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Candidate Structure Retrieval.

Figure S1. Summary of the chemical substructure criteria employed when searching for additional 
crystal structure candidates within the Cambridge Structural Database (CSD) using Conquest1. 
Annotations regarding general atom and bond type definitions are provided when necessary. 
Dotted lines represent bonds of any type (i.e. single, double, triple, aromatic, delocalized, etc.) The 
atom labels 4M and NM represent any metal atom and any non-metal atom, respectively. 
Implementation of these criteria yielded ca. 19.9k additional candidates beyond those present in 
the CSD MOF subset2 as of CSD version 5.4.5 (including updates up to March 2024).3
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Solvent Removal Algorithm (SAMOSA)—Examples.

Figure S2. Demonstration of the oxidation state-informed solvent removal protocol (SAMOSA) 
applied to generate fully and partially activated, neutral crystal structures. Chemical structure 
diagrams of a representative crystal structure (CSD Refcode: UYODOC) highlight the contribution 
of each individual step to the general workflow.
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Figure S3. Demonstration of the oxidation state-informed solvent removal protocol (SAMOSA) 
applied to generate fully and partially activated, charged crystal structures. Chemical structure 
diagrams of a representative crystal structure (CSD Refcode: KERWUC) highlight the 
contribution of each individual step to the general workflow.
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Structural Error Analysis (MOSAEC)—Details.
Computed ligand formal changes and their implied metal oxidation states were employed as a 

metric for flagging problematic periodic crystal structures according to the protocol first discussed 

in reports of the MOSAEC4 technique. Instances of likely structural errors (e.g., omission of 

protons or other atoms, crystallographic disorder, omitted charge-balancing ions, hypovalent and 

hypervalent atoms, overlapping atoms, etc.) in the input crystal structure are deduced based on the 

fact that if the unit cell is assumed to be neutral, the resulting metal oxidation states should follow 

accepted rules and formalisms (i.e. oxidation states should not exceed the atom’s valence, should 

be integer values, should be frequently observed in experimental chemistry, etc.). Supplying the 

crystallographic information of any crystal structure containing metals as input, this process flags 

any structures containing metal sites that violates these generally accepted chemistry principles as 

highly likely to contain some form of structural error. A key advantage over previous approaches 

which relied on machine learning of known oxidation or empirical bond valence methods to 

compute values from the metal-ligand bonding environment (e.g., bond distances) lies in the fact 

that MOSAEC plainly computes the metal oxidation states for the structure as given, including 

any structural problems. Comprehensive explanations regarding the design and operation of the 

core MOSAEC functions are provided in previous accounts4,5; however, we provide a concise 

step-by-step rundown of the oxidation state calculation and error flagging processes below:

(i). Atomic coordinates are read in from the crystallographic information file (.cif) and bonding 

is assigned according to the CSD Python API3 bond assignment algorithm.

(ii). Metal and ligand atoms are separately identified through analysis the bond connectivity of 

each atom in the crystal structure.

(iii). Formal charges of each nonmetal ligand atom are calculated according to an idealized bond 

valence sum method, wherein only the assigned bond orders (i.e. single bonds contributing 1, 

double bonds contributing 2, and so on) are applied. This differs from traditional bond valence 

sum techniques which employ empirical bond orders according to atom identity and interatomic 

distances and can produce non-integer values. Note that the metal-ligand bonds, which may 

vary considerably, are not involved at all when computing a given metal’s oxidation state.

(iv). Each ligand’s overall contribution to the oxidation state is then calculated as the sum of 

formal charges across all its atoms.
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(v). Binding networks of metal atom sites defined as those connected through charged ligands 

possessing the ability to delocalize (share) their charge contribution through conjugation are 

identified using functions that recursively walk through the bonding paths connecting metals 

through ligand atoms.

(vi). Ligand charge contributions are then distributed across the available metals in the crystal 

structure according to several charge accounting principles i.e. ranging from local distribution 

where only attached ligand atoms contribute to a metal’s oxidation state to fully global 

distribution where no restrictions are placed on how the charges can be distributed between all 

metals’ oxidation states.

(vii). Calculated oxidation states of each metal atom are then evaluated according to rules 

derived from chemical insights regarding what constitutes a valid oxidation state. Namely, that 

oxidation states should be integer values that do need exceed the metal’s available valence 

electron counts, and typically they should correspond to oxidation states which are observed 

commonly in experimental characterization. CSD metadata was parsed to assess the relative 

population of various oxidation states for each metal element. Oxidation states appearing in 

more than 1% of the metals’ reported structures were deemed sufficiently probable, while those 

below this threshold were classified as improbable. Note that each unique metal atom site 

possesses distinct error flags to describe the varying metal environments present in the structure.

(viii). Finally, the overall quality of structure can be assessed by analyzing any error flags 

associated with the constituent metal atoms. Structure containing acceptable oxidation states at 

all metal atoms are classified as likely free from structural errors, while those possessing one 

of more flagged metal atom sites indicative of irregular oxidation states are classified as likely 

to contain structural errors.

The MOSAEC workflow accuracy in flagging erroneous crystal structures and properly computing 

the metal oxidation states was evaluated through inspection of a manually labelled validation 

datasets containing thousands of MOF crystal structures.4 This investigation found that MOSAEC 

was exceptionally well suited towards the classification of erroneous structures with accuracies of 

 95% when designating a given crystal structure as chemically invalid, and it possessed reasonable 

accuracy of approximately 85% when designating a structure as chemical valid. Thus, the 

MOSAEC designation of the crystal structure validity was used as the primary filter to eliminate 

faulty structures.
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Duplicate Crystal Structures—Examples.
The pointwise distance distribution (PDD) metric utilized to identify duplicated crystal structures 

in MOSAEC-DB was implemented using the average-minimum-distance6,7 Python package. 

Evaluations of the PDD score were only performed on pairs of MOF crystal structures sharing an 

empirical formula. Careful inspection of hundreds of MOF crystal structure pairs was undertaken 

to determine an ideal value of the PDD metric to distinguish between strongly matching and unique 

crystal structures so as to minimize false assignment of duplicate structure pairs. This investigation 

ultimately determined that PDD values below 0.15 are sufficient to confidently conclude that the 

structures in question are highly correlated duplicates. An example of one such pair of nearly 

identical crystal structures reported as distinct entities in the CSD is provided in Figure S4a, while 

two dissimilar crystal structures exhibiting a high PDD value are shown in Figure S4b.

Figure S4. Overlaid crystal structures of pairs of MOSAEC-DB MOFs possessing common 
empirical chemical formulas and their corresponding pointwise distance distribution (PDD) 
similarity scores. Instance (a) depicts a case of two near identical crystal structures while instance 
(b) illustrates disparate crystal structures, which correspond to low and high values of PDD score, 
respectively.
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Additional Chemical Substructure and Metal Site Analysis.

Figure S5. Quantity of crystal structures containing given elements across the periodic table in 
alternative MOF databases: (a) ARC-MOF, (b) CoRE 2019, and (c) QMOF. A colour gradient 
maximum equal to 10% of each respective databases’ total structure count is enforced to facilitate 
visualization (generated via pymatviz8).
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Figure S6. Quantity of crystal structures containing given elements across the periodic table in the 
entirety of the CSD crystal structure repository (version 5.4.5). A colour gradient maximum equal 
to 10% of each respective databases’ total structure count is enforced to facilitate visualization 
(generated via pymatviz8).
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Table S1. Comprehensive summary of the chemical substructure frequency analysis within 
MOSAEC-DB. Analogous chemical substructures—such as primary, secondary and tertiary 
amines or various heterocyclic aromatics—were considered separately. Any considered 
substructure with zero occurrence following confirmation between the bond connectivity analyses 
and Conquest1 substructure search results was omitted.

Representation Representation
Chemical 

Substructure  Structure 
Count

Frequency 
(%)

Chemical 
Substructure  Structure 

Count
Frequency 

(%)

aromatic 91 843 73.79 sulfate 1 585 1.27

aromatic 
(N-containing) 56 430 45.34 ketone 1 108 0.89

carboxylate 50 905 40.90 tertiary  
phosphine 985 0.79

alkoxide 37 822 30.39 alkyne 895 0.72

tertiary amine 15 206 12.22 phosphate 509 0.41

secondary amine 11 196 9.00 thiolate 419 0.34

halide 10 471 8.41 disulfide 396 0.32

alkene 9 306 7.48 imine 327 0.26

halogen 8 001 6.43 aldehyde 71 0.06

ether 7 479 6.01 ester 36 0.03

primary amine 6 380 5.13 nitrite 16 0.01

carboxylic acid 6 180 4.96 sulfonic acid 16 0.01

amide 5 171 4.15 sulfinate 11 0.01

sulfide 3 865 3.11 thiol 6 0.00(4)

nitrate 2 593 2.08 secondary 
phosphine 2 0.00(1)

alcohol 1 848 1.48
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Table S2. Analysis of the atom identity most commonly observing open metal sites (OMS) within 
the MOSAEC, ARC-MOF, QMOF, and CoRE 2019 databases.

OMS Structure Frequency

MOSAEC-DB ARC-MOF QMOF CoRE

Cu (13.56 %) Zn (38.13 %) Cu (11.62 %) Cu (12.23 %)

Zn (7.52 %) Cu (12.78 %) Zn (7.97 %) Zn (10.61 %)

Ag (5.77 %) Co (1.06 %) Ag (5.49 %) Cd (4.60%)

Cd (4.52 %) Cd (0.78 %) Cd (2.21 %) Co (4.26 %)

Co (3.96 %) Li (0.65 %) Hg (1.90 %) Ag (4.07 %)

Mn (2.47 %) Ni (0.30%) K  (1.40 %) Mn (2.83 %)

Ni (2.42 %) Pd (0.26 %) Pb (1.29 %) Ni (2.10 %)

Pb (1.85 %) Fe (0.19 %) Ni (0.89 %) Eu (1.49 %)
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Additional Geometric Property Analysis.
Table S3. Summary of the geometry property statistics (i.e. mean, standard deviations, and range) 
computed within the MOSAEC, ARC-MOF, CoRE 2019, QMOF, and CSD MOF databases.

database
volume 
fraction

 
LCD
(Á)

PLD
(Á)

gravimetric 
surface area

(m2 g-1)

volumetric 
surface area

(m2 cm-3)
density
(g cm-3)

avg. 0.04 ± 0.10 4.1 ± 2.3 2.6 ± 2.0 526 ± 1062 517 ± 866 1.61 ± 0.53
MOSAEC

DB
range [0.0, 0.84] [0.0, 42.8] [0.0, 38.4] [0, 24961] [0, 5050] [0.13, 8.97]

avg. 0.37 ± 0.19 11.1 ± 4.8 8.4 ± 3.6 3529 ± 1329 2057 ± 470 0.69 ± 0.30
ARC-MOF

range [0.0, 0.93] [1.9, 68.9] [0.5, 67.4] [0, 8344] [0, 3727] [0.06, 3.91]

avg. 0.12 ± 0.13 6.7 ± 3.7 4.7 ± 2.8 1245 ± 1130 1298 ± 827 1.38 ± 0.50
CoRE

range [0.0, 0.92] [2.7, 71.6] [0.7, 71.5] [0, 7999] [0, 3622] [0.06, 5.18]

avg. 0.07 ± 0.15 4.5 ± 4.1 3.0 ± 3.5 638 ± 1271 475 ± 806 1.70 ± 0.65 
QMOF

range [0.0, 0.90] [0.8, 44.9] [0.0, 44.4] [0, 6832] [0, 3147] [0.09, 5.44]

avg. 0.11 ± 0.13 6.9 ± 3.6 4.7 ± 3.2 1081 ± 1089 1092 ± 835 1.34 ± 0.43
CSD 

Collection
range [0.0, 0.84] [2.7, 71.6] [0.5, 71.5] [0, 6415] [0, 3630] [0.13, 4.19]
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Figure S7. Distributions of geometric properties within MOSAEC-DB plotted according to their 
activation states (i.e. full vs partial) and framework charge status (i.e. neutral vs. charged). 
Distributions of (a) accessible volume fraction, (b) gravimetric surface area, (c) largest cavity 
diameter (LCD), and (d) pore limiting diameter (PLD) were calculated by Zeo++ using a probe 
radius corresponding to the kinetic diameter of an H2 molecule (1.45 Å). Zero values are excluded 
from the analysis for clarity.
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Table S4. Summary of the geometry property statistics (i.e. mean, standard deviations, and range) 
computed within the various subcategories (i.e. activation and framework charge states) of the 
MOSAEC database.

MOSAEC
DB 

subset
volume 
fraction

LCD
(Å)

PLD
(Å)

gravimetric 
surface area

(m2 g-1)

volumetric 
surface area

(m2 cm-3)
density
(g cm-3)

avg. 0.05 ± 0.10 4.1 ± 2.476 2.7 ± 2.2 522 ± 1056 510 ± 863 1.63 ± 0.56 
Full/ 

Neutral
range [0.0, 0.84] [0.0, 42.8] [0.0, 38.4] [0., 24961] [0, 5050] [0.13, 8.97]

avg. 0.09 ± 0.12 5.5 ± 1.8 3.7 ± 1.8 1255 ± 1479 1193 ± 1058 1.29 ± 0.44 
Full/ 

Charged
range [0.0, 0.76] [1.9, 30.1] [0.6, 28.5] [0, 11396] [0, 4852] [0.23, 4.27]

avg. 0.01 ± 0.04 3.3 ± 1.6 1.8 ± 1.3 154 ± 482 176 ± 483 1.75 ± 0.44 
Partial/
Neutral

range [0.0, 0.63] [0.9, 32.1] [0.1, 31.6] [0, 5839] [0, 3911] [0.33, 5.28]

avg. 0.05 ± 0.08 4.9 ± 1.6 3.2 ± 1.6 791 ± 1141 782 ± 918 1.35 ± 0.44Partial/ 
Charged

range [0.0, 0.63] [2.2, 29.1] [0.6, 28.2] [0, 7690] [0, 3728] [0.30, 4.24]
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Additional Structural Diversity Analysis.

Figure S8. Analysis of the revised autocorrelation (RACs) descriptor space represented in the 
MOSAEC, ARC-MOF, CoRE 2019, and QMOF databases with the hypothetical MOFs from all 
databases plotted separately. The (a) metal, (b) functional group, (c) ligand, and (d) SBU RAC 
descriptors subcategories are distinctly characterized. Dimensionality reduction is performed using 
the t-SNE algorithm on the combined descriptor space of all relevant structures.
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Figure S9. Comparison of the two-dimensional projections of geometric descriptor space 
computed within the MOSAEC, ARC-MOF, CoRE 2019, and QMOF databases. The geometric 
properties considered in this analysis include pore-limiting diameter (PLD), largest cavity diameter 
(LCD), as well as all accessible, non-accessible, and probe-occupiable surface areas, volumes, and 
volume fractions available within Zeo++9 pore geometry analysis. Dimensionality reduction is 
performed using the t-SNE algorithm on the combined descriptor space of all relevant structures.
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