD₃OD)

¹H NMR of compound **14** (400 MHz, CD₃OD)

¹³C NMR of compound **14** (101 MHz, CD₃OD)

¹H NMR of compound **15-s** (400 MHz, CD₃OD)

¹³C NMR of compound **15-s** (101 MHz, CD₃OD)

 $^{19}\mathrm{F}$ NMR of compound 15-s (376 MHz, CD₃OD)

¹H NMR of compound **15** (400 MHz, CD₃OD)

¹³C NMR of compound **15** (101 MHz, CD₃OD)

¹⁹F NMR of compound **15** (376 MHz, CD₃OD)

S129

 $^{19}\mathrm{F}$ NMR of compound 16-s (376 MHz, CD₃OD)

¹H NMR of compound **16** (400 MHz, CD₃OD)

¹⁹F NMR of compound **16** (376 MHz, CD₃OD)

¹³C NMR of compound **17-s** (101 MHz, CD₃OD)

 $^{19}\mathrm{F}$ NMR of compound 17-s (376 MHz, CD₃OD)

¹H NMR of compound **17** (400 MHz, CD₃OD)

¹³C NMR of compound **17** (101 MHz, CD₃OD)

¹⁹F NMR of compound **17** (376 MHz, CD₃OD)

¹H NMR of compound **18-s** (400 MHz, CD₃OD)

¹³C NMR of compound **18-s** (101 MHz, CD₃OD)

¹H NMR of compound **18** (400 MHz, CD₃OD)

¹³C NMR of compound **18** (101 MHz, CD₃OD)

¹H NMR of compound **19-s** (400 MHz, CD₃OD)

¹³C NMR of compound **19-s** (101 MHz, CD₃OD)

¹H NMR of compound **19** (400 MHz, CD₃OD)

¹³C NMR of compound **19** (101 MHz, CD₃OD)

¹³C NMR of compound **20-s** (101 MHz, CD₃OD)

100 90 80 f1 (ppm) ¹³C NMR of compound **20** (101 MHz, CD₃OD)

¹H NMR of compound **21-s** (400 MHz, CD₃OD)

¹³C NMR of compound **21-s** (101 MHz, CD₃OD)

¹H NMR of compound **21** (400 MHz, CD₃OD)

¹³C NMR of compound **21** (101 MHz, CD₃OD)

¹H NMR of compound **22-s** (400 MHz, CD₃OD)

¹³C NMR of compound **22-s** (101 MHz, CD₃OD)

¹H NMR of compound **22** (400 MHz, CD₃OD)

¹³C NMR of compound **22** (101 MHz, CD₃OD)

¹H NMR of compound **23-s** (400 MHz, CD₃OD)

¹³C NMR of compound **23-s** (101 MHz, CD₃OD)

¹H NMR of compound **23** (400 MHz, CD₃OD)

¹³C NMR of compound **23** (101 MHz, CD₃OD)

¹H NMR of compound **24-s** (400 MHz, CD₃OD)

¹³C NMR of compound **24-s** (101 MHz, CD₃OD)

¹³C NMR of compound **24** (101 MHz, CD₃OD)

¹H NMR of compound **25-s** (400 MHz, CD₃OD)

¹³C NMR of compound **25-s** (101 MHz, CD₃OD)

¹H NMR of compound **25** (400 MHz, CD₃OD)

¹³C NMR of compound **25** (101 MHz, CD₃OD)

¹H NMR of compound **26-s** (400 MHz, CD₃OD)

¹³C NMR of compound **26-s** (101 MHz, CD₃OD)

¹H NMR of compound **26** ($\alpha/\beta = 1/1$) (400 MHz, CD₃OD)

¹³C NMR of compound **26** ($\alpha/\beta = 1/1$) (101 MHz, CD₃OD)

¹H NMR of compound **27-s** (400 MHz, CD₃OD)

¹³C NMR of compound **27-s** (101 MHz, CD₃OD)

¹³C NMR of compound **27**a (101 MHz, CD₃OD)

¹H NMR of compound **27β** (400 MHz, CD₃OD)

¹³C NMR of compound **27**β (101 MHz, CD₃OD)

¹H NMR of compound **OAc-27** ($\alpha/\beta = 2/1$) (400 MHz, CDCl₃)

¹H NMR of compound **28-s** (400 MHz, CD₃OD)

¹³C NMR of compound **28-s** (101 MHz, CD₃OD)

¹H NMR of compound **28** ($\alpha/\beta = 2/1$) (400 MHz, CD₃OD)

¹³C NMR of compound **28** ($\alpha/\beta = 2/1$) (101 MHz, CD₃OD)

¹H NMR of compound **29-s** (400 MHz, CD₃OD)

¹³C NMR of compound **29-s** (101 MHz, CD₃OD)

¹H NMR of compound **29** (400 MHz, CD₃OD)

¹³C NMR of compound **30-s** (101 MHz, CD₃OD)

¹⁹F NMR of compound **30-s** (376 MHz, CD₃OD)

¹³C NMR of compound **30** (101 MHz, CD₃OD)

 $^{19}\mathrm{F}$ NMR of compound **30** (376 MHz, CD₃OD)

¹H NMR of compound **31-s** (400 MHz, CD₃OD)

¹³C NMR of compound **31-s** (101 MHz, CD₃OD)

¹H NMR of compound **31** (400 MHz, CD₃OD)

¹³C NMR of compound **31** (101 MHz, CD₃OD)

¹H NMR of compound **32-s** (400 MHz, CD₃OD)

¹³C NMR of compound **32-s** (101 MHz, CD₃OD)

¹³C NMR of compound **32** (101 MHz, CD₃OD)

¹H NMR of compound **33-s** (400 MHz, CD₃OD)

¹³C NMR of compound **33-s** (101 MHz, CD₃OD)

¹³C NMR of compound **33** (101 MHz, CD₃OD)

¹³C NMR of compound **34-s** (101 MHz, CD₃OD)

¹H NMR of compound **34** (400 MHz, CD₃OD)

¹³C NMR of compound **35-s** (101 MHz, CD₃OD)

¹H NMR of compound **35** (400 MHz, CD₃OD)

¹³C NMR of compound **35** (101 MHz, CD₃OD)

¹³C NMR of compound **36-s** (101 MHz, CD₃OD)

¹³C NMR of compound **36** (101 MHz, CD₃OD)

¹H NMR of compound **37-s** (400 MHz, CD₃OD)

¹⁹F NMR of compound **37-s** (376 MHz, CD₃OD)

¹H NMR of compound **37** (400 MHz, CD₃OD)

¹³C NMR of compound **37** (101 MHz, CD₃OD)

 $^{19}\mathrm{F}$ NMR of compound **37** (376 MHz, CD₃OD)

¹H NMR of compound **38-s** (400 MHz, CD₃OD)

¹³C NMR of compound **38-s** (101 MHz, CD₃OD)

¹H NMR of compound **38** (400 MHz, CD₃OD)

¹³C NMR of compound **38** (101 MHz, CD₃OD)

¹H NMR of compound **39** (400 MHz, CD₃OD)

¹H NMR of compound **40-s-1** (400 MHz, CD₃OD)

¹³C NMR of compound **40-s-1** (101 MHz, CD₃OD)

¹H NMR of compound **40-s-2** (400 MHz, CD₃OD)

¹³C NMR of compound **40-s-2** (101 MHz, CD₃OD)

¹H NMR of compound 40a (400 MHz, CD₃OD)

 ^{13}C NMR of compound 40a (101 MHz, CD₃OD)

¹H NMR of compound **40'**α (400 MHz, CDCl₃)

¹³C NMR of compound **40'a** (101 MHz, CDCl₃)

¹H NMR of compound **40**β (400 MHz, CD₃OD)

 ^{13}C NMR of compound 40β (101 MHz, CD₃OD)

¹H NMR of compound **40'** β (400 MHz, CDCl₃)

 ^{13}C NMR of compound $40'\beta$ (101 MHz, CDCl₃)

¹H NMR of compound **41-s** (400 MHz, CD₃OD)

¹³C NMR of compound **41-s** (101 MHz, CD₃OD)

¹H NMR of compound **41**a (400 MHz, CD₃OD)

 ^{13}C NMR of compound **41** α (101 MHz, CD₃OD)

¹H NMR of compound 41β (400 MHz, CD₃OD)

 $^1\mathrm{H}$ NMR of compound **42-s** (400 MHz, CD₃OD)

¹³C NMR of compound **42-s** (101 MHz, CD₃OD)

 ^1H NMR of compound 42α (400 MHz, CD₃OD)

 ^{13}C NMR of compound 42α (101 MHz, CD₃OD)

¹H NMR of compound 42β (400 MHz, CD₃OD)

¹H NMR of compound S-1 (400 MHz, CD₃OD)

¹H NMR of compound **S-3** (400 MHz, CD₃OD)

¹H NMR of compound **S-4** (400 MHz, CD₃OD)

¹H NMR of compound **S-10** (400 MHz, CD₃OD)

¹³C NMR of compound **S-10** (151 MHz, CD₃OD)

¹H NMR of compound **S-11** (400 MHz, CDCl₃)

100 90 80 70 fl (ppm)

¹³C NMR of compound S-11 (151 MHz, CDCl₃)

 ^1H NMR of compound **43-s** (400 MHz, DMSO-D_6)

 ^{13}C NMR of compound **43-s** (101 MHz, DMSO-D₆)

 $^1\mathrm{H}$ NMR of compound 43 (400 MHz, CD₃OD)

¹³C NMR of compound **43** (101 MHz, CD₃OD)

¹¹B NMR of compound **43** (128 MHz, CD₃OD)

 $^{19}\mathrm{F}$ NMR of compound **43** (376 MHz, CD₃OD)

¹H NMR of compound 44-s (400 MHz, CD₃OD)

¹H NMR of compound **44** (400 MHz, CD₃OD)

¹H NMR of compound **45-s** (400 MHz, CD₃OD/CDCl₃)

¹³C NMR of compound **45-s** (101 MHz, CD₃OD/CDCl₃)

¹H NMR of compound **45** (400 MHz, CD₃OD)

¹H NMR of compound **46-s** (400 MHz, CD₃OD)

¹³C NMR of compound **46-s** (101 MHz, CD₃OD)

¹H NMR of compound **46** (400 MHz, CD₃OD)

¹³C NMR of compound **46** (101 MHz, CD₃OD)

¹H NMR of compound **47-s-1** (400 MHz, acetone-D₆)

¹H NMR of compound **47-s-2** (400 MHz, CDCl₃)

¹³C NMR of compound 47 (101 MHz, CDCl₃)

¹H NMR of compound **48-s** (400 MHz, acetone-D₆)

¹³C NMR of compound **48-s** (101 MHz, acetone-D₆)

¹H NMR of compound **48** ($\alpha/\beta = 1/1$) (400 MHz, acetone-D₆)

¹³C NMR of compound **48** ($\alpha/\beta = 1/1$) (151 MHz, acetone-D₆)

¹H NMR of compound **49** (600 MHz, DMSO-D₆)

 ^{13}C NMR of compound 49 (151 MHz, DMSO-D₆)

¹H NMR of compound **50** (600 MHz, DMSO-D₆)

¹³C NMR of compound **50** (151 MHz, DMSO-D₆)