Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

- Electronic Supplementary Information -

Regioselective Intermolecular Carboamination of Allylamines via Nucleopalladation: Empowering Three-Component Synthesis of Vicinal Diamines

Shib Nath Saha, Nityananda Ballav, Suman Ghosh and Mahiuddin Baidya*

Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India Email: mbaidya@iitm.ac.in

Table of Contents

1)	General information
2)	Optimization details for vicinal carboamination reaction
3)	General procedure for three-component vicinal carboamination reaction with sulfoximine
	nucleophilesS6
4)	General procedure for three-component vicinal carboamination reaction of homo
	allylamine with sulfoximine nucleophilesS7
5)	General procedure for three-component vicinal carboamination reaction with aniline
	nucleophiles
6)	Procedure for the scale-up vicinal carboamination reaction
7)	Procedure for the removal of the directing group
8)	Procedure for the synthesis of amide 10
9)	Procedure for the synthesis of cyclic urea 11
10)) Procedure for the aminoalkynylation reaction with 6aS10
11)) Procedure for the preparation and characterization of Mn-4a complexS10
12)) Procedure for the transfer hydrogenation reactionS12
13)) X-ray crystals data for products 5a and 8aS12
14)) Spectroscopic data of synthesized compoundsS15
15)) NMR spectra of synthesized compounds

1. General information:

All reactions, unless mentioned otherwise, were carried out under air in flame-dried glassware and were stirred using a magnetic stir plate. Reactions were performed using commercial-grade solvent unless otherwise noted. CH₃CN and DCE were dried over calcium hydride. Tetrahydrofuran was freshly distilled over sodium ketyl before use.

All reactions were monitored by thin layer chromatography (TLC) on Merck 60 F 254 precoated silica plates and visualized using a UV lamp (366 or 254 nm) or by use of potassium permanganate, 5 g K₂CO₃/100 mL water. Products were isolated by column chromatography (Merck silica gel 100-200 μ m).

¹³C and ¹H NMR spectra were recorded on a Bruker 400 MHz or Bruker 500 MHz spectrometers. Chemical shift values (δ) are reported in ppm and calibrated to the residual solvent peak, CDCl₃ δ = 7.26 ppm for ¹H, δ = 77.16 for ¹³C. All NMR spectra were recorded at ambient temperature (290 K) unless otherwise noted. ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constant, integration). The following abbreviations are used to indicate multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; h, heptate; m, multiplet; dd, doublet of doublet; dt, doublet of triplet; dq, doublet of quartet; td, triplet of doublet; tt, triplet of triplet; dq, doublet of quartet; br, broad. NOESY experiments were performed to determine the relative stereochemistry of synthesize compounds as necessary.

Infrared (IR) spectra were recorded on a JASCO 4100 FT-IR spectrometer.

Mass spectra were recorded by electron spray ionization (ESI) method on a Q-TOF Micro with a lock spray source.

Sulfoximine derivatives were prepared following the literature procedures (*Chem. Commun.,* 2017, **53**, 348–351; *Adv. Synth. Catal.*, 2017, **359**, 4274–4277). Pharmacophore-coupled aryl iodides were synthesized according to the previous report (*Chem. Sci.,* 2024, **15**, 4890–4896).

2. Optimization details for vicinal carboamination reaction

0 N 1a (0.20 mmol)	+ $2a$ (1.2 equiv) (4.0 equiv)	Pd(OAc) ₂ (10 mol %) K ₂ CO ₃ (1.0 equiv) 100 °C, 24 h solvent (1 mL)	
Entry	Solvent		Yield of 4a (%)
1	HFIP		NR
2	TFE		NR
3	MeOH		NR
4	tBuOH		NR
5	Toluene		NR
6	THF		NR
7	MeCN		45
8	DCE		67
9	1,4-Dioxane		NR
10	DMA		NR
11	DMF		NR
12	DMSO		NR

Solvent screening:

Base screening:

(0.2	$\begin{array}{c} 0 \\ H \\ H \\ 1a \\ 10 \text{ mmol} \end{array} + \begin{array}{c} H \\ 2a \\ (1.2 \text{ equiv}) \end{array} + \begin{array}{c} 1a \\ 3a \\ (4.0 \text{ equiv}) \end{array}$	Pd(OAc) ₂ (10 mol %) Base (1.0 equiv) 100 °C, 24 h DCE (1.0 mL)	
Entry	Base		Yield of 4a (%)
1	Na ₂ CO ₃		19
2	K ₂ CO ₃		67
3	Cs_2CO_3	Cs_2CO_3	
4	Ag_2CO_3		NR
5	K ₃ PO ₄		NR
6	Na ₂ HPO ₄		NR
7	K ₂ HPO ₄		NR
8	NaOAc		<5
9	KOAc		10
10	KHCO ₃		NR
11	NaHCO ₃		NR

Equivalent of base (K₂CO₃):

Ĺ	$\begin{array}{c} 0 \\ HN \\ N \\ H \\ 1a \\ (0.20 \text{ mmol}) \end{array} + \begin{array}{c} HN \\ C \\ $	Pd(OAc) ₂ (10 mol %) <i>K</i> ₂ CO ₃ (equiv) 100 °C, 24 h DCE (1.0 mL)	
Entry	Loading of K ₂ CO ₃		Yield of 4a (%)
1	0.5 equiv		41
2 1.5 equiv			84
3 2.0 equiv			65
4	0.0 equiv		NR

Equivalents of nucleophile (2a) and electrophile (3a):

	(0.20 mmol)	Pd(OAc) ₂ (10 mol %) 3a K ₂ CO ₃ (1.5 equiv) 100 °C, 24 h DCE (1.0 mL)	
Entry	Equiv of 2a	Equiv of 3a	Yield of 4a (%)
1	1.2	4.0	84
2	2.0	4.0	60
3	1.2	3.0	56
4	1.2	2.0	49

Temperature screening:

+ $2a$ $(1.2 equiv)$ $+$ $3a$ $(4.0 equiv)$	Pd(OAc) ₂ (10 mol %) K ₂ CO ₃ (1.5 equiv) DCE (1.0 mL), 24 h <i>Temperature (°C)</i>	
Temperature (°C)		Yield of 4a (%)
rt		NR
60		45
3 80		58
100		84
120		71
	$+ \underbrace{\downarrow_{2a}}_{(1.2 \text{ equiv})} + \underbrace{\downarrow_{3a}}_{(4.0 \text{ equiv})} -$ $\frac{\text{Temperature (°C)}}{\text{rt}}$ 60 80 100 120	$+ \underbrace{\downarrow_{2a}}_{(1.2 \text{ equiv})} + \underbrace{\downarrow_{3a}}_{(4.0 \text{ equiv})} \xrightarrow{Pd(OAc)_2 (10 \text{ mol }\%)}_{K_2CO_3 (1.5 \text{ equiv})}$ $DCE (1.0 \text{ mL}), 24 \text{ h}}_{Temperature (°C)}$ $Temperature (°C)$ rt 60 80 100 120

Unsuccessful substrates:

3. General procedure for three-component vicinal carboamination reaction with sulfoximine nucleophiles

GP-1:

An oven-dried screw cap reaction tube equipped with a magnetic stirrer bar was charged with *N*-allylpicolinamide **1a** (0.20 mmol, 1.0 equiv), corresponding sulfoximine nucleophile **2** (1.2 equiv), aryl iodide or styryl iodide **3** (4.0 equiv), K_2CO_3 (1.5 equiv), and $Pd(OAc)_2$ (10 mol %). Then, DCE (1 mL, 5M) solvent was added via syringe. The reaction tube was capped and placed in a preheated oil bath at 100 °C for 24 h. After completion of the reaction (monitored by TLC),

the crude reaction mixture was diluted with DCM and concentrated under reduced pressure. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure product **4-6**.

4. General procedure for three-component vicinal carboamination reaction of homoallylamine with sulfoximine nucleophiles

GP-2:

An oven-dried screw cap reaction tube equipped with a magnetic stirrer bar was charged with *N*-homoallylpicolinamide **1a**" (0.20 mmol, 1.0 equiv), corresponding sulfoximine nucleophile **2** (1.2 equiv), styryl iodide **3** (4.0 equiv), K_2CO_3 (1.5 equiv), and $Pd(OAc)_2$ (10 mol %). Then, DCE (1 mL, 5M) solvent was added via syringe. The reaction tube was capped and placed in a preheated oil bath at 100 °C for 24 h. After completion of the reaction (monitored by TLC), the crude reaction mixture was diluted with DCM and concentrated under reduced pressure. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure product **6j-60** and **6j'-60'**.

5. General procedure for three-component vicinal carboamination reaction with aniline nucleophiles

GP-3:

An oven-dried screw cap reaction tube equipped with a magnetic stirrer bar was charged with *N*-allylpicolinamide **1a** (0.20 mmol, 1.0 equiv), corresponding aniline nucleophile **7** (1.2 equiv), aryl iodide or styryl iodide **3** (4.0 equiv), K_2CO_3 (1.5 equiv), and $Pd(OAc)_2$ (10 mol %). Then, DCE (1 mL, 5M) solvent was added via syringe. The reaction tube was capped and placed in a

preheated oil bath at 100 $^{\circ}$ C for 24 h. After completion of the reaction (monitored by TLC), the crude reaction mixture was diluted with DCM and concentrated under reduced pressure. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure product **8**.

6. Procedure for the scale-up vicinal carboamination reaction

An oven-dried screw cap reaction tube equipped with a magnetic stirrer bar was charged with *N*-allylpicolinamide **1a** (2.50 mmol, 1.0 equiv), sulfoximine **2a** (1.2 equiv), iodo benzene **3a** (4.0 equiv), K_2CO_3 (1.5 equiv), and Pd(OAc)₂ (7 mol %). Then, DCE (12.5 mL, 5M) solvent was added via syringe. The reaction tube was capped and placed in a preheated oil bath at 100 °C for 24 h. After completion of the reaction (monitored by TLC), the crude reaction mixture was diluted with DCM and concentrated under reduced pressure. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure product **4a** (0.81 g, 71%).

Similarly, product **6a** (0.91g, 76%) was prepared from *N*-allylpicolinamide **1a** (2.50 mmol, 1.0 equiv), sulfoximine **2a** (1.2 equiv), and styryl iodide (4.0 equiv).

7. Procedure for the removal of the directing group

To a suspension of compound **4a** or **8t** (0.3 mmol, 1.0 equiv) in H₂O (6 mL) was added conc.HCl (0.7 mL) and the mixture was stirred for 5 minutes at room temperature. Zinc dust (292 mg, 4.48 mmol, 15 equiv) was then carefully added portion wise and the mixture was stirred at 100 °C for 16 h. Upon completion (TLC monitored), the reaction mixture was filtered through a celite plug. The filtrate was neutralized with 2M NaOH solution and then extracted with DCM. The volatiles were evaporated under reduced pressure and the crude residue was purified through column chromatography on silica gel using 15% MeOH in DCM to get pure product **9a** (93 mg, 89%) or **9b** (77 mg, 90%).

8. Procedure for the synthesis of amide 10

N-Phthaloyl-*L*-phenylalanine (0.165 mmol, 1.1 equiv) and 4-*N*,*N*-dimethylaminopyridine (DMAP, 1.2 equiv) were taken in a 50 mL round bottom flask under nitrogen. Anhydrous DCM (5 mL) was added and the mixture was cooled to 0 °C. *N*-(3-dimethylaminopropyl)-*N*-ethylcarbodimide hydrochloride salt (EDC·HCl, 2.5 equiv) was added under nitrogen and the mixture was stirred for 10 minutes at the same temperature. Then, compound **9a** (52 mg, 0.15 mmol, 1.0 equiv) was added and the mixture was stirred at room temperature for 12 h. Upon completion (TLC monitored), 10% aqueous NaHCO₃ solution (15 mL) was added to the reaction mixture and extracted with DCM. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get the pure product **10** (70 mg, 74%).

9. Procedure for the synthesis of cyclic urea 11

To an oven-dried 50 mL round bottom flask, product **9b** (0.3 mmol, 1.0 equiv) was taken under nitrogen. Then, anhydrous DCM (4.0 mL) followed by carbonyldiimidazole (0.6 equiv) was added and the mixture was allowed to stirred at rt for 12 h under nitrogen. After completion of the reaction (TLC monitored), the crude reaction mixture was diluted with DCM and concentrated under reduced pressure. The crude residue was purified through column chromatography on silica gel using 30% ethyl acetate in hexane to get pure product **11** (88 mg, 95%).

10. Procedure for the aminoalkynylation reaction with 6a

An oven-dried screw cap reaction tube equipped with a magnetic stirrer bar was charged with compound **6a** (0.15 mmol, 1.0 equiv), (iodoethynyl)triisopropylsilane (1.3 equiv), $Pd(OAc)_2$ (10 mol %), and K_2CO_3 (2.0 equiv). Then, DCE (1.5 mL, 1M) solvent was added via syringe. The reaction tube was capped and placed in a preheated oil bath at 100 °C for 24 h. After completion of the reaction (TLC monitored), the crude mixture was diluted with DCM and concentrated under reduced pressure. The crude residue was purified through column chromatography on silica gel using ethyl acetate in hexane to get pure product **12** (67 mg, 68%).

11. Procedure for the preparation and characterization of Mn-4a complex

The [MnBr(CO)₅] (0.2 mmol) was taken in a reaction tube under argon atmosphere and degassed dry THF (5 mL) was added via syringe to get an orange-yellow suspension. Then, a solution of compound **4a** (0.2 mmol) in 5 mL THF was added dropwise to it. The mixture was refluxed for 3 h under argon atmosphere. After cooling it down to the room temperature, the solvent was evaporated to obtain the residue, which was further washed with hexane and dried under vacuum to get yellow solid of **Mn(4a)(CO)₃Br** complex (114 mg, 85%).

Characterization of Mn-4a Complex:

¹³C NMR (126 MHz, CDCl₃) δ 224.8, 221.7, 221.1, 169.4, 153.7, 149.0, 139.8, 138.7, 137.8, 133.4, 132.9, 132.0, 131.6, 129.5, 129.4, 128.6, 128.5, 128.2, 128.1, 123.6, 120.6, 56.4, 47.3, 42.0.
IR (KBr pellet) ν_{max} 3450, 2929, 2824, 2023, 1922, 1634, 1602, 1449, 1357, 1237, 1136, 1038, 691 cm⁻¹.
HRMS (ESI/TOF-Q) m/z: [M]⁺ Calculated for C₃₀H₂₅MnN₃O₅S⁺ 594.0890; Found 594.0895.

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

12. Procedure for the transfer hydrogenation reaction

An oven-dried 25 mL pressure tube equipped with magnetic stirrer bar was charged with Dapsone (13, 0.2 mmol), benzyl alcohol (0.5 mmol, 2.5 equiv), KOtBu (1.0 equiv), and $Mn(4a)(CO)_3Br$ complex (5 mol %) under argon atmosphere. Then, degassed dry toluene (2 mL) was added via syringe and the mixture was heated in an oil bath at 140 °C for 24 h. After the completion of the reaction, it was cooled to room temperature and diluted with DCM. Volatiles were removed under reduced pressure and the crude residue was purified through column chromatography on silica gel using 35% ethyl acetate in hexane to get pure product 14 (64 mg, 75%).

13. X-ray crystals data for products 5a and 8a

Crystallographic data of product 5a:

Crystals of compound **5a** were obtained through a slow evaporation technique at room temperature from $CDCl_3$ / hexane solvent mixture.

Crystal structure of compound **5a** (CCDC number: 2372817, Ellipsoid Probability 50%):

Table S1. Crystal data and structure refinement for compound **5a**.

Identification code	5a		
Empirical formula	$C_{28} H_{27} N_3 O_2 S$		
Formula weight	469.58		
Temperature	298(2) K		
Wavelength	0.71073 A		
Crystal system, space group Triclinic, P -1			
Unit cell dimensions	a = 9.4004(5) A alpha = 97.488(2) deg.		
b = 1	0.1110(7) A beta = $104.094(2)$ deg.		
c = 1	3.6049(9) A gamma = $95.420(2)$ deg.		
Volume 1	232.74(14) A^3		
Z, Calculated density	2, 1.265 Mg/m^3		
Absorption coefficient	0.161 mm^-1		
F(000) 49	96		
Crystal size 0	0.249 x 0.175 x 0.126 mm		
Theta range for data collection 2.840 to 25.657 deg.			

Limiting indices -11<=h<=11, -12<=k<=12, -16<=l<=16 Reflections collected / unique 48138 / 4655 [R(int) = 0.0952]Completeness to theta = 25.242 99.6 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 1.0000 and 0.7161 Full-matrix least-squares on F² Refinement method Data / restraints / parameters 4655 / 0 / 308 Goodness-of-fit on F^2 1.078 Final R indices [I>2sigma(I)] R1 = 0.0493, wR2 = 0.1052 R indices (all data) R1 = 0.0744, wR2 = 0.1165 Extinction coefficient n/a Largest diff. peak and hole 0.198 and -0.312 e.A^-3

Crystallographic data of product 8a

Crystals of compound **8a** were obtained through a slow evaporation technique at room temperature from $CDCl_3$ / hexane solvent mixture.

Crystal structure of compound 8a (CCDC number: 2372870, Ellipsoid Probability 50%):

Table S2. Crystal data and structure refinement for 8a (dimeric structure)Identification code8a

Empirical formula	$C_{42} \ H_{42} \ N_6 \ O_2$
Formula weight	662.81
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space gr	oup Monoclinic, P2(1)/c
Unit cell dimensions	a = 9.9446(3) A alpha = 90 deg.
b =	20.0301(7) A beta = $95.7521(16)$ deg.
	c = 18.2275(6) A gamma = 90 deg.
Volume	3612.5(2) A^3
Z, Calculated density	4, 1.219 Mg/m^3
Absorption coefficient	0.077 mm^-1
F(000)	1408
Crystal size	0.310 x 0.140 x 0.120 mm
Theta range for data coll	lection 1.515 to 24.999 deg.
Limiting indices	-11<=h<=11, -23<=k<=23, -21<=l<=20
Reflections collected / u	nique 25840 / 6367 [R(int) = 0.0310]
Completeness to theta =	24.999 100.0 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parame	eters 6367 / 0 / 451
Goodness-of-fit on F^2	1.003
Final R indices [I>2sign	na(I)] R1 = 0.0481, wR2 = 0.1105
R indices (all data)	R1 = 0.0932, $wR2 = 0.1388$
Extinction coefficient	n/a
Largest diff. peak and he	ble 0.249 and -0.186 e.A^-3

14. Spectroscopic data of synthesized compounds

N-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-phenylpropyl)picolinamide (4a): Compound **4a** was synthesized according to GP-1 as off white solid; eluent (35% ethyl acetate in hexane); m.p.: 118 – 120 °C; **Yield:** 84% (76 mg); ¹H NMR (**400 MHz, CDCl**₃) δ 8.77 – 8.74 (m, 1H), 8.60 (d, *J* = 4.8 Hz, 1H), 8.12 (d, *J* = 7.8 Hz, 1H), 7.89 (d, *J* = 7.8 Hz, 2H), 7.79 – 7.77 (m, 1H), 7.43 – 7.30 (m, 8H), 7.24 – 7.17 (m, 6H), 3.83 – 3.77 (m, 1H), 3.46 – 3.35 (m, 2H), 2.94 (d, *J* = 6.6 Hz, 2H); ¹³C NMR (**101 MHz, CDCl**₃) δ 164.5, 150.5, 148.3, 141.1, 139.7, 137.3, 132.6, 132.3, 130.2, 129.1 (2xC), 129.0, 128.9, 128.7, 128.3, 126.3, 126.0, 122.4, 57.7, 45.9, 43.0; **HRMS** (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for $C_{27}H_{25}N_3O_2SH^+$ 456.1740; Found 456.1758.

N-(2-((oxodi-o-tolyl-l6-sulfaneylidene)amino)-3-phenylpropyl)picolinamide (4b):

Compound **4b** was synthesized according to GP-1 as brown sticky liquid; eluent (30% ethyl acetate in hexane); **Yield:** 83% (80 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.72 (brs, 1H), 8.59 (d, *J* = 4.5 Hz, 1H), 8.41 (d, *J* = 7.8 Hz, 1H), 8.22 (d, *J* = 7.9 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.41 – 7.33 (m, 4H), 7.22 – 7.19 (m, 3H), 7.15 – 7.07 (m, 5H), 3.66 – 3.61 (m, 1H), 3.56 – 3.50 (m, 1H), 3.46 – 3.42 (m, 1H), 2.94 (d, *J* = 6.3 Hz, 2H), 2.18 (s, 3H), 1.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 150.6, 148.3, 139.4, 138.5, 138.08, 138.05, 138.0, 137.2, 132.8, 132.7, 132.6, 131.2, 130.8, 129.8 (2xC), 128.3 (2xC), 126.2, 126.1, 125.9, 122.3, 57.0, 45.3, 43.0, 20.1, 19.7; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₂₉N₃O₂SH⁺ 484.2053; Found 484.2078.

N-(2-((oxodi-m-tolyl-l6-sulfaneylidene)amino)-3-phenylpropyl)picolinamide (4c):

Compound **4c** was synthesized according to GP-1 as sticky brown liquid; eluent (30% ethyl acetate in hexane); **Yield:** 86% (83 mg); ¹**H NMR (500 MHz, CDCl**₃) δ 8.82 – 8.80 (m, 1H), 8.60 (d, *J* = 4.7 Hz, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 7.7 Hz, 1H), 7.65 (s, 2H), 7.37 – 7.34 (m, 1H), 7.28 – 7.23 (m, 3H), 7.20 – 7.17 (m, 5H), 7.11 (d, *J* = 7.8 Hz, 2H), 7.03 (t, *J* = 7.7 Hz, 1H), 3.84 – 3.80 (m, 1H), 3.38 – 3.29 (m, 2H), 2.92 (d, *J* = 6.2 Hz, 2H), 2.22 (s, 3H), 2.12 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 150.5, 148.3, 140.9, 139.8, 139.4, 139.2, 139.1, 137.2, 133.3, 133.1, 130.1, 129.1, 129.0, 128.84, 128.80, 128.2, 126.2, 126.0 (2xC), 125.9, 122.3, 57.8, 45.9, 43.0, 21.34, 21.29; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₂₉N₃O₂SH⁺ 484.2053; Found 484.2042.

N-(2-((bis(3-fluorophenyl)(oxo)-l6-sulfaneylidene)amino)-3-phenylpropyl)picolinamide (4d):

Compound **4d** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane); **Yield:** 62% (61 mg); ¹**H NMR** (**500 MHz**, **CDCl**₃) δ 8.77 – 8.74 (m, 1H), 8.66 (d, *J* = 4.8 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.85 (t, *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.64 – 7.62 (m, 1H), 7.45 (t, *J* = 6.3 Hz, 1H), 7.38 – 7.32 (m, 3H), 7.28 (s, 1H), 7.24 (s, 2H), 7.21 – 7.16 (m, 2H), 7.09 (t, *J* = 8.2 Hz, 3H), 3.90 – 3.85 (m, 1H), 3.48 – 3.40 (m, 2H), 3.03 – 2.92 (m, 2H); ¹³C **NMR** (**126 MHz**, **CDCl**₃) δ 164.6, 162.6 (d, *J* = 251.8 Hz), 162.5 (d, *J* = 252.1 Hz), 150.3, 148.4, 143.0 (d, *J* = 6.6 Hz), 141.5 (d, *J* = 6.1 Hz), 139.5, 137.4, 130.8 (d, *J* = 7.5 Hz), 130.7 (d, *J* = 7.5 Hz), 130.1, 128.4, 126.6, 126.2 124.7 (d, *J* = 3.7 Hz), 124.5 (d, *J* = 3.4 Hz), 122.4, 120.1 (d, *J* = 27.8 Hz), 119.9 (d, *J* = 27.7 Hz), 116.3 (d, *J* = 24.3 Hz), 116.2 (d, *J* = 24.8 Hz), 58.1, 46.0, 42.8; ¹⁹F **NMR** (**471 MHz**, **CDCl**₃) δ -109.3, -109.7; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₃F₂N₃O₂SH⁺ 492.1552; Found 492.1575.

N-(2-((bis(3-chlorophenyl)(oxo)-l6-sulfaneylidene)amino)-3-phenylpropyl)picolinamide (4e):

Compound **4e** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane); **Yield:** 64% (67 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.79 – 8.77 (m, 1H), 8.68 (d, *J* = 4.7 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.91 (s, 1H), 7.85 (t, *J* = 7.7 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.49 (s, 1H), 7.46 – 7.44 (m, 2H), 7.37 – 7.34 (m, 3H), 7.32 – 7.26 (m, 4H), 7.12 (t, *J* = 7.9 Hz, 1H), 7.02 (d, *J* = 7.9 Hz, 1H), 3.92 – 3.87 (m, 1H), 3.45 – 3.37 (m, 2H), 3.04 – 2.91 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 150.3, 148.5, 142.5, 140.9, 139.6, 137.4, 135.39, 135.36, 133.1, 132.8, 130.38, 130.35, 130.1, 129.04, 128.96, 128.5, 127.0, 126.9, 126.6, 126.2, 122.5, 58.3, 46.0, 42.7; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₃Cl₂N₃O₂SH⁺ 524.0961; Found 524.0962.

$N-(2-((oxodi-p-tolyl-l6-sulfaneylidene) amino)-3-phenyl propyl) picolinamide \ (4f):$

Compound **4f** was synthesized according to GP-1 as sticky colourless liquid; eluent (30% ethyl acetate in hexane); **Yield:** 87% (84 mg); ¹**H NMR (500 MHz, CDCl**₃) δ 8.82 – 8.80 (m, 1H), 8.64 (d, *J* = 4.7 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.84 – 7.78 (m, 3H), 7.42 (t, *J* = 5.6 Hz, 1H), 7.33 – 7.28 (m, 4H), 7.25 – 7.23 (m, 3H), 7.14 (d, *J* = 7.9 Hz, 2H), 7.02 (d, *J* = 7.9 Hz, 2H), 3.86 – 3.81 (m, 1H), 3.48 – 3.38 (m, 2H), 2.98 (d, *J* = 6.6 Hz, 2H), 2.31 (s, 3H), 2.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 150.5, 148.3, 143.1, 142.9, 139.7, 138.3, 137.2, 137.0, 130.1, 129.64, 129.62, 128.8, 128.6, 128.2, 126.2, 126.0, 122.3, 57.6, 45.8, 43.0, 21.45, 21.43; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₂₉N₃O₂SH⁺ 484.2053; Found 484.2039.

N-(2-((bis(4-(tert-butyl)phenyl)(oxo)-l6-sulfaneylidene)amino)-3phenylpropyl)picolinamide (4g):

Compound **4g** was synthesized according to GP-1 as sticky colourless liquid; eluent (20% ethyl acetate in hexane); **Yield:** 90% (102 mg); ¹**H** NMR (**400** MHz, CDCl₃) δ 8.78 – 8.75 (m, 1H), 8.60 (d, *J* = 4.4 Hz, 1H), 8.12 (d, *J* = 7.8 Hz, 1H), 7.83 – 7.77 (m, 3H), 7.40 – 7.37 (m, 1H), 7.33 – 7.31 (m, 4H), 7.23 (d, *J* = 7.1 Hz, 2H), 7.22 – 7.17 (m, 5H), 3.82 – 3.77 (m, 1H), 3.44 – 3.34 (m, 2H), 2.92 (d, *J* = 6.4 Hz, 2H), 1.21 (d, *J* = 4.0 Hz, 18H); ¹³C NMR (**101** MHz, CDCl₃) δ 164.6, 156.1, 155.8, 150.6, 148.3, 139.9, 138.2, 137.2, 136.9, 130.2, 128.7, 128.5, 128.2, 126.2, 126.1, 126.01, 125.98, 122.4, 57.5, 45.9, 43.1, 35.1, 35.0, 31.16, 31.15; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₅H₄₁N₃O₂SH⁺ 568.2992; Found 568.2977.

N-(2-((bis(4-fluorophenyl)(oxo)-l6-sulfaneylidene)amino)-3-phenylpropyl)picolinamide (4h):

Compound **4h** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane); **Yield:** 63% (62 mg); ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.73 (brs, 1H), 8.66 (d, *J* = 4.3 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 7.96 – 7.85 (m, 3H), 7.48 – 7.45 (m, 1H), 7.36 – 7.32 (m, 4H), 7.29 – 7.27 (m, 3H), 7.07 (t, *J* = 8.6 Hz, 2H), 6.90 (t, *J* = 8.5 Hz, 2H), 3.90 – 3.83 (m, 1H), 3.54 – 3.40 (m, 2H), 3.05 – 2.93 (m, 2H); ¹³**C NMR** (**126 MHz**, **CDCl**₃) δ 165.3 (d, *J* = 255.4 Hz), δ 165.0 (d, *J* = 254.8 Hz), 164.6, 150.4, 148.3, 139.8, 137.4, 137.1 (d, *J* = 3.3 Hz), 135.5 (d, *J* = 3.3 Hz), 131.5 (d, *J* = 26.6 Hz), 131.4 (d, *J* = 26.4 Hz), 130.2, 128.3, 126.4, 126.1, 122.4, 116.4 (d, *J* = 3.9 Hz), 116.2 (d, *J* = 3.7 Hz), 57.9, 46.1, 42.8; ¹⁹**F NMR** (**471 MHz**, **CDCl**₃) δ -105.8, -106.1; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₃F₂N₃O₂SH⁺ 492.1552; Found 492.1575.

N-(2-((bis(4-chlorophenyl)(oxo)-l6-sulfaneylidene)amino)-3-phenylpropyl)picolinamide (4i):

Compound **4i** was synthesized according to GP-1 as sticky colourless liquid; eluent (30% ethyl acetate in hexane); **Yield:** 68% (71 mg); ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.70 – 8.67(m, 1H), 8.63 (d, *J* = 4.8 Hz, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 7.87 – 7.81 (m, 3H), 7.46 – 7.43 (m, 1H), 7.35 – 7.27 (m, 5H), 7.25 – 7.21 (m, 4H), 7.16 (d, *J* = 8.5 Hz, 2H), 3.88 – 3.81 (m, 1H), 3.51 – 3.37 (m, 2H), 3.02 – 2.89 (m, 2H); ¹³C **NMR** (**101 MHz**, **CDCl**₃) δ 164.6, 150.4, 148.3, 139.8, 139.6, 139.5, 139.1, 138.0, 137.4, 130.3, 130.2, 130.1, 129.43, 129.39, 128.4, 126.5, 126.2, 122.5, 57.9, 46.1, 42.8; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₃Cl₂N₃O₂SH⁺ 524.0961; Found 524.0951.

N-(2-((bis(4-bromophenyl)(oxo)-l6-sulfaneylidene)amino)-3-phenylpropyl)picolinamide (4j):

Compound **4j** was synthesized according to GP-1 as brown solid; eluent (20% ethyl acetate in hexane); m.p.: 130 – 132 °C; **Yield:** 65% (79 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.68 (t, *J* = 6.4 Hz, 1H), 8.63 (d, *J* = 4.7 Hz, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 7.88 – 7.84 (m, 1H), 7.75 – 7.73 (m, 2H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.46 – 7.43 (m, 1H), 7.33 – 7.30 (m, 4H), 7.27 (d, *J* = 1.5 Hz, 1H), 7.25 – 7.23 (m, 2H), 7.12 (d, *J* = 8.5 Hz, 2H), 3.87 – 3.82 (m, 1H), 3.50 – 3.44 (m, 1H), 3.42 – 3.38 (m, 1H), 3.01 – 2.98 (m, 1H), 2.94 – 2.89 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 150.4, 148.3, 140.1, 139.7, 138.5, 137.4, 132.42, 132.38, 130.5, 130.24, 130.20, 128.4, 128.1, 127.7, 126.5, 126.2, 122.5, 57.9, 46.1, 42.8; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₃Br₂N₃O₂SH⁺ 611.9950; Found 611.9967.

N-(2-((di(naphthalen-2-yl)(oxo)-l6-sulfaneylidene)amino)-3-phenylpropyl)picolinamide (4k):

Compound **4k** was synthesized according to GP-1 as sticky brown liquid; eluent (35% ethyl acetate in hexane); **Yield:** 82% (91 mg); ¹H NMR (**400** MHz, CDCl₃) δ 8.95 – 8.93 (m, 1H), 8.72 (d, *J* = 4.6 Hz, 1H), 8.59 (s, 1H), 8.27 (s, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 7.90 – 7.85 (m, 3H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.3 Hz, 2H), 7.64 (t, *J* = 8.9 Hz, 2H), 7.59 – 7.53 (m, 3H), 7.50 – 7.46 (m, 2H), 7.38 – 7.35 (m, 2H), 7.32 – 7.30 (m, 3H), 7.26 – 7.24 (m, 1H), 3.94 – 3.89 (m, 1H), 3.54 – 3.48 (m, 2H), 3.05 (d, *J* = 5.9 Hz, 2H); ¹³C NMR (**126** MHz, CDCl₃) δ 164.6, 150.6, 148.4, 139.9, 138.0, 137.3, 136.6, 134.9, 134.7, 132.51, 132.46, 130.6, 130.4, 130.3, 129.4, 129.33, 129.26, 129.2, 128.9, 128.8, 128.4, 127.9, 127.8, 127.4, 127.2, 126.4, 126.1, 124.0, 123.9, 122.5, 58.1, 46.1, 43.1; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₅H₂₉N₃O₂SH⁺ 556.2053; Found 556.2059.

N-(2-((5-oxido-5l4-dibenzo[b,d]thiophen-5-ylidene)amino)-3-phenylpropyl)picolinamide (4l):

Compound **41** was synthesized according to GP-1 as brown solid; eluent (45% ethyl acetate in hexane); m.p.: 136 - 138 °C; **Yield:** 79% (72 mg); ¹H NMR (**400 MHz, CDCl**₃) δ 8.46 – 8.42 (m, 2H), 8.13 (d, *J* = 7.8 Hz, 1H), 7.82 – 7.77 (m, 1H), 7.69 – 7.64 (m, 3H), 7.50 (t, *J* = 7.1 Hz, 2H), 7.46 – 7.41 (m, 1H), 7.38 – 7.35 (m, 1H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.18 – 7.11 (m, 5H), 3.99 – 3.92 (m, 1H), 3.77 – 3.71 (m, 1H), 3.37 – 3.31(m, 1H), 2.92 – 2.82 (m, 2H); ¹³C NMR (**101 MHz, CDCl**₃) δ 164.5, 150.2, 148.2, 139.6, 139.5, 138.7, 137.2, 132.9, 132.8, 131.9, 131.8, 130.23, 130.20, 129.7, 128.3, 126.3, 125.9, 122.8, 122.5, 122.2, 121.4, 121.3, 56.6, 45.3, 42.7; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₃N₃O₂SH⁺ 454.1584; Found 454.1581.

N-(2-((10-oxido-9-oxo-9H-10l4-thioxanthen-10-ylidene)amino)-3-phenylpropyl)picolinamide (4m):

Compound **4m** was synthesized according to GP-1 as off white solid; eluent (45% ethyl acetate in hexane); m.p.: 140 - 142 °C; **Yield:** 72% (69 mg); ¹H NMR (**400 MHz, CDCl**₃) δ 8.60 (d, J = 4.8 Hz, 1H), 8.40 - 8.37 (m, 1H), 8.12 - 8.06 (m, 4H), 7.99 (d, J = 7.7 Hz, 1H), 7.84 - 7.80 (m, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.69 - 7.66 (m, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.44 - 7.41 (m, 1H), 7.10 - 7.08 (m, 3H), 6.91 - 6.89 (m, 2H), 3.79 - 3.73 (m, 1H), 3.68 - 3.61 (m, 1H), 3.26 - 3.19 (m, 1H), 2.81 - 2.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 164.5, 150.1, 148.3, 141.2, 140.5, 138.5, 137.2, 134.0, 133.7, 132.24, 132.21, 130.42, 130.37, 129.5, 129.3, 129.1, 128.4, 126.3, 126.1, 124.6, 124.4, 122.2, 57.5, 45.4, 42.5; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₈H₂₃N₃O₃SH⁺ 482.1533; Found 482.1521.

N-(2-((10-oxido-10l4-phenoxathiin-10-ylidene)amino)-3-phenylpropyl)-picolinamide (4n):

Compound **4n** was synthesized according to GP-1 as sticky colourless liquid; eluent (45% ethyl acetate in hexane); m.p.: 102-104 °C; **Yield:** 75% (70 mg); ¹**H** NMR (400 MHz, **CDCl**₃) δ 8.59 (d, *J* = 4.9 Hz, 1H), 8.43 – 8.40 (m, 1H), 8.12 (d, *J* = 7.9 Hz, 1H), 7.91 (d, *J* = 8.0, 1.6 Hz, 1H), 7.85 – 7.80 (m, 2H), 7.49 – 7.40 (m, 3H), 7.27 – 7.26 (m, 1H), 7.24 – 7.11 (m, 6H), 7.01 – 6.97 (m, 2H), 3.68 – 3.53 (m, 2H), 3.28 – 3.21 (m, 1H), 2.79 – 2.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 151.5, 151.4, 150.3, 148.2, 138.6, 137.2, 133.4, 133.3, 129.5, 128.3, 126.2, 126.0, 125.5, 125.1, 124.7, 124.5, 124.4 (2xC), 122.2, 118.9, 118.7, 56.9, 45.0, 42.4; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₃N₃O₃SH⁺ 470.1533; Found 470.1531.

N-(2-((10-isopropyl-5-oxido-10H-5l4-phenothiazin-5-ylidene)amino)-3-phenylpropyl) picolinamide (40):

Compound **40** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane); **Yield:** 71% (73 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.59 – 8.57 (m, 1H), 8.47 (brs, 1H), δ 8.14 (d, J = 10.0 Hz, 1H), 8.07 – 8.04 (m, 1H), 7.99 – 7.97 (m, 1H), 7.83 – 7.79 (m, 1H), 7.53 – 7.44 (m, 2H), 7.41 – 7.35 (m, 3H), 7.23 – 7.18 (m, 2H), 7.15 – 7.07 (m, 3H), 6.90 – 6.87 (m, 2H), 4.48 – 4.41 (m, 1H), 3.64 – 3.50 (m, 2H), 3.33 – 3.27 (m, 1H), 2.72 – 2.66 (m, 1H), 2.58 – 2.53 (m, 1H), 1.70 (d, J = 7.0 Hz, 3H), 1.61 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 150.5, 148.2, 141.7 141.6, 138.9, 137.2, 132.1 (2xC), 129.2, 128.3, 126.1, 126.0, 125.9, 125.3, 125.0, 124.7, 122.3, 122.1, 121.6, 118.2, 117.7, 55.2, 53.5, 45.0, 42.8, 22.1, 21.9; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₀H₃₀N₄O₂SH⁺ 511.2162; Found 511.2188.

N-(2-((oxo(phenyl)(p-tolyl)-l6-sulfaneylidene)amino)-3-phenylpropyl)-picolinamide (4p):

Compound **4p** was synthesized according to GP-1 as sticky colourless liquid; eluent (30% ethyl acetate in hexane); **Yield:** 86% (81 mg); ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.81 – 8.78 (m, 2H), 8.65 (d, *J* = 4.8 Hz, 2H), 8.16 (d, *J* = 7.9 Hz, 2H), 7.92 (d, *J* = 7.8 Hz, 2H), 7.86 – 7.80 (m, 4H), 7.46 – 7.41 (m, 5H), 7.39 – 7.28 (m, 10H), 7.25 – 7.21 (m, 7H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 3.87 – 3.81 (m, 2H), 3.49 – 3.36 (m, 4H), 2.99 – 2.96 (m, 4H), 2.33 (s, 3H), 2.30 (s, 3H); ¹³C **NMR** (**101 MHz**, **CDCl**₃) δ 164.5 (2xC), 150.5 (2xC), 148.3 (2xC), 143.4, 143.1, 141.4, 140.1, 139.8, 138.0, 137.3 (2xC), 136.7, 132.4, 132.1, 130.19, 130.17, 129.74, 129.73, 129.0, 128.99, 128.97, 128.8 (3xC), 128.6 (2xC), 128.3 (3xC), 126.3, 126.0, 122.4 (2xC), 57.67, 57.65, 45.91, 45.89, 43.0 (2xC), 21.53, 21.50; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₈H₂₇N₃O₂SH⁺ 470.1897; Found 470.1883. **dr-1:1**.

N-(2-(((2,6-dimethylphenyl)(oxo)(phenyl)-l6-sulfaneylidene)amino)-3phenylpropyl)picolinamide (4q):

Compound **4q** was synthesized according to GP-1 as pale yellow liquid; eluent (30% ethyl acetate in hexane); **Yield:** 84% (81 mg); ¹H NMR (**400** MHz, CDCl₃) δ 8.77 (brs, 1H), 8.58 – 8.55 (m, 3H), 8.16 (t, *J* = 9.2 Hz, 2H), 7.95 (d, *J* = 7.7 Hz, 2H), 7.87 (d, *J* = 7.8 Hz, 2H), 7.83 (t, *J* = 8.0 Hz, 2H), 7.50 – 7.40 (m, 8H), 7.24 – 7.23 (m, 4H), 7.18 – 7.13 (m, 6H), 7.07 – 7.02 (m, 6H), 3.67 – 3.51 (m, 5H), 3.46 –3.42 (m, 1H), 3.11 – 2.98 (m, 2H), 2.90 – 2.79 (m, 2H), 2.50 (s, 6H), 2.33 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 164.4, 150.4, 150.3, 148.3, 148.1, 143.6, 143.5, 140.5, 140.3, 139.3, 139.0, 137.3, 137.2, 136.8 (2xC), 132.10, 132.06, 131.85, 131.84 (2xC), 131.7, 129.7, 129.6, 128.72, 128.69, 128.4, 128.3, 127.51, 127.45, 126.3, 126.2, 126.0, 125.9, 122.3, 122.2, 56.9, 56.7, 45.3, 44.1, 43.3, 42.2, 23.4, 23.1.; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₂₉N₃O₂SH⁺ 484.2053; Found 484.2060; **dr-1:1**.

N-(2-(([1,1'-biphenyl]-4-yl(oxo)(p-tolyl)-l6-sulfaneylidene)amino)-3phenylpropyl)picolinamide (4r):

Compound **4r** was synthesized according to GP-1 as sticky brown liquid; eluent (30% ethyl acetate in hexane); **Yield:** 80% (87 mg); ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.63 - 8.61 (m, 2H), 8.47 (d, *J* = 4.5 Hz, 2H), 7.99 - 7.97 (m, 2H), 7.78 (d, *J* = 8.3 Hz, 2H), 7.67 - 7.62 (m, 4H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.33 - 7.26 (m, 6H), 7.26 - 7.17 (m, 12H), 7.15 - 7.10 (m, 4H), 7.09 - 7.06 (m, 6H), 6.99 (d, *J* = 8.1 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), 3.71 - 3.63 (m, 2H), 3.32 - 3.23 (m, 4H), 2.82 - 2.80 (m, 4H), 2.15 (s, 3H), 2.12 (s, 3H); ¹³C **NMR (101 MHz, CDCl**₃) δ 164.5 (2xC), 150.5 (2xC), 148.3 (2xC), 145.3, 145.1, 143.4, 143.1, 140.0, 139.82, 139.80, 139.6, 139.5, 138.6 (2xC), 138.2 (2xC), 137.3, 137.2, 136.7, 130.2, 129.8, 129.3, 129.1, 129.05, 129.0, 128.8 (2xC), 128.43, 128.42, 128.3 (2xC), 127.71, 127.68, 127.41, 127.39, 126.3 (2xC), 126.0 (2xC), 122.4 (2xC), 57.73, 57.69, 46.0, 45.9, 43.0, (2xC), 21.54, 21.51; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₄H₃₁N₃O₂SH⁺ 546.2210; Found 546.2206; **dr-1:1**.

N-(2-(((4-bromophenyl)(oxo)(p-tolyl)-l6-sulfaneylidene)amino)-3-phenylpropyl)picolinamide (4s):

Compound **4s** was synthesized according to GP-1 as sticky colourless liquid; eluent (30% ethyl acetate in hexane); **Yield:** 66% (72 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.82 – 8.75 (m, 2H), 8.67 (d, J = 4.6 Hz, 2H), 8.19 (t, J = 7.2 Hz, 2H), 7.87 (t, J = 7.9 Hz, 2H), 7.81 – 7.77 (m, 4H), 7.50 – 7.45 (m, 4H), 7.34 – 7.33 (m, 6H), 7.29 – 7.28 (m, 8H), 7.21 – 7.19 (m, 4H), 7.06 (d, J = 7.9 Hz, 2H), 3.90 – 3.83 (m, 2H), 3.53 – 3.39 (m, 4H), 3.03 – 2.94 (m, 4H), 2.37 (s, 3H), 2.34 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 164.5, 150.5 (2xC), 148.3 (2xC), 143.7, 143.4, 140.7, 139.8, 139.7, 139.3, 139.2, 137.8, 137.3 (2xC), 136.3, 132.24, 132.19, 130.4, 130.23(3xC), 130.18, 129.9 (2xC), 128.9, 128.7, 128.3 (2xC), 127.6, 127.3, 126.4, 126.1, 122.4 (2xC), 57.9, 57.7, 46.1, 45.9, 43.0, 42.9, 21.6,

21.5; **HRMS** (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for $C_{28}H_{26}BrN_3O_2SH^+$ 548.1002; Found 548.1004; **dr-1:1.**

N-(2-((cyclopropyl(oxo)(phenyl)-l6-sulfaneylidene)amino)-3-(4-ethoxyphenyl) propyl)picolinamide (4t):

Compound **4t** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane); **Yield:** 56% (52 mg); **1H NMR (400 MHz, CDCl**₃) δ 8.70 (brs, 1H), 8.68 – 8.52 (m, 5H), 8.18 – 8.13 (m, 3H), 7.85 – 7.83 (m, 6H), 7.50 – 7.39 (m, 6H), 7.38 – 7.29 (m, 9H) 7.22 – 7.15 (m, 4H), 7.10 – 7.03 (m, 2H), 6.93 – 6.79 (m, 6H), 4.06 – 3.95 (m, 6H), 3.76 – 3.68 (m, 3H), 3.66 – 3.61 (m, 2H), 3.42 – 3.36 (m, 1H) 3.30 – 3.22 (m, 3H), 2.94 – 2.84 (m, 4H), 2.79 – 2.69 (m, 2H), 2.48 – 2.45 (m, 1H), 2.05 – 2.02 (m, 2H), 1.47 – 1.42 (m, 6H) 1.40 – 1.36 (m, 6H), 1.09 – 0.99 (m, 4H), 0.93 – 0.91(m, 2H), 0.79 – 0.66 (m, 3H); **13C NMR (101 MHz, CDCl**₃) δ 164.5, 164.3, 157.5 (2xC), 150.5, 150.4, 148.3 (2xC), 140.2, 139.3, 137.3, 137.2, 132.6, 132.4, 131.7, 131.3, 130.9, 130.8, 129.03, 128.98, 128.7, 128.5, 126.0 (2xC), 122.3 (2xC), 114.2 (2xC), 63.5, 63.45, 57.4, 56.5, 45.9, 45.1, 42.3, 41.7, 33.1, 31.9, 22,7, 15.0, 14.2, 6.7, 6.9, 4.9; **HRMS (ESI/TOF-Q)** m/z: [M+H]⁺ Calculated for C₂₆H₂₉N₃O₃SH⁺ 464.2002; Found 464.1997; **dr-2:1.**

N-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-(p-tolyl)propyl)picolinamide (5a):

Compound **5a** was synthesized according to GP-1 as off white solid; eluent (30% ethyl acetate in hexane); m.p.: $138 - 140 \,^{\circ}$ C; **Yield:** 82% (77 mg); ¹**H NMR (400 MHz, CDCl**₃) δ 8.69 - 8.66 (m, 1H), 8.55 (d, *J* = 4.8 Hz, 1H), 8.06 (d, *J* = 7.8 Hz, 1H), 7.87 - 7.85 (m, 2H), 7.76 - 7.72 (m, 1H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.37 - 7.28 (m, 5H), 7.18 - 7.13 (m, 2H), 7.04 - 7.00 (m, 4H), 3.76 - 3.70 (m, 1H), 3.40 - 3.30 (m, 2H), 2.86 (d, *J* = 6.6 Hz, 2H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 150.5, 148.3, 141.1, 140.0, 137.2, 136.5, 135.7, 132.5, 132.3, 130.0, 129.04, 129.00, 128.95, 128.9, 128.7, 126.0, 122.4, 57.6, 45.8, 42.6, 21.2; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₈H₂₇N₃O₂SH⁺ 470.1897; Found 470.1896.

N-(3-([1,1'-biphenyl]-4-yl)-2-((oxodiphenyl-16-sulfaneylidene)-amino)propyl) picolinamide (5b):

Compound **5b** was synthesized according to GP-1 as brown solid; eluent (30% ethyl acetate in hexane); m.p.: 126 - 128 °C; **Yield:** 80% (85 mg); ¹H NMR (**400 MHz, CDCl**₃) δ 8.81 (t, J = 6.2 Hz, 1H), 8.65 (d, J = 4.8 Hz, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.98 – 7.95 (m, 2H), 7.87–7.82 (m, 1H), 7.63 – 7.60 (m, 2H), 7.54 (d, J = 7.9 Hz, 2H), 7.48 – 7.43 (m, 6H), 7.38 (t, J = 7.8 Hz, 3H), 7.34 – 7.31 (m, 3H), 7.22 (t, J = 7.7 Hz, 2H), δ 3.91 – 3.85 (m, 1H), 3.56 – 3.43 (m, 2H), 3.03 (d, J = 6.5 Hz, 2H); ¹³C NMR (**101 MHz, CDCl**₃) δ 164.6, 150.4, 148.3, 141.2, 141.0, 139.8, 139.2, 138.9, 137.3, 132.6, 132.3, 130.6, 129.1, 129.0, 128.89, 128.86, 128.7, 127.2, 127.1, 126.9, 126.0, 122.4, 57.6, 46.0, 42.6; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₃H₂₉N₃O₂S₂H⁺ 532.2053; Found 532.2049.

N-(3-(4-ethoxyphenyl)-2-((oxodiphenyl-l6-sulfaneylidene)-amino)propyl)picolinamide (5c):

Compound **5c** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane); **Yield:** 89% (89 mg); ¹H NMR (400 MHz, CDCl3) δ 8.78 – 8.75 (m, 1H), 8.63 (d, *J* = 4.9 Hz, 1H), 8.15 (d, *J* = 7.8 Hz, 1H), 7.94 (d, *J* = 7.6 Hz, 2H), 7.84 – 7.80 (m, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.44 – 7.34 (m, 5H), 7.26 – 7.22 (m, 2H), 7.12 (d, *J* = 8.3 Hz, 2H), 6.83 (d, *J* = 8.3 Hz, 2H), 4.02 (q, *J* = 7.0 Hz, 2H), 3.84 – 3.78 (m, 1H), 3.47 – 3.35 (m, 2H), 2.90 (d, *J* = 6.7 Hz, 2H), 1.40 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 157.6, 150.5, 148.3, 141.1, 139.9, 137.2, 132.5, 132.3, 131.6, 131.0, 129.04, 129.00, 128.9, 128.7, 126.0, 122.3, 114.3, 63.6, 57.7, 45.8, 42.1, 15.0; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₂₉N₃O₃SH⁺ 500.2002; Found 500.2034.

N-(3-(4-(benzyloxy)phenyl)-2-((oxodiphenyl-l6-sulfaneylidene)amino)propyl) picolinamide (5d):

Compound **5d** was synthesized according to GP-1 as sticky colourless liquid; eluent (35% ethyl acetate in hexane); **Yield:** 81% (91 mg); ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.80 – 8.77 (m, 1H), 8.65 – 8.63 (m, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 7.96 – 7.93 (m, 2H), 7.85 – 7.81 (m, 1H), 7.49 – 7.42 (m, 6H), 7.38 – 7.34 (m, 5H), 7.31 – 7.29 (m, 1H), 7.22 (t, *J* = 7.7 Hz, 2H), 7.17 – 7.14 (m, 2H), 6.94 – 6.92 (m, 2H), 5.08 (s, 2H), 3.86 – 3.80 (m, 1H), 3.49 – 3.43 (m, 1H), 3.40 – 3.35 (m, 1H), 2.93 (d, *J* = 6.7 Hz, 2H); ¹³C **NMR (101 MHz**, **CDCl**₃) δ 164.5, 157.5, 150.5, 148.3, 141.1, 139.9, 137.4, 137.2, 132.5, 132.3, 132.1, 131.0, 129.05, 129.00, 128.9, 128.73, 128.68, 128.0, 127.5, 126.0, 122.4, 114.8, 70.2, 57.7, 45.8, 42.1; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₄H₃₁N₃O₃SH⁺ 562.2159; Found 562.2155.

N-(3-(4-(allyloxy)phenyl)-2-((oxodiphenyl-l6-sulfaneylidene)-amino)propyl)picolinamide (5e):

Compound **5e** was synthesized according to GP-1 as pale yellow liquid; eluent (35% ethyl acetate in hexane); **Yield:** 78% (80 mg); ¹**H NMR (400 MHz, CDCl₃)** δ 8.78 – 8.75 (m, 1H), 8.63 – 8.61 (m, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 7.94 – 7.92 (m, 2H), 7.83 – 7.79 (m, 1H), 7.49 – 7.45 (m, 2H), 7.44 – 7.33 (m, 5H), 7.25 – 7.22 (m, 2H), 7.14 – 7.11 (m, 2H), 6.87 – 6.82 (m, 2H), 6.09 – 6.00 (m, 1H), 5.42 – 5.37 (m, 1H), 5.27 – 5.23 (m, 1H), 4.53 – 4.51 (m, 2H), 3.84 – 3.78 (m, 1H), 3.47 – 3.34 (m, 2H), 2.90 (d, *J* = 6.6 Hz, 2H); ¹³**C NMR (126 MHz, CDCl₃)** δ 164.5, 157.3, 150.5, 148.3, 141.1, 139.9, 137.2, 133.6, 132.5, 132.3, 132.0, 131.0, 129.04, 129.0, 128.9, 128.7, 126.0, 122.3, 117.7, 114.6, 69.0, 57.7, 45.7, 42.1; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₀H₂₉N₃O₃SH⁺ 512.2002; Found 512.1999.

N-(3-(4-(methylthio)phenyl)-2-((oxodiphenyl-l6-sulfaneylidene)-amino)propyl)picolinamide (5f):

Compound **5f** was synthesized according to GP-1 as Pale yellow solid; eluent (35% ethyl acetate in hexane); m.p.: 128 - 130 °C; **Yield:** 85% (85 mg); ¹H NMR (**400 MHz, CDCl**₃) δ 8.80 - 8.77 (m, 1H), 8.66 (d, *J* = 4.8 Hz, 1H), 8.19 (d, *J* = 7.8 Hz, 1H), 7.97 - 7.95 (m, 2H), 7.88 - 7.84 (m, 1H), 7.52 - 7.50 (m, 2H), 7.46 - 7.38 (m, 5H), 7.30 - 7.28 (m, 2H), 7.24 - 7.22 (m, 2H), 7.19 - 7.17 (m, 2H), 3.87 - 3.81 (m, 1H), 3.53 - 3.39 (m, 2H), 2.96 (d, *J* = 6.6 Hz, 2H), 2.50 (s, 3H); ¹³C NMR (**101 MHz, CDCl**₃) δ 164.5, 150.4, 148.3, 141.0, 139.9, 137.3, 136.8, 135.9, 132.5, 132.3, 130.6, 129.1, 129.0, 128.8, 128.6, 127.0, 126.0, 122.3, 57.5, 45.8, 42.4, 16.4; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₈H₂₇N₃O₂S₂H⁺ 502.1617; Found 502.1639.

N-(3-(4-fluorophenyl)-2-((oxodiphenyl-l6-sulfaneylidene)-amino)propyl)picolinamide (5g):

Compound **5g** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane); **Yield:** 70% (66 mg); ¹**H NMR (500 MHz, CDCl**₃) δ 8.75 (t, *J* = 6.2 Hz, 1H), 8.65 – 8.63 (m, 1H), 8.17 – 8.15 (m, 1H), 7.93 – 7.91 (m, 2H), 7.86 – 7.82 (m, 1H), 7.52 – 7.50 (m, 2H), 7.48 – 7.43 (m, 2H), 7.42 – 7.36 (m, 3H), 7.29 – 7.26 (m, 2H), 7.20 – 7.17 (m, 2H), 6.97 (t, *J* = 8.8 Hz, 2H), 3.83 – 3.79 (m, 1H), 3.49 – 3.44 (m, 1H), 3.42 – 3.37 (m, 1H), 2.95 – 2.94 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.5, 161.8 (d, *J* = 243.8 Hz), 150.5, 148.3, 141.1, 140.2, 137.3, 135.4 (d, *J* = 3.5 Hz), 132.5 (d, *J* = 27.3 Hz), 131.5 (d, *J* = 7.7 Hz), 129.11, 129.05, 128.8, 128.7, 126.1, 122.4, 115.1, 114.9, 57.5, 45.8, 42.2; ¹⁹F NMR (471 MHz, CDCl₃) δ -117.3; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₄FN₃O₂SH⁺474.1646; Found 474.1675.

N-(3-(4-chlorophenyl)-2-((oxodiphenyl-l6-sulfaneylidene)-amino)propyl)picolinamide (5h):

Compound **5h** was synthesized according to GP-1 as sticky brown liquid; eluent (40% ethyl acetate in hexane); **Yield:** 76% (74 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 8.75 (brs, 1H), 8.64 (d, *J* = 4.8 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.93 – 7.91 (m, 2H), 7.87 – 7.82 (m, 1H), 7.49 – 7.36 (m, 8H), 7.26 – 7.24 (m, 3H), 7.17 – 7.14 (m, 2H), 3.84 – 3.78 (m, 1H), 3.50 – 3.37 (m, 2H), 2.95 – 2.93 (m, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ 164.6, 150.4, 148.3, 140.9, 139.9, 138.2, 137.3, 132.6, 132.4, 132.1, 131.5, 129.13, 129.07, 128.8, 128.7, 128.4, 126.1, 122.4, 57.4, 45.9, 42.3; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₄ClN₃O₂SH⁺ 490.1351; Found 490.1359.

N-(3-(4-bromophenyl)-2-((oxodiphenyl-l6-sulfaneylidene)-amino)propyl) picolinamide (5i):

Compound **5i** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane). **Yield:** 68% (72 mg); ¹**H NMR (500 MHz, CDCl₃)** δ 8.72 (t, *J* = 6.3 Hz, 1H), 8.61 (d, *J* = 4.7 Hz, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 2H), 7.83 – 7.80 (m, 1H), 7.46 – 7.43 (m, 3H), 7.42 – 7.34 (m, 6H), 7.24 – 7.23 (m, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 3.81 – 3.76 (m, 1H), 3.48 – 3.43 (m, 1H), 3.40 – 3.35 (m, 1H), 2.93 – 2.86 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.5, 150.4, 148.3, 140.9, 139.9, 138.8, 137.3, 132.6, 132.4, 131.9, 131.3, 129.12, 129.06, 128.7, 128.6, 126.1, 122.4, 120.1, 57.3, 45.9, 42.3; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₄BrN₃O₂SH⁺ 534.0845; Found 534.0847.

N-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-(m-tolyl)propyl)picolinamide (5j):

Compound **5j** was synthesized according to GP-1 as sticky colourless liquid; eluent (30% ethyl acetate in hexane); **Yield:** 84% (79 mg); ¹**H NMR (400 MHz, CDCl₃)** δ 8.78 (brs, 1H), 8.64 (d, *J* = 5.1 Hz, 1H), 8.16 (d, *J* = 7.6 Hz, 1H), 7.95 (d, *J* = 7.6 Hz, 2H), 7.85 – 7.81 (m, 1H), 7.47 – 7.35 (m, 7H), 7.23 – 7.20 (m, 3H), 7.05 (brs, 3H), 3.88 – 3.82 (m, 1H), 3.51 – 3.37 (m, 2H), 2.96 – 2.93 (m, 2H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 150.6, 148.3, 141.3, 139.8, 139.7, 137.7, 137.2, 132.5, 132.2, 131.0, 129.01, 128.98, 128.94, 128.8, 128.2, 127.2, 127.0, 126.0, 122.4, 57.8, 46.1, 42.9, 21.5; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₈H₂₇N₃O₂SH⁺ 470.1897; Found 470.1929.

N-(3-(3-methoxyphenyl)-2-((oxodiphenyl-l6-sulfaneylidene)-amino)propyl) picolinamide (5k):

Compound **5k** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane); **Yield:** 88% (85 mg); ¹**H NMR (400 MHz, CDCl**₃) δ 8.80 – 8.77 (m, 1H), 8.65 (d, *J* = 4.7 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.96 – 7.94 (m, 2H), 7.86 – 7.82 (m, 1H), 7.48 – 7.35 (m, 7H), 7.23 – 7.20 (m, 3H), 6.85 (d, *J* = 7.5 Hz, 1H), 6.81 – 6.76 (m, 2H), 3.88 – 3.83 (m, 1H), 3.77 (s, 3H), 3.50 – 3.37 (m, 2H), 2.96 – 2.94 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 159.7, 150.6, 148.4, 141.3, 141.2, 139.8, 137.3, 132.6, 132.3, 129.2, 129.1 (2xC), 129.0, 128.8, 126.0, 122.6, 122.4, 115.4, 112.2, 57.7, 55.3, 46.0, 43.1; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₈H₂₇N₃O₃SH⁺ 486.1846; Found 486.1846.

N-(3-(3-fluorophenyl)-2-((oxodiphenyl-l6-sulfaneylidene)-amino)propyl) picolinamide (51):

Compound **51** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane); m.p.: 98 – 100 °C; **Yield:** 68% (64 mg); ¹H NMR (**500 MHz, CDCl**₃) δ 8.79 (brs, 1H), 8.66 – 8.65 (m, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.85 (t, *J* = 7.8 Hz, 1H), 7.49 – 7.37 (m, 7H), 7.29 – 7.27 (m, 3H), 7.04 (d, *J* = 7.6

Hz, 1H), 6.96 - 6.93 (m, 2H). 3.88 - 3.83 (m, 1H), 3.51 - 3.46 (m, 1H), 3.44 - 3.40 (m, 1H), 2.98 (d, J = 6.7 Hz, 2H). **13C NMR (126 MHz, CDCl3)** δ 164.5, 162.9 (d, J = 245.1 Hz), 150.4, 148.3, 142.3 (d, J = 7.3 Hz), 140.9, 139.7, 137.3, 132.5 (d, J = 29.7 Hz), 129.6 (d, J = 8.2 Hz), 129.1, 129.0, 128.8, 128.7, 126.1, 125.8 (d, J = 2.8 Hz), 122.4, 117.0, 116.8, 113.1 (d, J = 21.0 Hz), 57.4, 45.9, 42.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -114.1; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₄FN₃O₂SH⁺474.1646; Found 474.1648.

N-(3-(3-chlorophenyl)-2-((oxodiphenyl-l6-sulfaneylidene)-amino)propyl) picolinamide (5m):

Compound **5m** was synthesized according to GP-1 as white solid; eluent (30% ethyl acetate in hexane); m.p.: 134 - 136 °C; **Yield:** 70% (69 mg); ¹H NMR (**500 MHz, CDCl**₃) δ 8.84 - 8.82 (m, 1H), 8.69 - 8.68 (m, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 7.96 (d, *J* = 7.7 Hz, 2H), 7.87 (t, *J* = 7.8 Hz, 1H), 7.52 - 7.38 (m, 7H), 7.30 - 7.27 (m, 5H), 7.18 - 7.16 (m, 1H), 3.92 - 3.87 (m, 1H), 3.54 - 3.49 (m, 1H), 3.43 - 3.38 (m, 1H), 3.02 - 2.93 (m, 2H); ¹³C NMR (**126 MHz, CDCl**₃) δ 164.6, 150.4, 148.3, 142.0, 141.0, 139.5, 137.3, 134.0, 132.6, 132.3, 130.4, 129.5, 129.1, 129.0, 128.8, 128.7, 128.4, 126.4, 126.1, 122.4, 57.6, 46.1, 42.5; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₄ClN₃O₂SH⁺490.1351; Found 490.1367.

N-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-(3-(trifluoromethyl)phenyl)propyl)picolinamide (5n):

Compound **5n** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane); **Yield:** 65% (68 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.82 – 8.79 (m, 1H), 8.65 – 8.64 (m, 1H), 8.15 (d, *J* = 7.8 Hz, 1H), 7.89 (d, *J* = 7.7 Hz, 2H), 7.83 (t, *J* = 7.7 Hz, 1H), 7.56 (s, 1H), 7.52 – 7.51 (m, 1H), 7.46 – 7.41 (m, 4H), 7.38 – 7.34 (m, 3H), 7.31 – 7.30 (m, 2H), 7.18 (t, *J* = 7.6 Hz, 2H), 3.90 – 3.85 (m, 1H), 3.54 – 3.49 (m, 1H), 3.42 – 3.37 (m, 1H), 3.06 – 2.97 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 150.3, 148.3, 140.95, 140.88, 139.5, 137.3, 133.6, 132.7, 132.3, 130.4 (q, *J* = 31.8 Hz), 129.1, 129.0, 128.64 (2xC), 128.57, 127.0 (q, *J* = 3.9 Hz), 126.1, 124.4 (q, *J* = 272.2 Hz), 123.1 (q, *J* = 3.8 Hz), 122.4, 57.6, 46.2, 42.5; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.3; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₈H₂₄F₃N₃O₂SH⁺ 524.1614; Found 524.1620

N-(3-(3,5-dimethylphenyl)-2-((oxodiphenyl-16-sulfaneylidene)amino)propyl)picolinamide (50):

Compound **50** was synthesized according to GP-1 as sticky brown liquid; eluent (30% ethyl acetate in hexane); **Yield:** 85% (82 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.81 – 8.78 (m, 1H), 8.66 (d, *J* = 4.8 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.96 (d, *J* = 7.9 Hz, 2H), 7.86 – 7.82 (m, 1H), 7.46 – 7.42 (m, 2H), 7.40–7.36 (m, 3H), 7.31 (d, *J* = 7.7 Hz, 2H), 7.19 (t, *J* = 7.6 Hz, 2H), 6.89 – 6.87 (m, 3H), 3.91 – 3.85 (m, 1H), 3.48 – 3.41 (m, 1H), 3.38 – 3.31 (m, 1H), 2.94 – 2.88 (m, 2H), 2.32 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 150.6, 148.4, 141.4, 139.7, 139.6, 137.6, 137.2, 132.5, 132.2, 129.1, 129.0, 128.9, 128.8, 128.1, 127.8, 126.0, 122.4, 58.0, 46.2, 42.8, 21.4; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₂₉N₃O₂SH⁺ 484.2053; Found 484.2036.

N-(3-(4-acetylphenyl)-2-((oxodiphenyl-l6-sulfaneylidene)amino)-propyl) picolinamide (5p):

Methyl-4-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-(picolinamido)propyl)benzoate (5q):

Compound **5q** was synthesized according to GP-1 as white solid; eluent (40% ethyl acetate in hexane); m.p.: $106 - 108 \,^{\circ}$ C; **Yield:** 70% (72 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.77 - 8.74 (m, 1H), 8.62 (d, *J* = 4.8 Hz, 1H), 8.15 (d, *J* = 7.8 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 2H), 7.90 - 7.88 (m, 2H), 7.85 - 7.80 (m, 1H), 7.47 - 7.39 (m, 4H), 7.38 - 7.34 (m, 3H), 7.31 - 7.29 (m, 2H), 7.21 (t, *J* = 7.6 Hz, 2H), 3.90 (s, 3H), 3.85 - 3.80 (m, 1H), 3.52 - 3.41 (m, 2H), 3.02 (d, *J* = 6.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 164.5, 150.3, 148.3, 145.4, 140.9, 139.7, 137.3, 132.6, 132.4, 130.2, 129.6, 129.1, 129.0, 128.7, 128.6, 128.2, 126.1, 122.4, 57.3, 52.1, 46.0, 42.9; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₂₇N₃O₄SH⁺ 514.1795; Found 514.1800.

N-(3-(4-cyanophenyl)-2-((oxodiphenyl-l6-sulfaneylidene)amino)-propyl)picolinamide (5r):

Compound **5r** was synthesized according to GP-1 as off white solid; eluent (40% ethyl acetate in hexane); m.p.: 108 - 110 °C; **Yield:** 69% (66 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.72 (brs, 1H), 8.63 - 8.62 (m, 1H), 8.15 (d, *J* = 7.9 Hz, 1H), 7.88 - 7.83 (m, 2H), 7.54 (t, *J* = 9.7 Hz, 4H), 7.47 - 7.41 (m, 4H), 7.38 - 7.29 (m, 6H), 3.80 - 3.74 (m, 1H), 3.53 - 3.45 (m, 2H), 3.03 - 3.01 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 150.2, 148.3, 145.4, 140.6, 140.0, 137.4, 132.7, 132.5, 132.0, 130.9, 129.2, 129.1, 128.6, 128.5, 126.2, 122.4, 119.2, 110.1, 56.9, 45.7, 43.0; HRMS (ESI/TOF-Q) m/z: [M+Na]⁺ Calculated for C₂₈H₂₄N₄O₂SNa⁺ 503.1512; Found 503.1530.

N-(3-(4-nitrophenyl)-2-((oxodiphenyl-l6-sulfaneylidene)amino)propyl)-picolinamide (5s):

Compound **5s** was synthesized according to GP-1 as sticky yellow liquid; eluent (40% ethyl acetate in hexane); **Yield:** 67% (67 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.66 – 8.63 (m, 1H), 8.54 (d, *J* = 4.8 Hz, 1H), 8.08 – 8.02 (m, 3H), 7.81 – 7.74 (m, 3H), 7.46 (d, *J* = 7.8 Hz, 2H), 7.41 – 7.35 (m, 3H), 7.33 – 7.28 (m, 4H), 7.22 – 7.18 (m, 2H), 3.75 – 3.69 (m, 1H), 3.46 – 3.38 (m, 2H), 3.02 – 2.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 150.2, 148.3, 147.6, 146.7, 140.5, 140.0, 137.4, 132.8, 132.6, 130.9, 129.2, 129.1, 128.6, 128.5, 126.2, 123.4, 122.4, 56.8, 45.8, 42.7; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₄N₄O₄SH⁺ 501.1591; Found 501.1610.

N-(2-((bis(4-methoxyphenyl)(oxo)-l6-sulfaneylidene)amino)-3-(4-ethoxyphenyl)propyl)picolinamide (5t):

Compound **5t** was synthesized according to GP-1 as sticky colourless liquid; eluent (40% ethyl acetate in hexane); **Yield:** 90% (101 mg); ¹**H NMR (400 MHz, CDCI**₃) δ 8.78 – 8.75 (m, 1H), 8.64 (d, *J* = 4.7 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.85 – 7.81 (m, 3H), 7.43 – 7.38 (m, 3H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.84 – 6.80 (m, 4H), 6.71 (d, *J* = 8.5 Hz, 2H), 4.02 (q, *J* = 7.0 Hz, 2H), 3.84 – 3.73 (m, 7H), 3.45 – 3.32 (m, 2H), 2.90 (d, *J* = 6.7 Hz, 2H), 1.41 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCI₃) δ 164.5, 162.8, 162.5, 157.6, 150.6, 148.3, 137.2, 133.2, 131.9, 131.8, 131.0, 130.8, 130.6, 126.0, 122.4, 114.33, 114.26, 114.2, 63.6, 57.6, 55.64, 55.59, 45.8, 42.2, 15.0; HRMS (ESI/TOF-Q) m/z[M+H]⁺ Calculated for C₃₁H₃₃N₃O₅SH⁺ 560.2214; Found 560.2214.

N-(2-((10-(cyclopropanecarbonyl)-5-oxido-10H-5l4-phenothiazin-5-ylidene)-amino)-3-(4-ethoxyphenyl)propyl)picolinamide (5u):

Compound **5u** was synthesized according to GP-1 as brown solid; eluent (40% ethyl acetate in hexane); m.p.: 130 –132 °C; **Yield:** 66% (77 mg); ¹**H** NMR (400 MHz, CDCl₃) δ 8.58 – 8.56 (m, 1H), 8.49 – 8.48 (m, 1H), 8.15 (d, *J* = 7.9 Hz, 1H), 8.06 (d, *J* = 7.8 Hz, 1H), 7.95 (d, *J* = 7.8 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.82 – 7.79 (m, 2H), 7.59 – 7.54 (m, 2H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.41 – 7.37 (m, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.71 (d, *J* = 8.0 Hz, 2H), 3.95 (q, *J* = 7.1 Hz, 2H), 3.54 – 3.42 (m, 2H), 3.37 – 3.30 (m, 1H), 2.68 – 2.55 (m, 2H), 1.96 – 1.91 (m, 1H), 1.36 (t, *J* = 7.0 Hz, 3H), 1.20 – 1.19 (m, 2H), 0.87 – 0.84 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 164.7, 157.6, 150.6, 148.4, 139.3, 138.9, 137.3, 135.1, 134.0, 132.1, 132.0, 130.6, 127.6, 127.5, 127.2, 126.8, 126.0, 125.8, 125.4, 122.4, 114.6, 63.5, 57.3, 44.3, 41.9, 15.1, 14.4, 11.1, 10.9; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₃H₃₂N₄O₄SH⁺ 581.2217; Found 581.2214.

N-(3-(naphthalen-2-yl)-2-((oxodiphenyl-l6-sulfaneylidene)amino)propyl)picolinamide (5v):

Compound **5v** was synthesized according to GP-1 as brown solid; eluent (35% ethyl acetate in hexane); m.p.: $134 - 136^{\circ}$ C; **Yield:** 83% (84 mg); ¹H NMR (**400** MHz, CDCl₃) δ 8.83 - 8.80 (m, 1H), 8.64 (d, *J* = 4.8 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.91 (d, *J* = 7.9 Hz, 2H), 7.86 - 7.82 (m, 2H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.70 (s, 1H), 7.49 - 7.38 (m, 5H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.26 - 7.22 (m, 3H), 6.99 (t, *J* = 7.7 Hz, 2H), 3.95 - 3.88 (m, 1H), 3.57 - 3.47 (m, 2H), 3.19 - 3.09 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 150.5, 148.3, 141.1, 139.6, 137.5, 137.3, 133.7, 132.5, 132.3, 132.2, 129.0, 128.88, 128.85, 128.8, 128.7, 128.5, 127.8, 127.7, 127.6, 126.0 (2xC), 125.4, 122.4, 57.9, 46.3, 43.1; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₁H₂₇N₃O₂SH⁺ 506.1897; Found 506.1914.

N-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-(thiophen-2-yl)propyl)-picolinamide (5w):

Compound **5w** was synthesized according to GP-1 as off white solid; eluent (30% ethyl acetate in hexane); m.p.: 116 – 118°C; **Yield:** 71% (66 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.75 – 8.72 (m, 1H), 8.63 (d, *J* = 4.8 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 8.02 – 8.00 (m, 2H), 7.85 – 7.81 (m, 1H), 7.64 (d, *J* = 7.8 Hz, 2H), 7.46 – 7.36 (m, 5H), 7.31 (t, *J* = 7.7 Hz, 2H), 7.16 (d, *J* = 5.1 Hz, 1H), 6.97 – 6.94 (m, 1H), 6.88 (d, *J* = 3.4 Hz, 1H), 3.85 – 3.80 (m, 1H), 3.52 – 3.43 (m, 2H), 3.17 (d, *J* = 5.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 150.4, 148.3, 141.5, 141.0, 140.1, 137.3, 132.6, 132.4, 129.1, 128.9, 128.8, 128.7, 126.8, 126.4, 126.1, 124.0, 122.4, 57.2, 45.6, 36.8; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₅H₂₃N₃O₂S₂H⁺462.1304; Found 462.1309.

(E)-N-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-5-phenylpent-4-en-1-yl)picolinamide (6a):

Compound **6a** was synthesized according to GP-1 as pale yellow solid; eluent (30% ethyl acetate in hexane); m.p.: 120 - 122 °C; **Yield:** 87% (84 mg); ¹H NMR (**400 MHz, CDCl**₃) δ 8.75 – 8.72 (m, 1H), 8.61 (d, *J* = 4.8 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.99 (d, *J* = 7.9 Hz, 2H), 7.95 (d, *J* = 7.8 Hz, 2H), 7.84 (t, *J* = 7.6 Hz, 1H), 7.48 – 7.41 (m, 3H), 7.39 – 7.27 (m, 8H), 7.19 (t, *J* = 7.3 Hz, 1H), 6.48 (d, *J* = 15.8 Hz, 1H), 6.37 – 6.30 (m, 1H), 3.88 – 3.82 (m, 1H), 3.51 – 3.44 (m, 1H), 3.42 – 3.36 (m, 1H), 2.66 – 2.54 (m, 2H); ¹³C NMR (**101 MHz, CDCl**₃) δ 164.4, 150.5, 148.3, 140.8, 140.7, 137.8, 137.3, 132.5 (2xC), 132.3, 129.2, 129.1, 128.90, 128.87, 128.6, 127.8, 127.1, 126.2, 126.1, 122.4, 55.6, 45.7, 40.4; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₉H₂₇N₃O₂SH⁺ 482.1897; Found 482.1888.

(E)-N-(2-((bis(4-(tert-butyl)phenyl)(oxo)-l6-sulfaneylidene)amino)-5-phenylpent-4en-1-yl)picolinamide (6b):

Compound **6b** was synthesized according to GP-1 as pale yellow sticky liquid; eluent (20% ethyl acetate in hexane); **Yield:** 90% (107 mg); ¹**H** NMR (400 MHz, CDCl₃) δ 8.77 – 8.74 (m, 1H), 8.63 (d, *J* = 4.8 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.92 – 7.82 (m, 5H), 7.45 – 7.42 (m, 1H), 7.38 – 7.27 (m, 8H), 7.19 (t, *J* = 7.3 Hz, 1H), 6.47 (d, *J* = 15.9 Hz, 1H), 6.39 – 6.32 (m, 1H), 3.89 – 3.83 (m, 1H), 3.49 – 3.38 (m, 2H), 2.66 – 2.53 (m, 2H), 1.27 (s, 9H), 1.25 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 156.1 (2xC), 150.5, 148.3, 137.9, 137.84, 137.76, 137.3, 132.1, 128.7 (2xC), 128.6, 128.0, 127.0, 126.22, 126.17, 126.1, 126.0, 122.4, 55.5, 45.8, 40.5, 35.11, 35.09, 31.16, 31.15; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₇H₄₃N₃O₂SH⁺ 594.3149; Found 594.3185.

(E)-N-(2-((5-oxido-5l4-dibenzo[b,d]thiophen-5-ylidene)amino)-5-phenylpent-4-en-1-yl)picolinamide (6c):

Compound **6c** was synthesized according to GP-1 as sticky colourless liquid; eluent (30% ethyl acetate in hexane); **Yield:** 82% (82 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.45 – 8.42 (m, 2H), 8.14 (d, *J* = 7.8 Hz, 1H), 7.82 – 7.75 (m, 3H), 7.72 – 7.66 (m, 2H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.43 – 7.35 (m, 3H), 7.32 – 7.27 (m, 3H), 7.23 – 7.19 (m, 3H), 6.39 (d, *J* = 15.8 Hz, 1H), 6.25 – 6.17(m, 1H), 3.96 – 3.89 (m, 1H), 3.86 – 3.80 (m, 1H), 3.39 – 3.32 (m, 1H), 2.57 – 2.46 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 150.1, 148.1, 139.8, 139.5, 137.6, 137.2, 133.0, 132.8, 132.3, 132.0, 131.8, 130.2, 128.4 (2xC), 127.3, 127.1, 126.3, 126.0, 122.8, 122.7, 122.2, 121.5, 121.4, 55.2, 45.6, 39.9; HRMS (ESI/TOF-Q) m/z: [M+Na]⁺ Calculated for C₂₉H₂₅N₃O₂SNa⁺ 502.1560; Found 502.1591.

N-(3-(4-ethoxyphenyl)-2-((oxodiphenyl-l6-sulfaneylidene)amino)-1-phenylpropyl)picolinamide (6d):

Compound **6d** was obtained as pale yellow liquid; eluent (20% ethyl acetate in hexane); **Yield:** 36% (41 mg); **1H NMR (400 MHz, CDCl₃)** δ 9.44 – 9.42 (m, 5.95H), 8.71 – 8.60 (m, 6.14H), 8.16 – 8.05 (m, 5.95H), 8.04 – 7.95 (m, 2.28H), 7.92 – 7.84 (m, 11.91H), 7.84 – 7.80 (m, 6.04H), 7.78 – 7.76 (m, 1.10H), 7.65 – 7.62 (m, 10.02H), 7.53 – 7.46 (m, 6.06H), 7.45 – 7.41 (m, 21.26H), 7.40 – 7.37 (m, 6.19H), 7.36 – 7.30 (m, 21.07H), 7.29 – 7.27 (m, 6.08H), 7.25 – 7.19 (m, 12.20H), 7.07 – 7.04 (m, 1.96H), 7.01 – 6.98 (m, 10.18H), 6.91 – 6.85 (m, 2.16H), 6.81 – 6.77 (m, 10.13H), 5.28 – 5.25 (m, 5.18H), 5.17 – 5.09 (m, 1.05H), 4.12 – 4.08 (m, 2.08H), 4.05 – 3.99 (m, 10.20H), 3.70 – 3.66 (m, 6.01H), 2.89 – 2.84 (m, 5.90H), 2.78 – 2.72 (m, 6.00H), 1.43 – 1.39 (m, 18.29H); ¹³C NMR (101 MHz, CDCl₃) δ 163.5, 162.3, 159.0, 157.6, 150.7, 148.4, 147.5, 141.0, 139.7, 139.1, 137.4, 137.1, 132.7, 132.4, 132.2, 131.6, 131.0, 130.4, 130.0, 129.6, 129.0, 128.95, 128.90, 128.1, 127.4, 127.0, 126.4, 126.0, 122.5, 114.7, 114.3, 64.1, 63.6, 62.2, 61.7, 57.4, 41.4, 15.09, 15.05; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₅H₃₃N₃O₃SH⁺ 576.2315; Found 576.2319; **dr-5:1**.

N-(3-(4-ethoxyphenyl)-1-(4-methoxyphenyl)-2-((oxodi-p-tolyl-l6-sulfaneylidene) amino)propyl)picolinamide (6e):

Compound **6e** was obtained as pale yellow liquid; eluent (20% ethyl acetate in hexane); **Yield:** 49% (62 mg); ¹**H NMR (400 MHz, CDCl**₃) δ 9.49 – 9.39 (m, 3H), 8.74 – 8.64 (m, 3H), 8.21 – 8.08 (m, 3H), 7.95 (d, J = 8.7 Hz, 1H), 7.86 – 7.79 (m, 4H), 7.77 – 7.75 (m, 3H), 7.66 – 7.63 (m, 2H), 7.59 – 7.57 (m, 3H), 7.48 – 7.45 (m, 2H), 7.44 – 7.42 (m, 2H), 7.37 – 7.34 (m, 4H), 7.13 – 7.09 (m, 6H), 7.03 – 6.97 (m, 8H), 6.93 – 6.89 (m, 6H), 6.87 – 6.85 (m, 4H), 6.84 – 6.81 (m, 2H), 6.80 – 6.78 (m, 4H), 6.75 (d, J = 2.8 Hz, 1H), 6.74 – 6.72 (m, 2H), 5.72 – 5.69 (m, 1H), 5.19 – 5.15 (m, 2H), 4.06 – 3.99 (m, 8H), 3.80 – 3.79 (m, 9H), 3.68 – 3.64 (m, 2H), 3.42 – 3.38 (m, 1H), 2.84 – 2.73 (m, 4H), 2.33 – 2.31 (m, 15H), 2.23 (s, 3H), 1.43 – 1.41 (m, 6H), 1.41 – 1.40 (m, 3H) **;** ¹³C NMR (101 MHz, CDCl₃) δ 163.6, 163.3, 158.9, 158.3, 158.1, 157.5, 157.4, 151.0, 150.8, 148.4, 148.3, 143.4, 143.0, 142.9, 142.5, 138.2, 137.1, 137.0, 136.9, 136.0, 134.0, 132.4, 131.7, 131.4, 131.3, 131.1, 131.0, 130.7, 129.60, 129.56, 129.4, 129.3, 129.0, 128.9, 128.8, 125.93, 125.89, 122.5, 122.4, 115.2, 114.2, 114.0, 113.5, 113.1, 63.6 (2xC), 63.5, 62.4, 61.6, 56.5, 55.3 (2xC), 53.2, 41.6, 41.5, 41.0, 21.6, 21.5, 15.1 (2xC); HRMS (ESI/TOF-Q) m/z: [M+H]⁺Calculated for C₃₈H₃₉N₃O₄SH⁺ 634.2734; Found 634.2723; **dr-2:1**.

4-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-(picolinamido)propyl)benzyl 2-(11oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate (6f):

Compound **6f** was synthesized according to GP-1 as colourless sticky liquid; eluent (50% ethyl acetate in hexane); **Yield:** 75% (110 mg); ¹H NMR (**400** MHz, CDCl₃) δ 8.73 (t, *J* = 6.1 Hz, 1H), 8.63 (d, *J* = 4.7 Hz, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 8.11 (d, *J* = 2.4 Hz, 1H), 7.93 – 7.91 (m, 2H), 7.88 – 7.81 (m, 2H), 7.56 – 7.52 (m, 1H), 7.48 – 7.42 (m, 5H), 7.39 – 7.33 (m, 5H), 7.29 – 7.27 (m, 1H), 7.26 – 7.24 (m, 2H), 7.22 – 7.20 (m, 3H), 6.95 (d, *J* = 8.4 Hz, 1H), 5.17 – 5.13 (m, 4H), 3.83 – 3.77 (m, 1H), 3.67 (s, 2H), 3.51 – 3.40 (m, 2H), 2.97 (d, *J* = 6.3 Hz, 2H).¹³C NMR (**101** MHz, CDCl₃) δ 190.9, 171.4, 164.5, 160.6, 150.5, 148.3, 141.0, 140.6, 140.0, 139.8, 137.3, 136.4, 135.7, 133.7, 132.9, 132.6, 132.4, 130.4, 129.6, 129.4, 129.1, 129.0, 128.8, 128.7, 128.4, 127.9, 127.8, 126.1 125.3, 122.4, 121.2, 73.7, 66.9, 57.5, 45.9, 42.7, 40.3; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₄₄H₃₇N₃O₆SH⁺736.2476; Found 736.2487.

4-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-(picolinamido)propyl)benzyl (2R)-2-(6-methoxynaphthalen-2-yl)propanoate (6g):

Compound **6g** was synthesized according to GP-1 as colourless sticky liquid; eluent (50% ethyl acetate in hexane); **Yield:** 84% (117 mg); ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.78 – 8.75 (m, 2H), 8.64 (d, *J* = 4.8 Hz, 2H), 8.16 (d, *J* = 7.8 Hz, 2H), 7.92 (d, *J* = 7.8 Hz, 4H), 7.87 – 7.82 (m, 2H), 7.63 – 7.58 (m, 6H), 7.47 – 7.30 (m, 16H), 7.21 – 7.14 (m, 12H), 7.12 – 7.03 (m, 4H), 5.17 – 5.06 (m, 4H), 3.89 (d, *J* = 3.2 Hz, 6H), 3.85 – 3.79 (m, 4H), 3.49 – 3.43 (m, 2H), 3.41 – 3.35 (m, 2H), 2.95 (d, *J* = 6.7 Hz, 4H), 1.56 (d, *J* = 7.2 Hz, 6H); ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 174.64, 174.63, 164.5 (2xC), 157.75, 157.73, 150.5 (2xC), 148.3 (2xC), 141.1 (2xC), 139.82 (2xC), 139.78 (2xC), 137.3 (2xC), 135.7 (2xC), 134.00, 133.96, 133.8 (2xC), 132.6, 132.3, 130.3 (2xC), 129.36 (2xC), 129.35 (2xC), 129.1 (2xC), 129.03 (2xC), 128.97 (2xC), 128.8(2xC), 128.7 (2xC), 128.2, 128.1, 127.2 (2xC), 126.4, 126.3, 126.10 (2xC), 126.07, 126.0, 122.4 (2xC), 119.1, 119.0, 105.75, 105.74, 66.65, 66.59, 57.6 (2xC), 55.4 (2xC), 45.9 (2xC), 45.64, 45.62, 42.7 (2xC), 18.72, 18.69; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₄₂H₃₉N₃O₅SH⁺ 698.2683; Found 698.2690; **dr-1:1.**

4-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-(picolinamido)propyl)benzyl palmitate (6h):

Compound **6h** was synthesized according to GP-1 as brown solid; eluent (45% ethyl

acetate in hexane); m.p.: 74 - 76 °C; **Yield:** 85% (123 mg); ¹**H** NMR (400 MHz, CDCl₃) δ 8.83 - 8.80 (t, J = 6.2 Hz, 1H), 8.69 (d, J = 4.8 Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H), 7.98 (d, J = 7.8 Hz, 2H), 7.88 (t, J = 7.7 Hz, 1H), 7.52 - 7.46 (m, 4H), 7.42 (t, J = 7.9 Hz, 3H), 7.34 - 7.28 (m, 6H), 5.15 (s, 2H), 3.90 - 3.84 (m, 1H), 3.55 - 3.43 (m, 2H), 3.03 (d, J =6.5 Hz, 2H), 2.37 (t, J = 7.6 Hz, 2H), 1.69 - 1.62 (m, 2H), 1.33 - 1.27 (m, 24H), 0.92 (t, J =6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 164.5, 150.5, 148.3, 141.0, 139.9, 139.8, 137.3, 134.2, 132.5, 132.3, 130.3, 129.1, 129.0, 128.9, 128.7, 128.3, 126.0, 122.4, 66.1, 57.5, 45.8, 42.7, 34.5, 32.0, 29.80, 29.79, 29.78, 29.76, 29.74, 29.69, 29.54, 29.46, 29.34, 29.27, 25.1, 22.8, 14.2; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₄₄H₅₇N₃O₄SH⁺724.4143; Found 724.4181.

Ethyl(4-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-(picolinamido)propyl)benzoyl)-L-methioninate (6i):

Compound **6i** was synthesized according to GP-1 as colourless sticky liquid; eluent (80% ethyl acetate in hexane); **Yield:** 52% (68 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.74 – 8.72 (m, 2H), 8.63 (d, *J* = 4.5 Hz, 2H), 8.16 (d, *J* = 7.9 Hz, 2H), 7.91 (d, *J* = 7.8 Hz, 4H), 7.84 (t, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 7.8 Hz, 4H), 7.49 – 7.35 (m, 14H), 7.30 (d, *J* = 7.9 Hz, 4H), 7.25 – 7.24 (m, 2H), 6.93 (d, *J* = 7.8 Hz, 2H), 4.93 – 4.86 (m, 2H), 4.28 – 4.23 (m, 4H), 3.80 – 3.78 (m, 2H), 3.73 – 3.44 (m, 6H), 3.03 – 3.01 (m, 4H), 2.64 – 2.54 (m, 4H), 2.34 – 2.25 (m, 2H), 2.15 – 2.10 (m, 8H), 1.33 – 1.29 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 172.3 (2xC), 167.1 (2xC), 164.6 (2xC), 150.4 (2xC), 148.4 (2xC), 144.1 (2xC), 140.9 (2xC), 139.9 (2xC), 137.3 (2xC), 132.7 (2xC), 132.4 (2xC), 131.8 (2xC), 130.4 (2xC), 129.20, 129.16, 129.13, 129.10, 128.73, 128.71, 128.6 (2xC), 127.1 (2xC), 126.1 (2xC), 122.4 (2xC), 61.9 (2xC), 57.3 (2xC), 52.3 (2xC), 46.0, 45.9, 42.8 (2xC), 32.0, 31.9, 30.3 (2xC), 15.7 (2xC), 14.3 (2xC); HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₅H₃₈N₄O₅S₂H⁺ 659.2356; Found 659.2383; **dr-1:1.**

(E)-N-(3-((oxodiphenyl-l6-sulfaneylidene)amino)-6-phenylhex-5-en-1-yl) picolinamide (6j) & (E)-N-(3-(((oxodiphenyl-l6-sulfaneylidene)amino)methyl)-5phenylpent-4-en-1-yl)picolinamide (6j´):

Compound (6j+6j') was synthesized according to GP-2 as colourless sticky liquid; eluent (30% ethyl acetate in hexane); Yield: 90% (89 mg); (6j:6j' = 1:2).

Minor isomer (6j): ¹H NMR (400 MHz, CDCl₃) δ 8.55 (brs, 1H), 8.45 (d, J = 4.3 Hz, 1H), 8.19 – 8.17 (m, 1H), 8.04 – 8.02 (m, 2H), 7.99 – 7.97 (m, 2H), 7.84 – 7.80 (m, 1H), 7.49 – 7.42 (m, 4H), 7.40 – 7.38 (m, 1H), 7.37 – 7.33 (m, 3H), 7.32 – 7.28 (m, 3H), 7.21 – 7.16 (m, 1H), 6.41 (d, J = 15.8 Hz, 1H), 6.21 (dt, J = 15.8, 7.3 Hz, 1H), 3.80 – 3.72 (m, 1H), 3.70 – 3.61 (m, 1H), 3.38 – 3.32 (m, 1H), 2.58 – 2.48 (m, 2H), 2.06 – 1.98 (m, 1H), 1.92 – 1.83 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 150.5, 148.1, 141.2, 140.9, 137.9, 137.3, 132.5, 132.4, 132.1, 129.2, 129.0, 128.9, 128.8, 128.6, 128.3, 127.1, 126.2, 125.9, 122.2, 53.1, 42.3, 37.0, 36.7; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₀H₂₉N₃O₂SH⁺496.2053; Found 496.2056.

Major isomer (6j): ¹H NMR (500 MHz, CDCl₃) δ 8.42 (d, J = 4.7 Hz, 1H), 8.23 (t, J = 6.0 Hz, 1H), 8.17 (d, J = 7.7 Hz, 1H), 7.97 – 7.93 (m, 4H), 7.82 – 7.79 (m, 1H), 7.49 – 7.46 (m, 2H), 7.44 – 7.41 (m, 4H), 7.38 – 7.36 (m, 3H), 7.29 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 7.2 Hz, 1H), 6.54 (d, J = 15.9 Hz, 1H), 6.17 (dd, J = 15.9, 8.8 Hz, 1H), 3.60 – 3.55 (m, 2H), 3.13 (d, J = 6.3 Hz, 2H), 2.68 – 2.61 (m, 1H), 2.19 – 2.13 (m, 1H), 1.83 – 1.77 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 164.3, 150.3, 148.1, 141.0, 140.9, 137.7, 137.3, 132.9, 132.5, 132.4, 131.3, 129.2 (2xC), 128.8, 128.7, 128.6, 127.2, 126.3, 126.0, 122.2, 48.4, 44.2, 38.1, 32.5; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₀H₂₉N₃O₂SH⁺ 496.2053; Found 496.2060.

(E)-N-(3-(((oxodiphenyl-l6-sulfaneylidene)amino)methyl)-5-phenylpent-4-en-1yl)picolinamide (6k) & (E)-N-(3-(((oxodi-p-tolyl-l6-sulfaneylidene)amino)methyl)-5phenylpent-4-en-1-yl)picolinamide (6k'):

Compound (**6k**+ **6k**') was synthesized according to GP-2 as colourless sticky liquid; eluent (30% ethyl acetate in hexane); Yield: 95% (99 mg); (**6k:6k**' = **1:2**).

Minor Isomer (**6k**): ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.55 – 8.53 (m, 1H), 8.48 – 8.46 (m, 1H), 8.20 – 8.17 (m, 1H), 7.90 – 7.85 (m, 3H), 7.84 – 7.80 (m, 2H), 7.40 – 7.37 (m, 1H), 7.34 – 7.28 (m, 4H), 7.23 – 7.16 (m, 3H), 7.13 – 7.11 (m, 2H), 6.40 (d, *J* = 15.9 Hz, 1H), 6.21 (dt, *J* = 15.8, 7.3 Hz, 1H), 3.78 – 3.72 (m, 1H), 3.69 – 3.60 (m, 1H), 3.35 – 3.29 (m, 1H), 2.56 – 2.46 (m, 2H), 2.34 (s, 3H), 2.32 (s, 3H), 2.04 – 1.96 (m, 1H), 1.90 – 1.81 (m, 1H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 164.5, 150.6, 148.1, 143.2, 142.9, 138.5, 138.2, 137.9, 137.3, 131.9, 129.8, 129.7, 128.9, 128.8, 128.6, 128.4, 127.0, 126.2, 125.9, 122.2, 53.0, 42.4, 37.0, 36.7, 21.5 (2xC); **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₂H₃₃N₃O₂SH ⁺ 524.2366; Found 524.2360.

Major isomer (6k'): ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 4.6 Hz, 1H), 8.24 (brs, 1H), 8.16 (d, J = 7.7 Hz, 1H), 7.86 – 7.78 (m, 5H), 7.37 – 7.36 (m, 3H), 7.29 (d, J = 7.3

Hz, 2H), 7.26 – 7.19 (m, 5H), 6.55 (d, J = 15.8 Hz, 1H), 6.13 (dd, J = 15.7, 8.2 Hz, 1H), 3.58 – 3.55 (m, 2H), 3.13 (d, J = 5.7 Hz, 2H), 2.75 – 2.63 (m, 1H), 2.360 (s, 3H), 2.356 (s, 3H), 2.17 – 2.12 (m, 1H), 1.80 – 1.75 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 164.3, 150.2 (2xC), 148.1, 143.8, 137.6 (3xC), 137.3, 132.6, 131.5, 130.1(2xC), 128.8, 128.7, 128.5, 127.1, 126.3, 126.0, 122.2, 48.2, 43.9, 38.1, 32.4, 21.6 (2xC); HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₂H₃₃N₃O₂SH⁺ 524.2366; Found 524.2366;

(*E*)-N-(3-((bis(4-chlorophenyl)(oxo)-l6-sulfaneylidene)amino)-6-phenylhex-5-en-1yl)picolinamide (6l) & (E)-N-(3-(((bis(4-chlorophenyl)(oxo)-l6-sulfaneylidene) amino) methyl)-5-phenylpent-4-en-1-yl)picolinamide (6l'):

Compound (61+6I') was synthesized according to GP-2 as colourless sticky liquid; eluent (30% ethyl acetate in hexane); Yield: 86% (97 mg); (61:6I'= 1:2).

Minor isomer (61): ¹H NMR (500 MHz, CDCl₃) δ 8.42 – 8.38 (m, 2H), 8.14 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 8.2 Hz, 2H), 7.82 – 7.81 (m, 2H), 7.78 (d, J = 7.8 Hz, 1H), 7.37 – 7.33 (m, 3H), 7.26 - 7.21 (m, 6H), 7.15 (t, J = 6.8 Hz, 1H), 6.36 (d, J = 15.8 Hz, 1H), 6.11(dt, J = 15.3, 7.3 Hz, 1H), 3.71 – 3.65 (m, 1H), 3.63 – 3.56 (m, 1H), 3.30 – 3.25 (m, 1H), 2.49 – 2.42 (m, 2H), 2.00 – 1.93 (m, 1H), 1.85 – 1.79 (m, 1H); ¹³C NMR (126 MHz, **CDCl**₃) δ 164.5, 150.3, 148.1, 139.4 (2xC), 139.2, 139.1, 137.7, 137.4, 132.3, 130.3, 130.2, 129.6, 129.4, 128.7, 128.0, 127.2, 126.1 (2xC), 122.3, 53.1, 42.2, 36.8, 36.7; HRMS $(ESI/TOF-Q) m/z: [M+H]^+$ Calculated for $C_{30}H_{27}Cl_2N_3O_2SH^+564.1274$; Found 564.1279. Major isomer (6I'): ¹H NMR (500 MHz, CDCl₃) δ 8.44 – 8.42 (m, 1H), 8.21 (t, J = 6.1 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.88 – 7.84 (m, 3H), 7.83 – 7.80 (m, 2H), 7.40 – 7.35 (m, 7H), 7.30 (t, J = 7.7 Hz, 2H), 7.23 – 7.19 (m, 1H), 6.53 (d, J = 15.9 Hz, 1H), 6.13 (dd, *J* = 15.9, 8.8 Hz, 1H), 3.60 – 3.53 (m, 2H), 3.10 (d, *J* = 6.4 Hz, 2H), 2.66 – 2.59 (m, 1H), 2.14 – 2.09 (m, 1H), 1.79 – 1.77 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.3, 150.2, 148.1, 139.4, 139.3, 139.2, 139.1, 137.5, 137.4, 132.6, 131.5, 130.2, 130.1, 129.6 (2xC), 128.6, 127.3, 126.3, 126.1, 122.2, 48.3, 44.1, 38.0, 32.5; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₀H₂₇Cl₂N₃O₂SH⁺ 564.1274; Found 564.1271.

(E)-N-(3-((5-oxido-5l4-dibenzo[b,d]thiophen-5-ylidene)amino)-6-phenylhex-5-en-1-yl)picolinamide (6m) & (E)-N-(3-(((5-oxido-5l4-dibenzo[b,d]-thiophen-5-ylidene)amino)methyl)-5-phenylpent-4-en-1-yl) picolinamide (6m') :

Compound (**6m+6m**') was synthesized according to GP-2 as colourless sticky liquid; eluent (30% ethyl acetate in hexane); **Yield:** 77% (76 mg); (**6m:6m**'=**1:1**).

¹**H NMR (400 MHz, CDCl₃)** δ 8.52 – 8.50 (m, 1H), 8.48 – 8.46 (m, 1H), 8.43 – 8.40 (m, 1H), 8.16 (t, *J* = 7.6 Hz, 3H), 7.91 (d, *J* = 7.6 Hz, 1H), 7.83 – 7.76 (m, 7H), 7.73 – 7.68 (m, 2H), 7.59 – 7.54 (m, 3H), 7.48 – 7.42 (m, 4H), 7.40 – 7.35 (m, 2H), 7.32 – 7.28 (m, 4H), 7.24 – 7.20 (m, 3H), 7.19 – 7.18 (m, 1H), 7.16 – 7.10 (m, 3H), 6.46 (d, *J* = 15.9 Hz, 1H), 6.30 (d, *J* = 15.8 Hz, 1H), 6.13 – 6.04 (m, 2H), 3.92 – 3.86 (m, 1H), 3.71 – 3.62 (m, 2H), 3.56 – 3.48 (m, 2H), 3.36 – 3.25 (m, 2H), 2.61 – 2.53 (m, 1H), 2.47 – 2.43 (m, 2H),

S35

2.14 – 2.04 (m, 2H), 1.84 – 1.75 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.5, 164.3, 150.4, 150.1, 148.2, 148.1, 140.2, 139.5, 139.0, 138.9, 137.6, 137.5, 137.35, 137.29, 133.1, 133.05, 133.02, 132.5, 132.2, 132.11(2xC), 132.06, 131.6, 131.5 (2xC), 130.3, 130.22, 130.18, 130.1, 128.5, 128.4, 127.8, 127.2, 127.0, 126.4, 126.2, 126.1, 126.0, 122.72, 122.69, 122.24, 122.19, 121.7, 121.6, 53.8, 49.1, 44.0, 42.2, 38.0, 37.1, 37.0, 32.4; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₀H₂₇N₃O₂SH⁺494.1897; Found 494.1903.

(E)-N-(3-((10-oxido-10l4-phenoxathiin-10-ylidene)amino)-6-phenylhex-5-en-1-yl) picolinamide (6n) & (E)-N-(3-(((10-oxido-10l4-phenoxathiin-10-ylidene)amino) methyl)-5-phenylpent-4-en-1-yl)picolinamide (6n'):

Compound (**6n+6n**') was synthesized according to GP-2 as pale yellow liquid; eluent (30% ethyl acetate in hexane); **Yield:** 81% (95 mg); (**6n:6n**' =1:3).

¹**H** NMR (400 MHz, CDCl₃) δ 8.56 – 8.54 (m, 1H), 8.52 – 8.49 (m, 1H), 8.43 – 8.42 (m, 3H), 8.20 – 8.18 (m, 1H), 8.17 – 8.10 (m, 6H), 8.09 – 8.04 (m, 2H), 7.97 – 7.94 (m, 5H), 7.86 – 7.84 (m, 1H), 7.82 – 7.77 (m, 3H), 7.58 – 7.52 (m, 7H), 7.43 – 7.39 (m, 2H), 7.38 – 7.35 (m, 4H), 7.34 – 7.30 (m, 9H), 7.29 – 7.26 (m, 15H), 7.26 – 7.23 (m, 4H), 7.21 – 7.17 (m, 7H), 7.02 – 7.00 (m, 1H), 6.39 (d, J = 15.9 Hz, 3H), 6.18 (d, J = 15.8 Hz, 1H), 5.98 (dd, J = 15.9, 8.8 Hz, 3H), 5.83 (dt, J = 15.8, 7.3 Hz, 1H), 3.60 – 3.54 (m, 1H), 3.50 – 3.40 (m, 8H), 3.02 – 2.93 (m, 6H), 2.54 – 2.47 (m, 1H), 2.27 – 2.23 (m, 2H), 2.03 – 1.96 (m, 4H), 1.68 – 1.60 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 164.2, 152.02, 152.01, 151.9, 151.51, 150.50, 150.1, 148.2, 148.11, 148.07, 148.0, 137.8, 137.5 (2xC), 137.3, 133.6 (2xC), 133.1, 132.2, 131.9, 131.4, 128.5 (2xC), 128.3, 127.5, 127.2, 127.0, 126.3 (3xC), 126.04, 125.98, 125.8, 124.8, 124.72, 124.68 (2xC), 124.6 (2xC), 124.4, 124.3, 122.25, 122.16, 119.1, 118.99, 118.96, 118.93, 53.6, 49.9, 43.7, 42.0, 37.9, 36.8, 36.7, 32.3; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₀H₂₇N₃O₃SH ⁺ 510.1846; Found 510.1853.

(E)-N-(3-((10-oxido-9-oxo-9H-10l4-thioxanthen-10-ylidene)amino)-6-phenylhex-5en-1-yl)picolinamide (60) & (E)-N-(3-(((10-oxido-9-oxo-9H-10l4-thioxanthen-10ylidene)amino)methyl)-5-phenylpent-4-en-1-yl)picolinamide (60'):

Compound (**60+60**') was synthesized according to GP-2 as pale yellow liquid; eluent (30% ethyl acetate in hexane); **Yield:** 79% (82 mg); **(60:60⁻=1:3)**.

¹H NMR (400 MHz, CDCl₃) δ 8.54 – 8.52 (m, 1H), 8.51 – 8.47 (m, 1H), 8.41 – 8.40 (m, 3H), 8.26 – 8.18 (m, 9H), 8.13 – 8.07 (m, 12H), 7.97 – 7.95 (m, 1H), 7.85 – 7.81 (m, 1H), 7.81 – 7.69 (m, 12H), 7.68 – 7.60 (m, 7H), 7.45 – 7.39 (m, 2H), 7.36 – 7.33 (m, 3H), 7.28 – 7.26 (m, 2H), 7.26 – 7.23 (m, 12H), 7.21 – 7.16 (m, 4H), 7.13 – 7.11 (m, 2H), 6.36 (d, J = 15.1 Hz, 3H), 6.11 (d, J = 15.8 Hz, 1H), 5.93 (dd, J = 15.9, 8.8 Hz, 3H), 5.75 (dt, J = 15.8, 7.3 Hz, 1H), 3.62 – 3.54 (m, 1H), 3.50 – 3.37 (m, J = 6.5 Hz, 8H), 3.13 – 3.03 (m, 6H), 2.48 – 2.40 (m, 3H), 2.21 – 2.17 (m, 2H), 1.96 – 1.88 (m, 4H), 1.66 – 1.57 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 179.7, 179.5, 150.2 (2xC), 148.13, 148.07, 141.4, 141.3,

141.2, 141.1, 137.43 (3xC), 137.38, 137.3 (2xC), 134.1, 134.05, 134.01, 133.5, 132.6, 132.4, 132.2, 132.03, 132.00, 131.5, 131.2, 131.0 (2xC), 130.7, 129.6, 129.33, 129.31, 129.2, 128.5 (2xC), 128.3, 127.22, 127.15, 127.1, 126.4(3xC), 126.0, 124.63, 124.59, 124.56, 124.5, 122.3, 122.2, 53.9, 49.4, 43.7, 41.9, 37.8, 36.9, 32.4, 29.8; **HRMS** (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for $C_{31}H_{27}N_3O_3SH^+522.1846$; Found 522.1840.

N-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-phenylpropyl)isoquinoline-1carboxamide (4a'):

Compound **4a'** was obtained as pale yellow liquid; eluent (25% ethyl acetate in hexane); **Yield:** 82% (84 mg); ¹H NMR (**500** MHz, CDCl₃) δ 9.45 – 9.43 (m, 1H), 8.83 – 8.80 (m, 1H), 8.56 (d, J = 5.5 Hz, 1H), 7.95 – 7.92 (m, 2H), 7.86 (d, J = 8.2 Hz, 1H), 7.81 (d, J = 5.5 Hz, 1H), 7.73 – 7.70 (m, 1H), 7.66 – 7.63 (m, 1H), 7.44 – 7.40 (m, 3H), 7.38 – 7.33 (m, 3H), 7.32 – 7.30 (m, 2H), 7.28 (d, J = 1.7 Hz, 2H), 7.25 – 7.24 (m, 1H), 7.21 – 7.17 (m, 2H), 3.93 – 3.89 (m, 1H), 3.53 – 3.45 (m, 2H), 3.05 – 3.02 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 149.4, 141.1, 140.6, 139.8, 137.5, 132.5, 132.3, 130.5, 130.2, 129.3, 129.1, 129.0, 128.9, 128.8, 128.5, 128.3, 128.1, 127.1, 126.9, 126.3, 124.1, 57.8, 46.0, 43.1; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₁H₂₇N₃O₂SH⁺ 506.1897; Found 506.1934.

N-(3-phenyl-2-(phenylamino)propyl)picolinamide (8a):

Compound **8a** was synthesized according to GP-3 as off white solid; eluent (15% ethyl acetate in hexane); m.p.: 110 – 112 °C; **Yield:** 79% (52 mg); ¹H NMR (**400 MHz, CDCl**₃) δ 8.53 (d, J = 4.7 Hz, 1H), 8.31 (t, J = 6.4 Hz, 1H), 8.22 (d, J = 7.9 Hz, 1H), 7.86 (t, J = 7.7 Hz, 1H), 7.44 – 7.41 (m, 1H), 7.34 (t, J = 7.5 Hz, 2H), 7.28 – 7.26 (m, 2H), 7.21 (t, J = 7.8 Hz, 3H), 6.74 – 6.72 (m, 3H), 4.03 (brs, 1H), 3.96 (t, J = 6.7 Hz, 1H), 3.69 – 3.57 (m, 2H), 3.05 – 3.00 (m, 1H), 2.95 – 2.90 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 149.8, 148.2, 147.4, 137.8, 137.4, 129.52, 129.50, 128.8, 126.7, 126.3, 122.3, 117.8, 113.7, 54.8, 42.6, 38.9; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₁H₂₁N₃OH⁺ 332.1757; Found 332.1753.

N-(3-phenyl-2-(p-tolylamino)propyl)picolinamide (8b):

Compound **8b** was synthesized according to GP-3 as pale yellow liquid; eluent (15% ethyl acetate in hexane); **Yield:** 80% (55 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.51 – 8.49 (m, 1H), 8.29 (t, *J* = 6.2 Hz, 1H), 8.19 – 8.17 (m, 1H), 7.85 – 7.81 (m, 1H), 7.42 – 7.39 (m, 1H), 7.33 – 7.29 (m, 2H), 7.24 – 7.21 (m, 3H), 7.01 – 6.99 (m, 2H), 6.64 – 6.62 (m, 2H), 3.91 – 3.86 (m, 2H), 3.66 – 3.61 (m, 1H), 3.57 – 3.50 (m, 1H), 3.00 – 2.96 (m, 1H), 2.91 – 2.86 (m, 1H), 2.23 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.1, 149.8, 148.2, 145.0, 137.8, 137.4, 130.0, 129.5, 128.7, 127.1, 126.7, 126.3, 122.3, 113.9, 55.0, 42.6, 38.8, 20.5; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₂H₂₃N₃OH⁺ 346.1914; Found 346.1912.

N-(2-((4-(tert-butyl)phenyl)amino)-3-phenylpropyl)picolinamide (8c):

Compound **8c** was synthesized according to GP-3 as pale yellow liquid; eluent (15% ethyl acetate in hexane). **Yield:** 83% (64 mg); ¹**H NMR (500 MHz, CDCl₃)** δ 8.50 – 8.49 (m, 1H), 8.29 – 8.26 (m, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.85 – 7.81 (m, 1H), 7.41 – 7.38 (m, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.25 – 7.21 (m, 5H), 6.68 – 6.67 (m, 2H), 3.92 – 3.87 (m, 2H), 3.64 – 3.54 (m, 2H), 3.01 – 2.98 (m, 1H), 2.90 – 2.85 (m, 1H), 1.28 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 165.1, 149.8, 148.2, 144.9, 140.6, 137.9, 137.4, 129.5, 128.7, 126.7, 126.32, 126.29, 122.3, 113.4, 54.9, 42.5, 39.0, 34.0, 31.7; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₅H₂₉N₃OH⁺ 388.2383; Found 388.2387.

N-(2-((4-methoxyphenyl)amino)-3-phenylpropyl)picolinamide (8d):

Compound **8d** was synthesized according to GP-3 as pale yellow liquid; eluent (25% ethyl acetate in hexane); **Yield:** 85% (61 mg); ¹**H NMR** (**500 MHz**, **CDCl**₃) δ 8.52 – 8.50 (m, 1H), 8.30 – 8.29 (m, 1H), 8.20 – 8.17 (m, 1H), 7.85 – 7.81 (m, 1H), 7.42 – 7.39 (m, 1H), 7.32 – 7.29 (m, 2H), 7.23 (d, *J* = 6.4 Hz, 3H), 6.80 – 6.77 (m, 2H), 6.68 – 6.66 (m, 2H), 3.85 – 3.79 (m, 1H), 3.74 (s, 3H), 3.65 – 3.61 (m, 1H), 3.56 – 3.50 (m, 1H), 2.99 – 2.94 (m, 1H), 2.90 – 2.86 (m, 1H), (signal for NH proton was not detected); ¹³C NMR (126 MHz, CDCl₃) δ 165.1, 152.5, 149.9, 148.2, 141.4, 137.8, 137.4, 129.5, 128.7, 126.7, 126.3, 122.3, 115.3, 115.2, 55.9, 55.7, 42.7, 38.9; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₂H₂₃N₃O₂H⁺ 362.1863; Found 362.1860.

N-(2-((4-fluorophenyl)amino)-3-phenylpropyl)picolinamide (8e):

Compound **8e** was synthesized according to GP-3 as brown liquid; eluent (25% ethyl acetate in hexane); **Yield:** 67% (47 mg); ¹**H NMR** (**500 MHz**, **CDCl**₃) δ 8.50 (d, J = 4.3 Hz, 1H), 8.29 (brs, 1H), 8.18 (d, J = 7.7 Hz, 1H), 7.84 (t, J = 8.0 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.31 (d, J = 7.6 Hz, 2H), 7.24 – 7.21 (m, 3H), 6.87 (t, J = 8.1 Hz, 2H), 6.64 – 6.60 (m, 2H), 3.90 – 3.82 (m, 2H), 3.63 – 3.54 (m, 2H), 2.98 – 2.93 (m, 1H), 2.91 – 2.87 (m, 1H); ¹³C **NMR** (**126 MHz**, **CDCl**₃) ¹³C NMR (126 MHz, CDCl₃) δ 165.2, 156.0 (d, J = 235.3 Hz), 149.7, 148.2, 143.7, 137.7, 137.5, 129.5, 128.8, 126.8, 126.4, 122.4, 115.9 (d, J = 22.3 Hz), 114.6 (d, J = 7.3 Hz), 55.6, 42.7, 38.9; ¹⁹F **NMR** (**471 MHz**, **CDCl**₃) δ - 127.7; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₁H₂₀FN₃OH⁺ 350.1663; Found 350.1662.

N-(3-phenyl-2-((4-(trifluoromethyl)phenyl)amino)propyl)picolinamide (8f):

Compound **8f** was synthesized according to GP-3 as pale yellow liquid; eluent (40% ethyl acetate in hexane). **Yield:** 62% (49 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, J = 4.7 Hz, 1H), 8.28 – 8.26 (m, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.86 – 7.82 (m, 1H), 7.43 – 7.40 (m, 1H), 7.37 (d, J = 8.5 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.24 – 7.22 (m, 3H), 6.67 (d, J = 8.5 Hz, 2H), 4.56 (d, J = 7.9 Hz, 1H), 3.98 – 3.92 (m, 1H), 3.68 – 3.62 (m, 1H), 3.59 – 3.54 (m, 1H), 3.01 – 2.97 (m, 1H), 2.92 – 2.88 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ

8d

S38

165.6, 150.0, 149.5, 148.3, 137.5, 137.4, 129.4, 128.9, 126.9, 126.8 (q, J = 3.7 Hz), 126.5, 125.1 (q, J = 270.3 Hz), 122.4, 119.0 (q, J = 32.6 Hz), 112.5, 55.0, 42.7, 38.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -61.0; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₂H₂₀F₃N₃OH⁺ 400.1631; Found 400.1635.

N-(2-([1,1'-biphenyl]-4-ylamino)-3-phenylpropyl)picolinamide (8g):

Compound **8g** was synthesized according to GP-3 as brown solid; eluent (15% ethyl acetate in hexane); m.p.: 74 – 76 °C; **Yield:** 76% (62 mg); ¹H NMR (**400** MHz, **CDCl**₃) δ 8.48 (d, *J* = 4.8 Hz, 1H), 8.29 (t, *J* = 6.4 Hz, 1H), 8.18 (d, *J* = 7.9 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.52 (d, *J* = 7.8 Hz, 2H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 3H), 7.33 – 7.30 (m, 2H), 7.24 – 7.22 (m, 4H), 6.76 (d, *J* = 8.4 Hz, 2H), 4.16 (brs, 1H), 3.99 – 3.93 (m, 1H), 3.63 – 3.58 (m, 2H), 3.04 – 2.96 (m, 1H), 2.94 – 2.88 (m, 1H); ¹³C NMR (**101** MHz, **CDCl**₃) δ 165.3, 149.7, 148.2, 146.8, 141.3, 137.7, 137.4, 130.6, 129.5, 128.77, 128.75, 128.2, 126.8, 126.4, 126.3, 126.2, 122.3, 113.8, 54.9, 42.7, 38.9; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₇H₂₅N₃OH⁺ 408.2070; Found 408.2080.

N-(3-phenyl-2-(m-tolylamino)propyl)picolinamide (8h):

acetate in hexane). **Yield:** 79% (55 mg); ¹**H NMR (400 MHz, CDCl₃)** δ 8.50 (d, J = 4.9 Hz, 1H), 8.29 – 8.28 (m, 1H), 8.19 (d, J = 7.8 Hz, 1H), 7.85 – 7.81 (m, 1H), 7.42 – 7.39 (m, 1H), 7.31 (t, J = 7.5 Hz, 2H), 7.25 – 7.21 (m, 3H), 7.10 – 7.06 (m, 1H), 6.54 – 6.51 (m, 3H), 3.95 – 3.89 (m, 2H), 3.67 – 3.61 (m, 1H), 3.59 – 3.52 (m, 1H), 3.02 – 2.97 (m, 1H), 2.91 – 2.86 (m, 1H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 149.8, 148.2, 147.4, 139.3, 137.8, 137.4, 129.5, 129.4, 128.7, 126.7, 126.3, 122.4, 118.7, 114.5, 110.7, 54.8, 42.6, 38.9, 21.8. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₂H₂₃N₃OH⁺ 346.1914; Found 346.1929.

Compound 8h was synthesized according to GP-3 as pale yellow liquid; eluent (20% ethyl

N-(2-((3-methoxyphenyl)amino)-3-phenylpropyl)picolinamide (8i):

Compound **8i** was synthesized according to GP-3 as colourless sticky liquid; eluent (20% ethyl acetate in hexane); **Yield:** 81% (58 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.53 (d, *J* = 4.9 Hz, 1H), 8.31 (brs, 1H), 8.22 – 8.20 (m, 1H), 7.86 (t, *J* = 7.9 Hz, 1H), 7.44 – 7.41 (m, 1H), 7.34 – 7.32 (m, 2H), 7.29 – 7.26 (m, 3H), 7.13 – 7.09 (m, 1H), 6.34 (d, *J* = 8.2 Hz, 1H), 6.30 (d, *J* = 8.5 Hz, 2H), 4.10 (brs, 1H), 3.94 – 3.92 (m, 1H), 3.79 (s, 3H), 3.67 – 3.58 (m, 2H), 3.04 – 3.00 (m, 1H), 2.95 – 2.90 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.2, 161.0, 149.8, 148.7, 148.2, 137.7, 137.4, 130.2, 129.5, 128.7, 126.7, 126.3, 122.3, 106.6, 103.0, 99.6, 55.2, 54.9, 42.6, 38.8; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₂H₂₃N₃O₂H⁺ 362.1863; Found 362.1883.

N-(2-((3-chlorophenyl)amino)-3-phenylpropyl)picolinamide (8j):

Compound **8j** was synthesized according to GP-3 as pale yellow liquid; eluent (20% ethyl acetate in hexane); **Yield: 70**% (51 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.51 – 8.50 (m, 1H), 8.26 (t, J = 6.6 Hz, 1H), 8.19 – 8.17 (m, 1H), 7.86 – 7.82 (m, 1H), 7.43 – 7.40 (m, 1H), 7.34 – 7.30 (m, 2H), 7.25 – 7.22 (m, 3H), 7.05 (t, J = 7.9 Hz, 1H), 6.65 – 6.62 (m, 2H), 6.55 – 6.53 (m, 1H), 4.23 – 4.21 (m, 1H), 3.90 – 3.85 (m, 1H), 3.59 (t, J = 6.3 Hz, 2H), 2.99 – 2.95 (m, 1H), 2.91 – 2.87 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.4, 149.6, 148.6 (2xC), 148.2, 137.5, 135.2, 130.4, 129.5, 128.8, 126.9, 126.4, 122.4, 117.5, 113.2, 111.7, 55.0, 42.6, 38.7; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₁H₂₀ClN₃OH⁺ 366.1368; Found 366.1363.

N-(2-((3-bromophenyl)amino)-3-phenylpropyl)picolinamide (8k):

Compound **8k** was synthesized according to GP-3 as pale yellow liquid; eluent (20% ethyl acetate in hexane); **Yield:** 55% (45 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.51 – 8.50 (m, 1H), 8.27 (t, *J* = 6.5 Hz, 1H), 8.19 – 8.17 (m, 1H), 7.87 – 7.81 (m, 1H), 7.44 – 7.40 (m, 1H), 7.34 – 7.30 (m, 2H), 7.25 – 7.22 (m, 3H), 6.99 (t, *J* = 8.0 Hz, 1H), 6.80 – 6.77 (m, 2H), 6.59 – 6.57 (m, 1H), 4.22 (brs, 1H), 3.90 – 3.85 (m, 1H), 3.59 (t, *J* = 6.2 Hz, 2H), 2.99 – 2.95 (m, 1H), 2.90 – 2.86 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.4, 149.6, 148.7 (2xC), 148.2, 137.5, 130.7, 129.5, 128.8, 126.9, 126.4, 123.5, 122.4, 120.3, 116.1, 112.1, 55.0, 42.6, 38.7; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₁H₂₀BrN₃OH⁺ 410.0863; Found 410.0867.

N-(2-((3,4-dimethoxyphenyl)amino)-3-phenylpropyl)picolinamide (8l):

Compound **81** was synthesized according to GP-3 as pale yellow liquid; eluent (40% ethyl acetate in hexane); **Yield:** 63% (49 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.51 – 8.50 (m, 1H), 8.31 (t, *J* = 6.3 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.85 – 7.82 (m, 1H), 7.42 – 7.39 (m, 1H), 7.32 – 7.29 (m, 2H), 7.24 – 7.21 (m, 3H), 6.74 (d, *J* = 8.5 Hz, 1H), 6.35 (d, *J* = 2.6 Hz, 1H), 6.31 – 6.29 (m, 1H), 3.87 – 3.78 (m, 8H), 3.63 – 3.55 (m, 2H), 3.01 – 2.97 (m, 1H), 2.92 – 2.88 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 150.2 (2xC), 149.7, 148.2, 137.7 (2xC), 137.5, 129.5, 128.8, 126.8, 126.4, 122.3, 113.3, 105.2, 100.4, 56.8, 56.3, 55.9, 42.7, 38.8; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₃H₂₅N₃O₃H⁺ 392.1969; Found 392.1969.

N-(2-((4-chloro-3-fluorophenyl)amino)-3-phenylpropyl)picolinamide (8m):

Compound **8m** was synthesized according to GP-3 as pale yellow liquid; eluent (30% ethyl acetate in hexane); **Yield:** 69% (53 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.51 – 8.50 (m, 1H), 8.27 (t, *J* = 6.5 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.86 – 7.83 (m, 1H), 7.43 – 7.40 (m, 1H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.24 – 7.21 (m, 3H), 6.90 (t, *J* = 8.8 Hz, 1H), 6.65 – 6.64 (m, 1H), 6.49 – 6.46 (m, 1H), 4.05 (brs, 1H), 3.83 – 3.78 (m, 1H), 3.58 (t, *J* = 6.2 Hz, 2H), 2.96 – 2.86 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) ¹³C NMR (126 MHz, CDCl₃) δ 165.4,

151.1 (d, J = 237.6 Hz), 149.6, 148.2, 144.4 (d, J = 1.6 Hz), 137.53, 137.47, 129.4, 128.9, 126.9, 126.5, 122.4, 121.3 (d, J = 18.3 Hz), 117.0 (d, J = 21.9 Hz), 114.6, 112.7 (d, J = 6.2 Hz), 55.7, 42.8, 38.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -131.1; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₁H₁₉ClFN₃OH⁺ 384.1273; Found 384.1272.

N-(3-phenyl-2-((3,4,5-trimethoxyphenyl)amino)propyl)picolinamide (8n):

Compound **8n** was synthesized according to GP-3 as pale yellow liquid; eluent (40% ethyl acetate in hexane); **Yield:** 54% (45 mg); ¹**H NMR (500 MHz, CDCl₃)** δ 8.50 (d, *J* = 4.5 Hz, 1H), 8.30 (t, *J* = 6.4 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.85 – 7.82 (m, 1H), 7.42 – 7.40 (m, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.24 (d, *J* = 7.5 Hz, 3H), 5.92 (s, 2H), 3.87 – 3.84 (m, 2H), 3.80 (s, 6H), 3.74 (s, 3H), 3.63 – 3.58 (m, 2H), 2.99 – 2.95 (m, 1H), 2.93 – 2.88 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 154.1, 149.7, 148.2, 144.2, 137.8, 137.5, 130.3, 129.5, 128.8, 126.8, 126.4, 122.3, 91.3, 61.2, 56.1, 55.6, 43.0, 39.3; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₄H₂₇N₃O₄H⁺ 422.2074; Found 422.2089.

N-(2-((4-acetylphenyl)amino)-3-phenylpropyl)picolinamide (80):

Compound **80** was synthesized according to GP-3 as pale yellow liquid; eluent (35% ethyl acetate in hexane); **Yield:** 66% (49 mg); ¹**H NMR (400 MHz, CDCl**₃) δ 8.53 – 8.52 (m, 1H), 8.35 – 8.32 (m, 1H), 8.22 – 8.20 (m, 1H), 7.89 – 7.81 (m, 3H), 7.46 – 7.43 (m, 1H), 7.37 – 7.33 (m, 2H), 7.30 – 7.26 (m, 3H), 6.68 – 6.65 (m, 2H), 4.95 (d, *J* = 7.6 Hz, 1H), 4.06 – 4.01 (m, 1H), 3.74 – 3.57 (m, 2H), 3.07– 2.91 (m, 2H), 2.50 (s, 3H); ¹³**C NMR (101 MHz, CDCl**₃) δ 196.4, 165.7, 151.6, 149.5, 148.2, 137.5, 137.3, 131.0, 129.4, 128.9, 126.93, 126.91, 126.5, 122.4, 112.0, 55.0, 42.6, 38.7, 26.1. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₃H₂₃N₃O₂H⁺ 374.1863; Found 374.1879.

N-(2-((4-cyanophenyl)amino)-3-phenylpropyl)picolinamide (8p):

Compound **8p** was synthesized according to GP-3 as yellow liquid; eluent (30% ethyl acetate in hexane); **Yield:** 61% (43 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.51(d, J = 4.4 Hz, 1H), 8.30 (brs, 1H), 8.18 (d, J = 7.9 Hz, 1H), 7.87 (t, J = 7.8 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.41 – 7.37 (m, 2H), 7.33 – 7.32 (m, 2H), 7.28 – 7.27 (m, 1H), 7.23 (d, J = 7.8 Hz, 2H), 6.63 – 6.61 (m, 2H), 4.98 (d, J = 7.6 Hz, 1H), 3.97 – 3.93 (m, 1H), 3.72 – 3.66 (m, 1H), 3.57 – 3.52 (m, 1H), 3.02 – 2.97 (m, 1H), 2.93 – 2.88 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 150.8, 149.4, 148.3, 137.6, 137.2, 133.9, 129.3, 128.9, 127.0, 126.6, 122.4, 120.5, 112.8, 98.9, 55.2, 42.7, 38.7; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₂H₂₀N₄OH⁺ 357.1710; Found 357.1730.

Methyl 4-((1-phenyl-3-(picolinamido)propan-2-yl)amino)benzoate (8q):

Compound **8q** was synthesized according to GP-3 as pale yellow liquid; eluent (35% ethyl acetate in hexane); **Yield:** 65% (51 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, J = 3.2 Hz, 1H), 8.31 (t, J = 6.5 Hz, 1H), 8.20 (d, J = 7.8 Hz, 1H), 7.87 – 7.84 (m, 3H), 7.44 – 7.42 (m, 1H), 7.35 – 7.32 (m, 2H), 7.28 (d, J = 5.4 Hz, 1H), 7.26 – 7.24 (m, 2H), 6.64 (d, J = 8.4 Hz, 2H), 4.79 (d, J = 7.8 Hz, 1H), 4.04 – 3.97 (m, 1H), 3.85 (s, 3H), 3.70 – 3.58 (m, 2H), 3.04 – 3.00 (m, 1H), 2.94 – 2.90 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 167.4, 165.6, 151.3, 149.5, 148.2, 137.5, 137.4, 131.7, 129.4, 128.9, 126.9, 126.5, 122.4, 118.6, 112.1, 54.9, 51.6, 42.6, 38.7; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₃H₂₃N₃O₃H⁺ 390.1812; Found 390.1837.

N-(2-(naphthalen-1-ylamino)-3-phenylpropyl)picolinamide (8r):

Compound **8r** was synthesized according to GP-3 as brown liquid; eluent (20% ethyl acetate in hexane); **Yield:** 80% (61 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.42 (d, J = 4.7 Hz, 1H), 8.33 (d, J = 6.6 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 7.3 Hz, 1H), 7.77 – 7.72 (m, 2H), 7.40 – 7.39 (m, 2H), 7.34 – 7.30 (m, 3H), 7.28 – 7.25 (m, 3H), 7.22 – 7.17 (m, 2H), 6.76 (d, J = 7.6 Hz, 1H), 5.20 (brs, 1H), 4.06 – 4.05 (m, 1H), 3.81 – 3.75 (m, 1H), 3.63 – 3.58 (m, 1H), 3.17 – 3.14 (m, 1H), 2.93 – 2.88 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 149.6, 148.2, 142.5, 137.9, 137.4, 134.7, 129.5, 128.8, 128.6, 126.8, 126.7, 126.4, 125.8, 124.9, 123.7, 122.4, 120.5, 117.3, 104.3, 55.5, 42.4, 38.2; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₅H₂₃N₃OH⁺ 382.1914; Found 382.1915.

N-(2-((2-methoxyphenyl)amino)-3-phenylpropyl)picolinamide (8s):

acetate in hexane); **Yield:** 73% (53 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.53 (d, J = 5.0 Hz, 1H), 8.32 (brs, 1H), 8.23 – 8.21 (m, 1H), 7.87 – 7.84 (m, 1H), 7.44 – 7.41 (m, 1H), 7.34 – 7.29 (m, 3H), 7.26 – 7.22 (m, 2H), 6.93 – 6.90 (m, 1H), 6.86 – 6.81 (m, 2H), 6.74 – 6.70 (m, 1H), 4.43 (brs, 1H), 4.00 – 3.96 (m, 1H), 3.86 (s, 3H), 3.75 – 3.69 (m, 1H), 3.60 – 3.54 (m, 1H), 3.03 – 2.92 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.9, 149.9, 148.2, 147.3, 137.9, 137.4, 137.3, 129.5, 128.6, 126.6, 126.2, 122.3, 121.5, 117.1, 111.1, 110.1, 55.7, 54.3, 42.7, 39.0; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₂H₂₃N₃O₂H⁺ 362.1863; Found 362.1882.

Compound 8s was synthesized according to GP-3 as pale yellow liquid; eluent (20% ethyl

N-(3-(4-ethoxyphenyl)-2-(p-tolylamino)propyl)picolinamide (8t):

Compound **8t** was synthesized according to GP-3 as pale yellow liquid; eluent (20% ethyl acetate in hexane); **Yield:** 86% (67 mg); ¹**H NMR (400 MHz, CDCl₃)** δ 8.49 (d, *J* = 4.8 Hz, 1H), 8.27 (t, *J* = 6.1 Hz, 1H), 8.18 (d, *J* = 7.9 Hz, 1H), 7.82 (t, *J* = 7.8 Hz, 1H), 7.41 – 7.38 (m, 1H), 7.13 (d, *J* = 8.2 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.84 (d, *J* = 8.1 Hz, 2H), 6.63 (d, *J* = 8.0 Hz, 2H), 4.04 –3.97 (m, 2H), 3.87 – 3.80 (m, 2H), 3.66 – 3.60 (m, 1H), 3.55 – 3.48 (m, 1H), 2.93 – 2.88 (m, 1H), 2.85 – 2.80 (m, 1H), 2.23 (s, 3H), 1.41 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 157.8, 149.9, 148.2, 145.1, 137.4,

130.5, 130.0, 129.6, 127.0, 126.2, 122.3, 114.8, 113.9, 63.6, 55.1, 42.6, 37.9, 20.5, 15.0; **HRMS** (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for $C_{24}H_{27}N_3O_2H^+$ 390.2176; Found 390.2180.

(E)-N-(5-phenyl-2-(p-tolylamino)pent-4-en-1-yl)picolinamide (8u):

Compound **8u** was synthesized according to GP-3 as pale yellow liquid; eluent (15% ethyl acetate in hexane); **Yield:** 89% (66 mg); ¹**H NMR (500 MHz, CDCl**₃) δ 8.50 – 8.48 (m, 1H), 8.35 (d, *J* = 7.1 Hz, 1H), 8.21 – 8.19 (m, 1H), 7.83 (t, *J* = 7.8 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.33 (d, *J* = 7.5 Hz, 2H), 7.30 – 7.27 (m, 2H), 7.22 – 7.19 (m, 1H), 7.00 – 6.99 (m, 2H), 6.65 – 6.62 (m, 2H), 6.49 (d, *J* = 15.7 Hz, 1H), 6.30 – 6.23 (m, 1H), 3.82 (brs, 1H), 3.77 – 3.74 (m, 1H), 3.68 (d, *J* = 6.3 Hz, 2H), 2.55 (d, *J* = 7.1 Hz, 2H), 2.23 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.1, 149.8, 148.2, 145.1, 137.5, 137.3, 133.4, 130.0, 128.6, 127.4, 127.1, 126.3 (2xC), 125.8, 122.4, 114.0, 54.1, 42.9, 36.6, 20.5; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₄H₂₅N₃OH⁺ 372.2070; Found 372.2072.

N-(2-(methyl(phenyl)amino)-3-phenylpropyl)picolinamide (8v):

Compound **8v** was synthesized according to GP-3 as pale yellow liquid; eluent (15% ethyl acetate in hexane); **Yield:** 77% (53 mg); ¹H NMR (500 MHz, CDCl₃¹H NMR (500 MHz, CDCl₃) δ 8.43 – 8.41 (m, 1H), 8.13 – 8.11 (m, 2H), 7.81 – 7.77 (m, 1H), 7.37 – 7.34 (m, 1H), 7.23 (d, *J* = 7.5 Hz, 2H), 7.19 – 7.16 (m, 5H), 6.83 – 6.81 (m, 2H), 6.70 (t, *J* = 7.3 Hz, 1H), 4.37 – 4.31 (m, 1H), 3.78 – 3.73 (m, 1H), 3.62 – 3.56 (m, 1H), 2.98 – 2.93 (m, 1H), 2.86 (s, 3H), 2.83 – 2.80 (m, 1H); **13C** NMR (126 MHz, CDCl₃) δ 163.6, 149.9, 148.8, 147.2, 137.5, 136.3, 128.2, 128.1, 127.7, 125.5, 125.1, 121.2, 116.7, 113.5, 59.8, 39.5, 35.6, 29.9; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₂H₂₃N₃OH⁺ 346.1914; Found 346.1927.

N-(3-(4-ethoxyphenyl)-2-(methyl(phenyl)amino)propyl)picolinamide (8w):

Compound **8w** was synthesized according to GP-3 as pale yellow liquid; eluent (20% ethyl acetate in hexane); **Yield:** 81% (63 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.45 – 8.41 (m, 1H), 8.19 – 8.11 (m, 2H), 7.78 (t, *J* = 7.7 Hz, 1H), 7.35 (t, *J* = 6.2 Hz, 1H), 7.17 (t, *J* = 7.7 Hz, 2H), 7.08 (d, *J* = 8.1 Hz, 2H), 6.83 – 6.76 (m, 4H), 6.70 (t, *J* = 7.4 Hz, 1H), 4.32 – 4.23 (m, 1H), 4.01 – 3.95 (m, 2H), 3.78 – 3.72 (m, 1H), 3.61 – 3.54 (m, 1H), 2.95 – 2.85 (m, 4H), 2.79 – 2.73 (m, 1H), 1.42 – 1.36 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.5, 157.6, 150.9, 149.8, 148.1, 137.3, 130.4, 130.0, 129.2, 126.1, 122.1, 117.6, 114.7, 114.4, 63.5, 60.8, 40.5, 35.7, 30.9, 15.0; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₄H₂₇N₃O₂H⁺ 390.2176; Found 390.2176.

(E)-N-(2-(methyl(phenyl)amino)-5-phenylpent-4-en-1-yl)picolinamide (8x):

Ph N N 8x Compound **8x** was synthesized according to GP-3 as pale yellow liquid; eluent (15% ethyl acetate in hexane); **Yield:** 85% (63 mg); ¹H NMR (**500** MHz, CDCl₃) δ 8.44 – 8.43 (m, 1H), 8.25 – 8.22 (m, 1H), 8.18 – 8.16 (m, 1H), 7.82 – 7.79 (m, 1H), 7.38 – 7.35 (m, 1H), 7.25 – 7.16 (m, 7H), 6.90 – 6.88 (m, 2H), 6.74 – 6.71 (m, 1H), 6.45 (d, *J* = 15.8 Hz, 1H), 6.14 – 6.08 (m, 1H), 4.27 – 4.21 (m, 1H), 3.89 – 3.84 (m, 1H), 3.59 – 3.54 (m, 1H), 2.87 (s, 3H), 2.63 – 2.57 (m, 1H), 2.53 – 2.48 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 151.1, 149.8, 148.2, 137.4, 137.3, 132.3, 129.3, 128.5, 127.2, 126.8, 126.23, 126.17, 122.2, 117.7, 114.5, 59.3, 40.9, 34.3, 30.6; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₄H₂₅N₃OH⁺ 372.2070; Found 372.2093.

((1-amino-3-phenylpropan-2-yl)imino)diphenyl-l6-sulfanone (9a):

Compound **9a** was obtained as pale yellow liquid; eluent (10% MeOH in DCM); **Yield:** 89% (93 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.6 Hz, 2H), 7.52 – 7.43 (m, 3H), 7.41 – 7.37 (t, J = 7.3 Hz, 1H), 7.34 – 7.30 (m, 2H), 7.27 – 7.22 (m, 5H), 7.18 (d, J =7.2 Hz, 2H), 4.25 (brs, 2H), 3.37 – 3.31 (m, 1H), 3.04 – 3.00 (m, 1H), 2.91 – 2.82 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 139.44, 139.37, 132.8, 132.4, 130.2, 129.22, 129.20, 129.0, 128.5, 128.4, 126.4, 58.0, 47.2, 42.6; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₁H₂₂N₂OSH⁺ 351.1526; Found 351.1531.

3-(4-ethoxyphenyl)-N2-(p-tolyl)propane-1,2-diamine (9b):

Compound **9b** was obtained as pale yellow liquid; eluent (10% MeOH in DCM); **Yield:** 90% (77 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.03 (d, J = 8.6 Hz, 2H), 6.98 (d, J = 8.1 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 6.60 (d, J = 8.3 Hz, 2H), 4.00 (q, J = 6.9 Hz, 2H), 3.68 – 3.62 (m, 1H), 3.39 (brs, 3H), 2.88 – 2.79 (m, 2H), 2.68 – 2.56 (m, 2H), 2.23 (s, 3H), 1.40 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 145.1, 130.4, 130.0, 129.7, 127.1, 114.7, 114.2, 63.5, 55.6, 43.7, 37.4, 20.5, 15.0; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₁₈H₂₄N₂OH⁺ 285.1961; Found 285.1974.

2-(1,3-dioxoisoindolin-2-yl)-N-(2-((oxodiphenyl-l6-sulfaneylidene)amino)-3-phenylpropyl)-3-phenylpropanamide (10):

Compound **10** was obtained as pale yellow liquid; eluent (30% ethyl acetate in hexane); **Yield:** 74% (70 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.80 – 7.75 (m, 6H), 7.70 – 7.64 (m, 4H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.51 – 7.37 (m, 6H), 7.35 – 7.28 (m, 10H), 7.21 – 7.14 (m, 14H), 7.12 – 7.08 (m, 4H), 6.95 (d, *J* = 7.8 Hz, 2H), 6.82 (d, *J* = 7.7 Hz, 2H), 5.20 – 5.13 (m, 2H), 3.98 – 3.89 (m, 2H), 3.75 – 3.69 (m, 2H), 3.65 – 3.59 (m, 2H), 3.24 – 3.15 (m, 2H), 3.06 – 2.97 (m, 2H), 2.91 – 2.87 (m, 2H), 2.85 – 2.79 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 168.4, 168.3, 168.14, 168.08, 140.7 (2xC), 139.6, 139.4, 139.1, 138.8, 137.8, 137.6 (2xC), 133.8, 133.7, 132.74, 132.66, 132.4, 132.3, 132.2, 130.4, 130.3, 129.2, 129.14, 129.11, 129.08, 129.04, 128.98, 128.9, 128.8, 128.6 (2xC), 128.44, 128.39,

128.21, 128.17, 126.71, 126.68, 126.48, 126.45, 123.29, 123.26, 57.9, 57.4, 55.5, 55.4, 46.3, 46.0, 43.0, 42.9, 34.5, 34.4.; **HRMS** (ESI/TOF-Q) m/z: $[M+H]^+$ Calculated for $C_{38}H_{33}N_3O_4SH^+$ 628.2265; Found 628.2275; **dr-1:1**.

5-(4-ethoxybenzyl)-1-(p-tolyl)imidazolidin-2-one (11):

Compound **11** was obtained as white solid; eluent (30% ethyl acetate in hexane); m.p.: 148 – 150 °C; **Yield:** 95% (88 mg); ¹**H NMR (500 MHz, CDCl**₃) δ 7.38 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 7.03 (d, *J* = 8.6 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 5.09 – 5.00 (m, 1H), 4.49 – 4.44 (m, 1H), 4.00 (q, *J* = 7.0 Hz, 2H), 3.46 – 3.42 (m, 1H), 3.28 – 3.25 (m, 1H), 3.02 – 2.99 (m, 1H), 2.69 – 2.65 (m, 1H), 2.34 (s, 3H), 1.40 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR (126 MHz, CDCl**₃) δ 160.3, 158.0, 135.8, 134.1, 130.3, 129.8, 128.5, 122.3, 114.8, 63.6, 58.2, 42.7, 37.3, 21.0, 15.0; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₁₉H₂₂N₂O₂H⁺ 311.1754; Found 311.1743.

Diphenyl((5-(1-phenyl-3-(triisopropylsilyl)prop-2-yn-1-yl)-1-picolinoylpyrrolidin -3-yl)imino)-l6-sulfanone (12):

Compound **12** was obtained as brown liquid; eluent (30% ethyl acetate in hexane); **Yield:** 68% (67 mg); ¹**H NMR (400 MHz, CDCl₃)** δ 8.58 – 8.57 (m, 5.07 H), 7.94 – 7.83 (m, 20.77 H), 7.78 – 7.73 (m, 5.08 H), 7.66 – 7.64 (m, 4.97 H), 7.53 – 7.48 (m, 8.23 H), 7.46 – 7.39 (m, 32.67 H), 7.36 – 7.28 (m, 20.89 H), 4.98 – 4.96 (m, 5.01 H), 4.67 – 4.62 (m, 4.97 H), 3.58 – 3.54 (m, 5.03 H), 3.45 – 3.41 (m, 4.07 H), 3.37 - 3.35 (m, 1.05 H) 2.75 – 2.70 (m, 4.06 H), 2.67 – 2.64 (m, 1.04 H), 2.40 – 2.34 (m, 4.06 H), 2.33 – 2.32 (m, 1H), 2.04 – 2.02 (m, 1.06H), 1.97 – 1.91 (m, 4.05H), 1.14 – 1.04 (m, 105.82 H); ¹³C **NMR (126 MHz, CDCl₃)** δ 166.4, 153.8, 153.3, 147.7, 147.5, 140.1, 140.0, 136.0, 135.7, 135.6, 135.4, 131.7, 131.6, 131.5, 131.4, 129.1, 128.3, 128.23, 128.18, 128.13, 128.08, 127.7, 127.6, 127.34, 127.26, 127.2, 127.0, 126.3, 126.0, 123.8, 123.6, 122.7, 122.6, 106.5, 84.0, 83.7, 61.4, 59.7, 57.0, 56.5, 50.9, 50.8, 37.8, 37.1, 34.6, 33.8, 17.9, 10.5; **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₄₀H₄₇N₃O₂SSiH⁺ 662.3231; Found 662.3236; **dr-4:1.**

4,4'-sulfonylbis(N-benzylaniline) (14):

Compound **14** was obtained as brown solid; eluent (30% ethyl acetate in hexane); **Yield:** 75% (64 mg); ¹**H NMR (400 MHz, CDCl**₃) δ 7.65 (d, *J* = 8.5 Hz, 4H), 7.36 – 7.28 (m, 10H), 6.56 (d, *J* = 8.5 Hz, 4H), 4.60 (brs, 2H), 4.33 (s, 4H); ¹³C NMR (**101 MHz, CDCl**₃) δ 151.3, 138.2, 130.3, 129.2, 128.9, 127.7, 127.4, 112.1, 47.7. **HRMS** (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₂₆H₂₄N₂O₂SH⁺ 429.1631; Found 429.1625.

N-((1R,2R,3R)-2-((oxodi-p-tolyl-l6-sulfaneylidene)amino)-3-((E)-styryl) cyclohexyl) picolinamide (16):

Compound **16** was obtained as brown gummy solid; eluent (30% ethyl acetate in hexane); **Yield:** 76% (83 mg); ¹**H NMR (500 MHz, CDCl₃)** δ 8.51 (d, *J* = 4.7 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 8.11 (d, *J* = 8.7 Hz, 1H), 7.80 – 7.77 (m, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 7.9 Hz, 2H), 7.36 – 7.28 (m, 5H), 7.19 (t, *J* = 7.1 Hz, 1H), 6.96 (t, *J* = 8.2 Hz, 4H), 6.47 (d, *J* = 15.9 Hz, 1H), 6.12 (dd, *J* = 15.9, 8.2 Hz, 1H), 4.14 – 4.07 (m, 1H), 3.03 (t, *J* = 9.6 Hz, 1H), 2.62 – 2.55 (m, 1H), 2.25 (s, 3H), 2.22 (s, 3H), 2.20 – 2.19 (m, 1H), 1.85 – 1.81 (m, 1H), 1.78 – 1.74 (m, 1H), 1.60 – 1.51 (m, 1H), 1.41 – 1.28 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.0, 150.9, 147.8, 142.4, 142.3, 139.2, 139.0, 138.1, 137.0, 135.2, 129.7, 129.3, 129.2, 128.7, 128.5, 128.4, 126.8, 126.2, 125.7, 122.2, 62.1, 55.4, 49.5, 32.4, 31.9, 24.0, 21.43, 21.40; HRMS (ESI/TOF-Q) m/z: [M+H]⁺ Calculated for C₃₄H₃₅N₃O₂SH⁺ 550.2523; Found 550.2511.

15. NMR spectra of synthesized compounds

— 2.18 — 1.92

4b, 400MHz,CDCl₃

4b, 101MHz,CDCl₃

100 90 f1 (ppm)

100 90 f1 (ppm) -1

-109.3-109.7

164.6 150.3 148.5 148.5 148.5 137.4 137.4 133.4 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 133.5 123.0 122.6 122.5 123.5 ₹77.4 77.2 76.9 T 17

4e, 126MHz,CDCl₃

100	100	170		450		100	100		400	-					10					
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	
									f1 (p	pm)										
		00 A 00	10 OL T 0	$n \leftarrow n \otimes$	1-001	N 0 0 0	0 N 00 +	0 7 N	<u>- 0 0 0</u>	NNO	0 00 1 4	$\sigma \otimes \tau$	o ∞ ⊳ ø	0401	-		2.12			
			N 0 0 1		0,00,1~1	ν 4 ci c		999	0077	<u>∽ ∞ ∞</u>	7774	444			n,		0 Q			
		~~~~~							~ ~ ~ ~	~ e. e				0 0 0 0 0	N		<u></u>			
																	$\sim$			



# -164.6 -164.6 -166.1 -150.6 -150.6 -148.3 -148.3 -148.3 -148.3 -138.2 -138.2 -138.2 -138.2 -138.2 -136.0 -126.1 -122.4 -126.0 -122.4 -257.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5









# $\begin{array}{c} 166.3 \\ 166.4 \\ 164.6 \\ 164.6 \\ 164.6 \\ 164.6 \\ 164.6 \\ 1714.6 \\ 1715.5 \\ 1714.6 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 1716.4 \\ 171$





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



4h, 471MHz,CDCl₃

-100 f1 (ppm) -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180

### 8.870 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815 8.815





**4j**, 500MHz,CDCl₃



100 90 f1 (ppm) -1 

## 8.895 8.817 8.813 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 8.814 <











4n, 400MHz,CDCl₃



### 88.88 88.58 88.58 88.58 88.58 88.56 88.56 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 88.57 89.57 89.57 89.57 89.57 89.57 89.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57 80.57





100 90 f1 (ppm) 









 8868

 88.55

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 88.68

 <tr





### 8,778 8,778 8,773 8,865 8,865 8,774 8,814 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,865 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,965 8,



•





S70










### Ref. 1. 201 Ref. 1. 201 Ref. 2. 201







0 0 -10 -100 -110 -120 -130 -140 -150 f1 (ppm) -200 -2 -20 -30 -40 -50 -60 -70 -160 -170 -180 -190 -80 -90







 $\begin{array}{c} - 164.5 \\ - 150.6 \\ - 148.3 \\ - 148.3 \\ - 148.3 \\ - 148.3 \\ - 148.3 \\ - 148.3 \\ - 137.2 \\ - 137.2 \\ - 128.8 \\ - 137.2 \\ - 128.8 \\ - 127.0 \\ - 128.8 \\ - 127.0 \\ - 128.8 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.5 \\ - 21.$ 

















0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm)





5n, 500MHz,CDCl₃





0 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -1/ f1 (ppm)

#### R84 R88 R88 R886 R86







11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

#### 167.3 164.5 164.5 164.5 148.0 132.4 132.4 123.1 123.1 128.6 128.6 128.6 128.6 128.6 128.6 128.6 128.6 128.7 128.6 128.7 128.6 128.7 128.7 128.6 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.6 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 128.7 129.7 129.7 129.7 129.7 129.7 129.7 129.7

77.5 76.8 - 57.3 - 57.3 - 52.1 - 46.0 - 42.9











5r, 101MHz,CDCl₃





### 



2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)



## $\begin{array}{c} 150.6 \\ 151.6 \\ 162.5 \\ 162.6 \\ 162.6 \\ 133.2 \\ 133.2 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 131.10 \\ 13$





# 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 ff (ppm) f





 $\begin{array}{c} & - 164.6 \\ & - 164.6 \\ & - 168.3 \\ & - 148.3 \\ & - 148.3 \\ & - 148.3 \\ & - 133.7 \\ & - 133.7 \\ & - 133.7 \\ & - 133.7 \\ & - 133.7 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8 \\ & - 122.8$ 





5w, 400MHz,CDCl₃







 190
 180
 170
 160
 150
 140
 130
 120
 110
 100
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

 f1 (ppm)
 120
 120
 10
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

 f1 (ppm)
 120
 120
 120
 10
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

 f1 (ppm)
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 10
 0
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10



## $\begin{array}{c} - 164.4 \\ 166.1 \\ 150.5 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 137.3 \\ 126.1 \\ 126.1 \\ 126.1 \\ 126.2 \\ 126.2 \\ 126.2 \\ 126.2 \\ 137.3 \\ 126.2 \\ 137.3 \\ 137.2 \\ 126.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.$

























#### S98











# $\begin{array}{c} - 164.3 \\ 164.3 \\ - 150.3 \\ - 148.1 \\ 137.7 \\ - 148.1 \\ - 132.5 \\ - 132.5 \\ - 132.5 \\ - 132.5 \\ - 122.2 \\ - 122.2 \\ - 28.1 \\ - 28.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.1 \\ - 38.$
































# 164.44 164.22 164.22 164.24 164.25 164.25 164.26 164.27 164.28 164.28 17.50.50 164.28 17.50.50 17.50.50 17.51.50 17.52.50 177.51 172.53 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.50 172.55 172.55 172.55 172.55 172.43 172.43 172.43 172.43 172.43







Algorithm Constraint of the second second





























## 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8





100 90 f1 (ppm) -1 













# $- 165.2 \\ - 161.0 \\ 161.0 \\ 148.7 \\ 148.7 \\ 148.7 \\ 133.4 \\ 133.4 \\ 128.7 \\ 128.7 \\ 128.7 \\ 128.7 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\ 122.3 \\$

























# $\begin{array}{c} -165.3 \\ -165.3 \\ 149.7 \\ -149.7 \\ -148.7 \\ -148.7 \\ -128.8 \\ -128.8 \\ -128.8 \\ -126.8 \\ -113.3 \\ -105.2 \\ -100.4 \\ -100.4 \\ -100.4 \\ -100.4 \\ -26.8 \\ -26.8 \\ -26.8 \\ -26.8 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\ -26.9 \\$





## 1 2 2 3 8 8 5 8 5 8 5 8 5 1 8 5 1 3 1 8 5 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1







НŃ **8p**, 500MHz,CDCl₃ ĊN





## 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8







A U/ N 2.04₁ 1.00-0.99 € 1.00 € F-76.0 1.07√ 3.00= 1.06≠ 1.07/[±] 1.06= 2.03 2.03 .05 6.0 5.5 5.0 f1 (ppm) 2.5 2.0 2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 4.5 4.0 3.5 3.0 1.5 1.0 0.5 0.0 -0.5 -1 7.5 7.0 6.5 
 137.9

 137.9

 137.9

 137.9

 137.9

 137.9

 137.9

 137.9

 128.6

 128.6

 128.6

 128.7

 128.6

 111.1

 111.1

 110.1
 — 164.9 149.9 148.2 147.3 — 42.7 — 39.0 ₹^{77.4} 77.2 76.9 ~ 55.7 ~ 54.3







## 8.50 8.23 8.24 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 <t





100 90 f1 (ppm) 









## 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 1 8 8 1 8 8 1 8 8 1 3 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1







**9a**, 400MHz,CDCl₃






















