Palladium-catalysed asymmetric cascade transformations of 4alken-2-ynyl carbonates to construct complex frameworks

Ze-Liang He,^a Li Li,^a Zhi-Chao Chen,^{*a} Wei Du,^a and Ying-Chun Chen^{*ab}

^aKey Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

^b College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China

Email: chenzhichao@scu.edu.cn; ycchen@scu.edu.cn

Supplementary Information

1. General methods	S1
2. Preparation and characterisation of substrates	S2
3. Detailed condition optimisations	S12
4. General procedure for the reactions of achiral 4-alken-2-ynyl carbonates	S15
4.1 General procedure for synthesis of 3 and 5	S15
4.2 Procedure for asmmytric synthesis of 7 and 9	S31
5 General procedure for reactions of racemic 1-alkyl-substituted 4-aken-2-ynyl car	bonates 10
••••••	S32
6. Transformations of 1-aryl-4-alken-2-ynyl carbonates	S49
7. Unsuccessful substrates exploration	
8. Transformations of product 12a	S53
9. Preliminary mechanism investigation	S56
10. Crystal data and structural refinement	
11. NMR, HRMS spectra and HPLC chromatograms	

1. General methods

Unless otherwise noted, the reactions were carried out under ambient atmosphere; when the reactions required heating, the heat source was oil bath. ¹H NMR (400 or 600 MHz), ¹³C NMR (100 or 150 MHz) and ¹⁹F NMR (375 MHz) spectra were recorded on Varian INOVA-400/54, Agilent DD2-600/54 or Bruker AscendTM 400 instruments (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = double doublet, m = multiplet and coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2 or Agilent G1969-85000 using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. X-ray diffraction experiments were carried out on an Agilent Gemini or Burker D8 Venture and the data obtained were deposited at the Cambridge Crystallographic Data Centre (CCDC 2381131-2381135). In each case, diastereomeric ratio was determined by ¹H NMR analysis and enantiomeric excess was determined by HPLC (Agilent Technologies: 1220 Infinity II, 1200 Series, 1260 Infinity) analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak AD-H Column (250 × 4.6 mm), Chiralpak IA Column (250 × 4.6 mm), Chiralpak IB Column (250 × 4.6mm), IBN-5 Column (250 × 4.6 mm), Chiralpak ID Column (250 × 4.6 mm), Chiralpak IE Column(250 × 4.6 mm), Chiralpak IF Column (250 × 4.6 mm). UV detection was monitored at 220 nm or 254 nm. Optical rotation was measured in CHCl₃ solution at 25 °C. Column chromatography was performed on silica gel (200-300 mesh) eluting with EtOAc and petroleum ether. TLC was performed on glass-backed silica plates. UV light, I2, and solution of potassium permanganate were used to visualize products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether and EtOAc were redistilled. Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Toluene was freshly distilled from CaH2 under an atmosphere of dry argon. Dried solvents reagents were transferred by oven-dried syringe.

2. Preparation and characterization of substrates

2.1 General procedure for the preparation of 4-alken-2-ynyl carbonates¹

To an oven-dried flask were added CuI (57 mg, 0.3 mmol) and Pd(PPh₃)₄ (346 mg, 0.3 mmol). The flask was capped, purged and back-filled with argon for five times. Dry THF (20 mL), propargylic alcohol **S1** (10 mmol), vinyl bromide (1.0 M in THF, 15 mL, 15 mmol) and triethylamine (5 mL, 40 mmol) were added sequentially via syringe. The mixture was stirred at 40 °C until complete consumption of **S1**. The mixture was cooled to room temperature and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography to give **S2**.

To a solution of **S2** (10 mmol) in DCM (30 mL) were added triethylamine (1.7 mL, 12 mmol) and Boc₂O (2.6 g, 12 mmol) followed by DMAP (92 mg, 0.75 mmol). The mixture was stirred at room temperature overnight and then poured into water. The phases were separated and the aqueous phase was extracted three times with DCM. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, filtered and the filtrate was concentrated and the residue was purified by flash column chromatography to give substrate **1** or **10**.

1-(But-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate (1a): eluent (petroleum ether/ethyl acetate = 75/1); colourless oil; 71% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.86 (dd, J = 17.6, 11.2 Hz, 1H), 5.64 (dd, J = 17.6, 2.4 Hz, 1H), 5.48 (dd, J = 11.2, 2.0 Hz, 1H), 2.24–2.14 (m, 2H), 1.89–1.78 (m, 2H), 1.73–1.55 (m, 5H), 1.49 (s, 9H), 1.34–1.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 151.3, 127.1, 116.8, 89.4, 85.1, 81.9, 37.1, 27.8, 25.2, 22.8; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₅H₂₂O₃Na⁺ 273.1461; Found 273.1459.

1-(But-3-en-1-yn-1-yl)cyclopentyl *tert*-butyl carbonate (1b): eluent (petroleum ether/ethyl acetate = 75/1); colorless oil; 72% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.89–5.77 (m, 1H), 5.61 (dd, J = 17.6, 2.0 Hz, 1H), 5.46 (dd, J = 11.2, 2.4 Hz, 1H), 2.32–2.25 (m, 2H), 2.17–2.09 (m, 2H), 1.81–1.72 (m, 4H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 151.8, 127.1, 116.8, 90.0, 83.4, 82.5, 82.1, 40.5, 27.8, 23.4; HRMS (ESI-TOF) *m/z*:

 $[M + Na]^+$ Calcd for C₁₄H₂₀O₃Na⁺ 259.1305; Found 259.1304.

1-(But-3-en-1-yn-1-yl)cycloheptyl tert-butyl carbonate (1d): eluent (petroleum ether/ethyl acetate = 70/1); colourless oil; 66% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.85 (dd, J = 17.6, 11.2 Hz, 1H), 5.63 (dd, J = 17.6, 2.0 Hz, 1H), 5.47 (dd, J = 17.6, 2.0 Hz, 1H), 5.47 (dd, J = 17.6, 1.2 Hz, 1H), 5.63 (dd, J = 17.6, 2.0 Hz, 1H), 5.47 (dd 11.2, 2.0 Hz, 1H), 2.31–2.24 (m, 2H), 2.15–2.06 (m, 2H), 1.66–1.55 (m, 8H), 1.49 (s,

9H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 151.4, 127.1, 116.9, 90.6, 84.2, 81.9, 80.7, 40.1, 28.2, 27.9, 22.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₂₄O₃Na⁺ 287.1618; Found 287.1624.

2-(But-3-en-1-yn-1-yl)adamantan-2-yl tert-butyl carbonate (1f): eluent (petroleum ether/ethyl acetate = 75/1); colourless oil; 65% yield; ¹H NMR (400 MHz, OBoc CDCl₃): δ (ppm) 5.86 (dd, J = 17.6, 11.2 Hz, 1H), 5.62 (dd, J = 17.6, 2.4 Hz, 1H), 5.46 (dd, J = 11.2, 2.4 Hz, 1H), 2.50 (s, 2H), 2.17 (d, J = 12.4 Hz, 2H), 2.06 (d, J = 1f 12.0 Hz, 2H), 1.83–1.70 (m, 6H), 1.63–1.57 (m, 2H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 151.4, 126.9, 116.9, 90.0, 85.6, 81.7, 81.6, 37.5, 36.1, 35.0, 31.9, 27.9, 26.8, 26.3; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₁₉H₂₆O₃Na⁺ 325.1774; Found 325.1771.

1-(But-3-en-1-yn-1-yl)cyclopentadecyl *tert*-butyl carbonate (1g): eluent (petroleum ether/ethyl acetate = 70/1); colourless oil; 66% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.84 (dd, J = 17.6, 11.2 Hz, 1H), 5.62 (dd, J = 17.6, 2.0 Hz, 1H), 5.46 (dd, J = 11.2, 2.0 Hz, 1H), 2.12–2.02 (m, 2H), 1.95–1.81 (m, 2H), 1.49 (s, 9H), 1.45–1.21 (m, 24H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 150.3, 126.1, 115.8, 89.0, 83.3, 80.8, 78.8, 35.5, 26.8, 26.2, 25.9, 25.6, 25.4, 20.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₄₀O₃Na⁺ 399.2870; Found 399.2870.

tert-Butyl hept-6-en-4-yn-3-yl carbonate (10a): eluent (petroleum ether/ethyl OBoc Eť acetate = 75/1); colourless oil; 69% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.87– 10a 5.74 (m, 1H), 5.66 (dd, J = 17.6, 2.4 Hz, 1H), 5.50 (dd, J = 11.2, 2.4 Hz, 1H), 5.25 (t, J = 6.4 Hz, 1H), 1.88–1.80 (m, 2H), 1.50 (s, 9H), 1.03 (t, J = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 152.7, 127.8, 116.5, 86.6, 84.4, 82.6, 68.5, 28.2, 27.7, 9.4; HRMS (ESI-TOF) *m/z*: $[M + Na]^+$ Calcd for C₁₂H₁₈O₃Na⁺ 233.1148; Found 233.1141.

tert-Butyl hexadec-1-en-3-yn-5-yl carbonate (10b): eluent (petroleum ether/ethyl acetate = 80/1); colourless oil; 64% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.87–5.75 (m, 1H), 5.65 (dd,

J = 17.6, 2.4 Hz, 1H), 5.49 (dd, *J* = 11.2, 2.4 Hz, 1H), 5.34–5.23 (m, 1H), 1.86–1.75 (m, 2H), 1.50 (s, 9H), 1.47–1.41 (m, 2H), 1.30–1.21 (m, 16H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 152.7, 127.8, 116.5, 87.0, 84.3, 82.6, 67.5, 34.9, 31.9, 29.6, 29.52, 29.51, 29.45, 29.3, 29.1, 27.8, 25.0, 22.7, 14.1; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₁H₃₆O₃Na⁺ 359.2557; Found 359.2563.

tert-Butyl (1-cyclohexylhept-6-en-4-yn-3-yl) carbonate (10c): eluent (petroleum ether/ethyl acetate = 75/1); colourless oil; 76% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.86–5.76 (m, 1H), 5.65 (dd, J = 17.6, 2.4 Hz, 1H), 5.50

(dd, *J* = 11.6, 2.4 Hz, 1H), 5.26 (t, *J* = 6.8 Hz, 1H), 1.85–1.77 (m, 2H), 1.74–1.64 (m, 5H), 1.50 (s, 9H), 1.37–1.30 (m, 2H), 1.27–1.11 (m, 4H), 0.95–0.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 152.7, 127.8, 116.5, 87.0, 84.4, 82.6, 67.8, 37.3, 33.3, 33.2, 32.5, 32.4, 27.8, 26.6, 26.3; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₈H₂₈O₃Na⁺ 315.1931; Found 315.1936.

 $\begin{array}{c} \begin{array}{c} & \quad \textit{tert-Butyl (1-phenylhept-6-en-4-yn-3-yl) carbonate (10d): eluent (petroleum \\ & \quad ether/ethyl acetate = 70/1); colourless oil; 73\% yield; ^1H NMR (400 MHz, CDCl_3): \\ & \quad \delta (ppm) \ 7.31-7.26 \ (m, \ 2H), \ 7.22-7.17 \ (m, \ 3H), \ 5.89-5.77 \ (m, \ 1H), \ 5.67 \ (dd, \ J = \\ & \quad 17.6, \ 2.4 \ Hz, \ 1H), \ 5.52 \ (dd, \ J = 11.2, \ 2.4 \ Hz, \ 1H), \ 5.31-5.26 \ (m, \ 1H), \ 2.80 \ (t, \ J = 8.0 \ Hz, \ 2H), \ 2.20- \\ & \quad 2.08 \ (m, \ 2H), \ 1.50 \ (s, \ 9H); \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_3): \ \delta (ppm) \ 152.6, \ 140.7, \ 128.5, \ 128.4, \ 128.0, \\ & \quad 126.1, \ 116.4, \ 86.5, \ 84.8, \ 82.7, \ 66.8, \ 36.4, \ 31.2, \ 27.8; \ HRMS \ (ESI-TOF) \ m/z: \ [M + Na]^+ \ Calcd \ for \\ & \quad C_{18}H_{22}O_3Na^+ \ 309.1461; \ Found \ 309.1467. \end{array}$

tert-Butyl (1-(quinolin-6-yl)hept-6-en-4-yn-3-yl) carbonate (10e): eluent (petroleum ether/ethyl acetate = 12/1); colourless oil; 62% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.91–8.82 (m, 1H), 8.11–8.01 (m, 2H), 7.63– 7.56 (m, 2H), 7.40–7.34 (m, 1H), 5.90–5.77 (m, 1H), 5.72–5.64 (m, 1H),

5.56–5.49 (m, 1H), 5.37–5.31 (m, 1H), 3.00 (t, *J* = 7.6 Hz, 2H), 2.30–2.19 (m, 2H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 152.6, 149.9, 147.2, 139.2, 135.6, 130.8, 129.6, 128.3, 128.2,

126.3, 121.2, 116.4, 86.4, 85.0, 82.8, 66.7, 36.1, 31.2, 27.8; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₁H₂₄NO₃⁺ 338.1751; Found 338.1747.

10-(9*H*-carbazol-9-yl)dec-1-en-3-yn-5-yl *tert*-butyl carbonate
(10f): eluent (petroleum ether/ethyl acetate = 15/1); colourless oil; 68%
yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.10 (d, *J* = 7.6 Hz, 2H),
7.48–7.44 (m, 2H), 7.41–7.37 (m, 2H), 7.24–7.20 (m, 2H), 5.84–5.73

(m, 1H), 5.64 (dd, J = 17.6, 2.0 Hz, 1H), 5.49 (dd, J = 10.8, 2.4 Hz, 1H), 5.27 (t, J = 6.4 Hz, 1H), 4.30 (t, J = 7.2 Hz, 2H), 1.93–1.85 (m, 2H), 1.82–1.73 (m, 2H), 1.55–1.50 (m, 2H), 1.48 (s, 9H), 1.46–1.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 152.7, 140.4, 128.0, 125.6, 122.8, 120.4, 118.8, 116.4, 108.6, 86.7, 84.6, 82.7, 67.2, 42.9, 34.7, 28.8, 27.8, 26.8, 24.7; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₇H₃₁NO₃Na⁺ 440.2196; Found 440.2198.

 $\begin{array}{c} & 1-(\text{Benzyloxy})\text{oct-7-en-5-yn-4-yl} \quad tert-\text{butyl} \quad \text{carbonate} \quad (10g): \text{ eluent} \\ & (\text{petroleum ether/ethyl acetate} = 70/1); \text{ colourless oil; } 75\% \text{ yield; } ^1\text{H NMR} \\ & (400 \text{ MHz, CDCl}_3): \delta (\text{ppm}) \ 7.37-7.26 \ (\text{m}, 5\text{H}), \ 5.85-5.72 \ (\text{m}, 1\text{H}), \ 5.65 \ (\text{dd}, J = 17.6, 2.0 \text{ Hz}, 1\text{H}), \ 5.49 \ (\text{dd}, J = 11.2, 2.4 \text{ Hz}, 1\text{H}), \ 5.36-5.31 \ (\text{m}, 1\text{H}), \ 4.50 \ (\text{s}, 2\text{H}), \ 3.52 \ (\text{t}, J = 6.4 \text{ Hz}, 2\text{H}), \ 1.96-1.89 \ (\text{m}, 2\text{H}), \ 1.83-1.76 \ (\text{m}, 2\text{H}), \ 1.49 \ (\text{s}, 9\text{H}); \ ^{13}\text{C NMR} \ (100 \text{ MHz, CDCl}_3): \delta \\ & (\text{ppm}) \ 152.7, \ 138.5, \ 128.4, \ 127.9, \ 127.6, \ 127.6, \ 116.5, \ 86.7, \ 84.6, \ 82.7, \ 72.9, \ 69.6, \ 67.2, \ 31.8, \ 27.8, \ 25.3; \ \text{HRMS} \ (\text{ESI-TOF}) \ m/z: \ [\text{M} + \text{Na}]^+ \ \text{Calcd for } C_{20}\text{H}_{26}\text{O}_4\text{Na}^+ \ 353.1723; \ \text{Found} \ 353.1719. \end{array}$

 $\begin{array}{c} \mbox{tert-Butyl pentadeca-1,14-dien-3-yn-5-yl carbonate (10h): eluent (petroleum ether/ethyl acetate = 80/1); colourless oil; 67% yield; ¹H NMR (400 MHz, CDCl_3):$ $<math display="inline">\delta$ (ppm) 5.92–5.74 (m, 2H), 5.72–5.60 (m, 1H), 5.55–5.45 (m, 1H), 5.28 (t, *J* = 6.4 Hz, 1H), 5.06–4.86 (m, 2H), 2.10–1.98 (m, 2H), 1.87–1.74 (m, 2H), 1.50 (s, 9H), 1.46–1.25 (m, 12H); \\ ^{13}C NMR (100 MHz, CDCl_3) \delta (ppm) 152.7, 139.2, 127.8, 116.5, 114.1, 87.0, 84.3, 82.6, 67.5, 34.9, 33.8, 29.4, 29.3, 29.1, 28.9, 27.8, 25.0; HRMS (ESI-TOF): *m/z*: [M + Na]⁺ Calcd for C₂₀H₃₂O₃Na⁺ 343.2244; Found 343.2250.

tert-Butyl (12-phenyldodeca-1-en-3,11-diyn-5-yl) carbonate (10i): eluent (petroleum ether/ethyl acetate = 75/1); colourless oil; 69% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.42–7.36 (m, 2H), 7.31– 7.26 (m, 3H), 5.86–5.75 (m, 1H), 5.66 (dd, J = 17.6, 2.4 Hz, 1H), 5.50 (dd, J = 11.2, 2.4 Hz, 1H), 5.31 (t, J = 6.4 Hz, 1H), 2.41 (t, J = 6.8 Hz, 2H), 1.89–1.81 (m, 2H), 1.66–1.61 (m, 2H), 1.56–1.51 (m, 4H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 152.7, 131.6, 128.2, 127.9, 127.5, 124.0, 116.5, 90.1, 86.8, 84.5, 82.6, 80.8, 67.4, 34.8, 28.6, 28.4, 27.8, 24.6, 19.3; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₇H₂₈O₃Na⁺ 375.1931; Found 375.1937.

MeO₂C MeO₂C Methyl 6-((*tert*-butoxycarbonyl)oxy)dec-9-en-7-ynoate (10j): eluent (petroleum ether/ethyl acetate = 30/1); colourless oil; 58% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.89–5.74 (m, 1H), 5.66 (dd, *J* = 17.6, 2.4 Hz, 1H), 5.51 (dd, *J* = 10.8, 2.4 Hz, 1H), 5.29 (t, *J* = 6.4 Hz, 1H), 3.67 (s, 3H), 2.33 (t, *J* = 7.2 Hz, 2H), 1.88–1.78 (m, 2H), 1.72–1.63 (m, 2H), 1.55–1.50 (m, 2H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 173.9, 152.6, 128.0, 116.4, 86.6, 84.5, 82.7, 67.1, 51.6, 34.5, 33.9, 27.8, 24.6, 24.5; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₆H₂₄O₅Na⁺ 319.1516; Found 319.1518.

tert-Butyl (10-(((*R*)-2,5,7,8-tetra methyl-2-((4*R*,8*R*)-4,8,12-trimethyl tridecyl)chroman-6-yl)oxy)dec-1-en-

3-yn-5-yl) carbonate (10k): eluent

(petroleum ether/ethyl acetate = 20/1); colourless oil; 58% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.87–5.74 (m, 1H), 5.66 (dd, *J* = 17.6, 2.2 Hz, 1H), 5.50 (dd, *J* = 11.0, 2.2 Hz, 1H), 5.34–5.28 (m, 1H), 3.63 (t, *J* = 6.5 Hz, 2H), 2.56 (t, *J* = 6.7 Hz, 2H), 2.15 (s, 3H), 2.11 (s, 3H), 2.07 (s, 3H), 1.88–1.71 (m, 6H), 1.58–1.52 (m, 6H), 1.50 (s, 9H), 1.45–1.23 (m, 11H), 1.22 (s, 3H), 1.18–0.97 (m, 7H), 0.94–0.74 (m, 13H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 152.7, 148.3, 147.7, 127.9, 127.8, 125.8, 122.8, 117.5, 116.5, 86.9, 84.4, 82.6, 74.7, 72.8, 67.4, 40.11, 40.07, 39.4, 37.4, 37.3, 34.9, 32.80, 32.78, 32.70, 32.68, 31.30, 31.25, 30.2, 28.0, 27.8, 25.8, 24.9, 24.8, 24.4, 23.9, 22.7, 22.6, 21.1, 21.0, 20.7, 19.8, 19.7, 19.6, 12.7, 11.9, 11.8; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C44H₇₂O₅Na⁺ 703.5272; Found 703.5270.

tert-Butyl (1-(((3*S*,8*R*,9*R*,10*S*,13*S*,14*R*,17*S*)-10,13dimethyl-17-((*S*)-6-methylheptan-2-yl)-2,3,4,7,8,9, 10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl)oxy)oct-7-en-5-yn-4-yl) **carbonate (10l)**: eluent (petroleum ether/ethyl acetate = 20/1); colourless oil; 51% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.87–5.74 (m, 1H), 5.65 (dd, J = 17.6, 2.4 Hz, 1H), 5.49 (dd, J = 11.2, 2.4 Hz, 1H), 5.36–5.30 (m, 2H), 3.50 (t, J = 6.4 Hz, 2H), 3.17–3.08 (m, 1H), 2.38–2.32 (m, 1H), 2.18 (t, J = 11.8 Hz, 1H), 2.04–1.94 (m, 2H), 1.92–1.69 (m, 7H), 1.60–1.51 (m, 3H), 1.49 (s, 9H), 1.49–1.00 (m, 17H), 1.00 (s, 3H), 1.00–0.90 (m, 4H), 0.88–0.84 (m, 6H), 0.68 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 152.6, 141.0, 127.9, 121.5, 116.5, 86.7, 84.5, 82.6, 79.0, 67.22, 67.19, 56.8, 56.1, 50.2, 42.3, 39.8, 39.5, 39.1, 37.3, 36.9, 36.2, 35.8, 31.94, 31.88, 31.82, 28.4, 28.2, 28.0, 27.8, 25.7, 24.3, 23.8, 22.8, 22.6, 21.1, 19.4, 18.7, 11.8; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₄₀H₆₄O₄Na⁺ 631.4697; Found 631.4703.

tert-Butyl (1-(((4*S*,5'*S*,6a*S*,6b*R*,8a*R*,8b*S*,9*R*,10*S*,11a*R*, 12a*R*,12b*R*)-5',6a,8a,9-tetramethyl-1,3,3',4,4',5,5',6, 6a,6b,6',7,8,8a,8b,9,11a,12,12a,12b-icosahydrospiro [naphtho[2',1':4,5]indeno[2,1-*b*]furan-10,2'-pyran]-

4-yl)oxy)oct-7-en-5-yn-4-yl) carbonate (10m): eluent (petroleum ether/ethyl acetate = 25/1); colourless oil; 56% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.89–5.74 (m, 1H), 5.65 (dd, *J* = 17.6, 2.4 Hz, 1H), 5.50 (dd, *J* = 10.8, 2.0 Hz, 1H), 5.36–5.29 (m, 2H), 4.41 (q, *J* = 7.2 Hz, 1H), 3.53–3.44 (m, 3H), 3.37 (t, *J* = 10.8 Hz, 1H), 3.17–3.07 (m, 1H), 2.40–2.32 (m, 1H), 2.22–2.13 (m, 1H), 2.03–1.95 (m, 2H), 1.92–1.82 (m, 5H), 1.80–1.52 (m, 12H), 1.49 (s, 9H), 1.47–1.08 (m, 6H), 1.01 (s, 3H), 0.99–0.93 (m, 4H), 0.81–0.76 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 152.7, 141.1, 127.9, 121.2, 116.5, 109.3, 86.7, 84.5, 82.6, 80.8, 79.0, 67.2, 66.9, 62.1, 56.5, 50.1, 41.6, 40.3, 39.8, 39.1, 37.2, 37.0, 32.1, 31.9, 31.8, 31.5, 31.4, 30.3, 28.8, 28.4, 27.8, 25.8, 20.9, 19.4, 17.1, 16.3, 14.5; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₄₀H₆₀O₆Na⁺ 659.4282; Found 659.4283.

tert-Butyl (10-(((8S,9R,13R,14R)-13-methyl-17-oxo-7, 8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*] phenanthren-3-yl)oxy)dec-1-en-3-yn-5-yl) carbonate (10n): eluent (petroleum ether/ethyl acetate = 20/1);

colourless oil; 64% yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.19 (d, *J* = 8.4 Hz, 1H), 6.73–6.67 (m, 1H), 6.66–6.60 (m, 1H), 5.80 (dd, *J* = 17.6, 11.2 Hz, 1H), 5.65 (d, *J* = 17.6 Hz, 1H), 5.50 (d, *J* = 11.2 Hz, 1H), 5.30 (t, *J* = 6.4 Hz, 1H), 3.93 (t, *J* = 6.4 Hz, 2H), 2.94–2.84 (m, 2H), 2.54–2.46 (m,

1H), 2.44–2.36 (m, 1H), 2.29–2.21 (m, 1H), 2.17–1.93 (m, 4H), 1.87–1.75 (m, 4H), 1.64–1.51 (m, 8H), 1.50 (s, 9H), 1.47–1.39 (m, 2H), 0.91 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 221.0, 157.1, 152.7, 137.7, 131.9, 127.9, 126.3, 116.5, 114.5, 112.1, 86.8, 84.5, 82.6, 67.6, 67.3, 50.4, 48.0, 44.0, 38.4, 35.9, 34.8, 31.6, 29.6, 29.1, 27.8, 26.6, 25.9, 25.7, 24.8, 21.6, 13.8; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₃₃H₄₄O₅Na⁺ 543.3081; Found 543.3077.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(Acetoxymethyl)-6-(4-((6-((*tert*-but oxycarbonyl)oxy)dec-9-en-7-yn-1-yl)oxy)phenoxy)tetra hydro-2*H*-pyran-3,4,5-triyl triacetate (10o): eluent (petroleum ether/ethyl acetate = 20/1); colourless oil; 57% yield; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 6.92–6.90 (m,

2H), 6.79–6.77 (m, 2H), 5.84–5.75 (m, 1H), 5.63 (dd, J = 17.6, 2.4 Hz, 1H), 5.48 (dd, J = 10.8, 2.0 Hz, 1H), 5.29–5.20 (m, 3H), 5.16–5.12 (m, 1H), 4.93 (d, J = 7.8 Hz, 1H), 4.29–4.25 (m, 1H), 4.16–4.13 (m, 1H), 3.89 (t, J = 6.6 Hz, 2H), 3.80–3.77 (m, 1H), 2.06 (d, J = 6.0 Hz, 6H), 2.02 (d, J = 6.0 Hz, 6H), 1.85–1.81 (m, 2H), 1.78–1.74 (m, 2H), 1.54–1.49 (m, 4H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 170.6, 170.3, 169.4, 169.3, 155.3, 152.7, 150.8, 128.0, 118.7, 116.4, 115.2, 100.3, 86.7, 84.5, 82.7, 72.7, 71.9, 71.2, 68.3, 68.2, 67.3, 61.9, 34.8, 29.1, 27.8, 25.6, 24.8, 20.8, 20.69, 20.65, 20.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₄₆O₁₄Na⁺ 713.2780; Found 713.2783.

 $\begin{array}{c} \textit{tert-Butyl} \quad (1,1,1-trifluoro-2-phenylhex-5-en-3-yn-2-yl) \quad carbonate \quad (10y): \ eluent \\ (petroleum ether/ethyl acetate = 70/1); \ colourless \ oil; \ 68\% \ yield; \ ^1H \ NMR \ (400 \ MHz, \\ (400 \ MHz, \\ GDCl_3): \ \delta \ (ppm) \ 7.69-7.64 \ (m, 2H), \ 7.44-7.40 \ (m, 3H), \ 6.02-5.91 \ (m, 1H), \ 5.91-5.85 \\ \textbf{10y} \qquad (m, 1H), \ 5.71 \ (dd, J = 10.8, \ 2.8 \ Hz, \ 1H), \ 1.41 \ (s, 9H); \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_3): \ \delta \\ (ppm) \ 149.3, \ 133.3, \ 130.4, \ 129.7, \ 128.4, \ 122.1 \ (q, \ ^1J_{FC} = 282.7 \ Hz), \ 115.6, \ 88.4, \ 84.2, \ 81.1, \ 78.8 \ (q, \ ^2J_{FC} = 32.2 \ Hz), \ 27.6; \ ^{19}F \ NMR \ (375 \ MHz, \ CDCl_3): \ \delta \ (ppm) \ -78.4; \ HRMS \ (ESI-TOF) \ m/z: \ [M + Na]^+ \ Calcd \ for \ C_{17}H_{17}F_3O_3Na^+ \ 349.1022; \ Found \ 349.1026. \end{array}$

2.2 Procedure for preparation of *ortho*-functionalised aryl enones²

To a solution of **S3** (2.0 mmol) in toluene (10 mL) were added **S4** or **S5** (2.2 mmol) and piperidine (2–3 drops). The mixture was heated at 80 °C for 3–8 h, and monitored by TLC (petroleumether/EtOAc = 5/1). After completion, the mixture was cooled to room temperature and the solid was collected by filtration and then dried in vacuum to give *ortho*-functionalised aryl enones **2**, **11** and **15**.

Characterisation for selected ortho-functionalised aryl enones:

Yellow solid, 71% yield; mp 233–235 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 10.57 (s, 1H), 10.19 (s, 1H), 7.72 (s, 1H), 7.64 (d, *J* = 6.8 Hz, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.37–7.29 (m, 1H), 7.26–7.18 (m, 1H), 7.00 (d, *J* = 8.0 Hz, 1H), 6.96–6.91 (m, 1H), 6.91–6.80 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) 169.3, 157.0, 143.1, 133.0, 132.1, 130.2, 130.0, 127.0, 122.8, 121.82, 121.79, 121.5, 119.3, 116.5, 110.4; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₅H₁₁NO₂Na⁺ 260.0682; Found 260.0682.

Yellow solid, 75% yield; mp 247–249 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 10.01 (s, 1H), 7.65 (s, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.48–7.43 (m, 1H), 7.42–7.37 (m, 2H), 7.37–7.27 (m, 3H), 7.05 (d, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.86–6.79 (m, 1H), 3.20 (s, 3H), 2.00 (s, 3H); ¹³C NMR (100

MHz, DMSO-*d*₆): δ (ppm) 167.2, 144.4, 143.3, 137.4, 135.7, 133.9, 131.8, 131.0, 130.4, 130.2, 129.8, 128.5, 128.1, 127.0, 126.9, 122.6, 121.9, 120.6, 109.1, 26.3, 21.2; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₂₃H₂₀N₂O₃SNa⁺ 427.1087; Found 427.1089.

Yellow solid, 77% yield; mp 272–274 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 9.97 (s, 1H), 7.53 (s, 1H), 7.42–7.25 (m, 6H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.89–6.81 (m, 1H), 3.20 (s, 3H), 1.98 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) 167.0, 160.5 (d, ¹*J*_{FC} = 243.8 Hz), 144.5, 143.3, 137.1, 134.4

(d, ${}^{3}J_{FC} = 8.7 \text{ Hz}$), 132.2, 131.9 (d, ${}^{4}J_{FC} = 2.8 \text{ Hz}$), 131.5 (d, ${}^{3}J_{FC} = 9.0 \text{ Hz}$), 130.7, 129.8, 128.9, 126.9, 122.7, 122.0, 120.2, 117.7 (d, ${}^{1}2_{FC} = 22.3 \text{ Hz}$), 116.5 (d, ${}^{2}J_{FC} = 23.2 \text{ Hz}$), 109.2, 26.4, 21.2; ¹⁹F NMR (375 MHz, DMSO-*d*₆): δ (ppm) –114.6; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₂₃H₁₉FN₂O₃SNa⁺ 445.0993; Found 445.0996.

Yellow solid, 74% yield; mp 248–250 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 9.99 (s, 1H), 7.59 (s, 1H), 7.51–7.46 (m, 1H), 7.46–7.37 (m, 3H), 7.35–7.26 (m, 2H), 6.99 (d, *J* = 7.6 Hz, 2H), 6.84 (s, 1H), 6.65 (s, 1H), 3.45 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) 168.0, 143.3, 140.0, 137.5, 135.6, 134.5, 133.4, 131.8, 130.8, 130.3, 130.1, 129.8, 128.2, 127.9, 127.0, 126.7, 121.32,

121.28, 119.9, 29.5, 21.2, 20.9, 18.9; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₂₅H₂₄N₂O₃SNa⁺ 455.1400; Found 455.1401.

Yellow solid Vellow solid 11.70 (s, 1H) 7.32–7.25 (m) 15a 3.21 (s, 3H)

Yellow solid, 62% yield; mp 286–288 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 11.70 (s, 1H), 7.93 (d, *J* = 7.6 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.47–7.32 (m, 4H), 7.32–7.25 (m, 1H), 7.22–7.11 (m, 3H), 7.10–6.99 (m, 2H), 6.88 (d, *J* = 8.0 Hz, 2H), 3.21 (s, 3H), 1.88 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) 167.4, 144.5,

144.2, 138.1, 134.6, 133.2, 130.5, 128.0, 125.5, 125.4, 125.1, 122.9, 122.7, 122.2, 121.90, 121.86, 120.6, 111.1, 109.0, 106.5, 26.4, 21.0; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₅H₂₁N₃O₃SNa⁺ 466.1196; Found 466.1195.

Yellow solid, 67% yield; mp 297–299 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 11.72 (s, 1H), 8.45 (s, 1H), 8.29–8.22 (m, 1H), 8.16–8.09 (m, 1H), 7.59–7.48 (m, 2H), 7.39–7.31 (m, 2H), 7.25–7.12 (m, 4H), 7.11–7.05 (m, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 3.24 (s, 3H), 2.08 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) 165.4,

147.9, 146.8, 144.7, 142.4, 136.0, 133.3, 130.9, 130.3, 129.9, 128.0, 125.5, 123.3, 122.1, 120.5, 119.8, 118.7, 118.3, 109.0, 108.5, 26.4, 21.3; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₄H₂₀N₄O₃SNa⁺ 467.1148; Found 467.1152.

Yellow solid, 82% yield; mp 196–198 °C; ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) 10.27 (s, 1H), 8.28 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 6.8 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.93 (s, 1H), 7.89–7.82 (m, 2H), 7.79 (d, J = 6.8 Hz, 1H), 7.68–7.60 (m, 1H), 7.44–7.34 (m, 1H), 7.07 (d, J = 8.4 Hz, 1H), 7.04–6.97 (m, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) 192.2, 157.3, 139.9, 132.7, 132.4, 132.2, 131.6, 130.8, 130.3, 128.9, 128.7, 126.4, 121.9, 121.8, 120.3, 119.3, 116.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₉H₁₃O₂⁺ 273.0910; Found 273.0911.

Yellow solid, 65% yield; mp 218–220 °C; ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) 10.04 (s, 1H), 8.29 (d, J = 8.0 Hz, 1H), 8.10–7.97 (m, 2H), 7.91–7.83 (m, 1H), 7.74 (s, 1H), 7.71–7.65 (m, 1H), 7.59–7.49 (m, 2H), 7.45–7.38 (m, 2H), 7.38–7.23 (m, 3H), 6.68 (d, J = 7.6 Hz, 2H), 1.39 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) 191.6,

142.9, 140.1, 137.3, 135.8, 134.6, 132.2, 131.99, 131.97, 131.90, 131.0, 130.8, 130.4, 129.6, 129.1, 128.8, 127.1, 126.9, 126.5, 121.8, 120.5, 20.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₂₀NO₃S⁺ 426.1158; Found 426.1157.

2.3 Procedure for the preparation of substrate 8

To a solution of salicylaldehyde (1.22 g, 10.0 mmol) in MeOH (30 mL) were added 1,3dimethylbarbituric acid (1.72 g, 11.0 mmol) and L-proline (0.23 g, 2.0 mmol). The mixture was stirred at room temperature for 5 h, and monitored by TLC (petroleumether/EtOAc = 5/1). After completion, the solid was collected by filtration and then dried in vacuo to give product 8: 1.85 g (7.11 mmol), as a yellow solid, 71% yield; mp 204–206 °C; ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) 10.59 (s, 1H), 8.67 (s, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.41–7.34 (m, 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.86–6.80 (m, 1H), 3.23 (s, 3H), 3.18 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) 162.9, 160.9, 159.4, 151.8, 151.7, 135.1, 133.1, 120.5, 118.6, 117.4, 115.9, 29.0, 28.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₃N₂O₄⁺ 261.0807; Found 261.0814.

Other substrates, including 2a-2l, 6 and 10x are known compounds, and the spectra of these compounds were consistent with the reports.^{1,3}

References

1. (*a*) C. Li, Z. Zhou, Y. Li, Y. Guo and S. Ma, *Chem. Commun.* 2023, **59**, 3727–3730; (*b*) Z.-L. Wang and R. Zhu, *J. Am. Chem. Soc.* 2024, **146**, 19377–19385.

2. S. Sambhaji Vagh, B.-J. Hou, A. Edukondalu, P.-C. Wang, Y.-R. Chen and W. Lin, *Adv. Synth. Catal.* 2021, **363**, 5429–5435.

3. J. Sun, X. Liu, Q. Sun, Y. Han and C.-G. Yan, J. Org. Chem. 2023, 88, 11562-11580.

3. Detailed condition optimisations

3.1 Detailed condition optimisations for asymmetric synthesis of 3a^a

12	L3	DMA	50	48	/	57	88
13^e	L3	DMA	50	48	/	60	88
14^e	L3	DMA	50	48	KHCO3	73	89
15^e	L3	DMA	45	60	KHCO ₃	64	91
16 ^e	L3	DMA	45	60	K ₂ CO ₃	62	91
17^e	L3	DMA	45	60	K ₃ PO ₄	61	91
18^{e}	L3	DMA	45	60	Et ₃ N	trace	/
19 ^e	L3	DMA	45	60	BzOH	trace	/
20 ^{<i>e</i>,<i>f</i>}	L3	DMA	45	60	KHCO ₃	72	91
$21^{e,f,g}$	L3	DMA	45	60	KHCO ₃	48	91

^{*a*} Unless noted otherwise, reactions were performed with 3-vinyl propargylic carbonate **1a** (0.1 mmol), (*E*)-3-(2-hydroxybenzylidene)oxindole **2a** (0.120 mmol), Pd₂dba₃ (5 mol%), ligand **L** (12 mol%) in degassed solvent (1.0 mL) under Ar atmosphere. ^{*b*} Yield of the isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase, and >19:1 dr was determined by ¹H NMR analysis of crude product. ^{*d*} With **L9** (20 mol%). ^{*e*} With DMA (2.0 mL). ^{*f*} With **1a** (0.15 mmol) and **2a** (0.1 mmol). ^{*g*} With Pd₂dba₃ (2.5 mol%), **L3** (6 mol%). NMP = *N*-methylpyrrolidin-2-one; DMF = Dimethylformamide; DMA = Dimethylacetamide.

3.2 Detailed condition optimisations for asymmetric synthesis of 7^a

Entry	Ligand	Solvent	<i>T</i> (° C)	<i>t</i> (h)	Yield $(\%)^b$	ee (%) ^c
1^d	L2	MeCN	80	24	trace	/
2^d	L3	MeCN	80	24	trace	/
3	L3	toluene	80	24	trace	/
4	L4	MeCN	80	24	trace	/
5	L4	toluene	80	24	57	51

6	L9	toluene	80	24	65	3
7	L10	toluene	80	24	64	42
8	L11	toluene	80	24	63	10
9	L4	THF	80	24	53	48
10	L4	DMA	80	24	trace	/
11	L4	DCE	80	24	46	49
12	L4	toluene	60	36	35	52

^{*a*} Unless noted otherwise, reactions were performed with 3-vinyl propargylic carbonate **1a** (0.15 mmol), 2-(2-hydroxybenzylidene)-1*H*-indene-1,3(2*H*)-dione **6** (0.1 mmol), Pd₂dba₃ (5 mol%) and ligand **L** (20 mol%) in degassed solvent (1.0 mL) under Ar atmosphere. ^{*b*} Yield of the isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase, and >19:1 dr was determined by ¹H NMR analysis of crude product. ^{*d*} With ligand **L** (12 mol%).

3.3 Detailed condition optimisations for asymmetric synthesis of 12a^a

	Et OBoc +		NHTs 11a	Pd ₂ dba ₃ (5 mol%) L (12 mol%) Additive (120 mol%) Solvent, <i>T</i> generally >19:1 dr		Et ^w N ts 12a	
		ih HN h ₂ Ph ₂ P L3		O P t-Bu L5		P P P P P P P P P P P P P P P P P P P	Ð
Entry	Ligand	Solvent	<i>T</i> (° C)	<i>t</i> (h)	Additive	Yield $(\%)^b$	ee (%) ^c
1	L3	MeCN	60	36	KHCO ₃	54	36
2	L5	MeCN	60	36	KHCO ₃	72	83
3	L8	MeCN	60	36	KHCO ₃	52	85
4	L5	MeCN	50	48	KHCO ₃	71	85
5	L5	MeCN	45	72	KHCO ₃	70	93
6	L5	MeCN	40	72	KHCO3	low conv.	/
7	L5	MeCN	45	72	/	low conv.	/
8^d	L5	MeCN	45	72	KHCO3	35	92
9 ^e	L5	MeCN	45	72	KHCO ₃	71	85
10	L5	MeCN	45	72	K ₂ CO ₃	low conv	/
11	L5	toluene	45	72	KHCO3	38	74
12	L5	THF	45	72	KHCO3	71	75
13	L5	DMA	45	72	KHCO ₃	low conv.	/

^{*a*} Unless noted otherwise, reactions were performed with *tert*-butyl hept-6-en-4-yn-3-yl carbonate **10a** (0.2 mmol), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)phenyl)benzenesulfonamide **11a** (0.1 mmol), Pd₂dba₃ (5 mol%), ligand L (12 mol%) in degassed solvent (1.0 mL) under Ar atmosphere. ^{*b*} Yield of the isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase, and >19:1 dr was determined by ¹H NMR analysis of crude product. ^{*d*} With MeCN (0.5 mL). ^{*e*} With MeCN (2.0 mL).

4. General procedure for the reactions of achiral 4-alken-2-ynyl carbonates

4.1 General procedure for synthesis of 3 and 5

General procedure: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 4-alken-2-ynyl carbonate **1** (0.15 mmol, 1.5 equiv), activated alkene **2** (0.1 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L3** (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the product.

Note: racemic **3** was prepared from **1** and **2** through the same procedure under the catalysis of $Pd(PPh_3)_4$ (5 mol%).

Synthesis of 3a: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate 1a (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxybenzylidene)-1-methylindolin-2-one 2a (25.1 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%),

L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3a**: 27.6 mg (0.0720 mmol), as a white solid, 72% yield; mp 157–159 °C; >19:1 dr, determind by ¹H

NMR analysis of crude product; $[\alpha_D^{25}] = -58.3$ (c = 3.46 in CHCl₃); 91% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 95/5, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.10 min (minor), t_R = 7.36 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.12–7.05 (m, 1H), 6.95–6.87 (m, 1H), 6.84–6.76 (m, 2H), 6.70–6.61 (m, 2H), 6.48–6.41 (m, 1H), 6.23 (d, J = 2.8 Hz, 1H), 6.17 (d, J = 7.6 Hz, 1H), 4.96 (s, 1H), 4.76 (s, 1H), 4.55 (s, 1H), 3.40 (s, 3H), 2.15–2.05 (m, 1H), 2.04–1.93 (m, 3H), 1.81–1.67 (m, 2H), 1.59–1.32 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.7, 155.8, 152.9, 152.5, 142.6, 132.5, 127.74, 127.68, 127.6, 124.5, 122.9, 122.7, 121.8, 120.4, 117.5, 108.0, 105.3, 76.1, 62.9, 49.9, 34.4, 32.5, 26.8, 25.6, 21.7, 21.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₅NO₂Na⁺ 406.1778; Found 406.1777.

Asymmetric synthesis of 3a on a 1.0 mmol scale

To an oven-dried 50 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate **1a** (375.5 mg, 1.500 mmol), (*E*)-3-(2-hydroxy benzylidene) -1-methylindolin-2-one **2a** (251.3 mg, 1.000 mmol) , Pd₂dba₃ (45.8 mg, 0.0500 mmol, 5 mol%), **L3** (97.5 mg, 0.120 mmol, 12 mol%) and KHCO₃ (120.2 mg, 1.201 mmol). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (20 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3a**: 268.5 mg (0.7001 mmol), as a white solid, 70% yield, >19:1 dr, 91% ee.

Synthesis of 3b: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclopentyl *tert*-butyl carbonate 1b (35.5 mg, 0.150 mmol, 1.5 equiv), (E)-3-(2-hydroxybenzylidene)-1-methylindolin-2-one 2a (25.1 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%),

L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3b**: 28.1 mg (0.0761 mmol), as a white solid, 76% yield; mp 146–148 °C; >19:1 dr, determind by ¹H

NMR analysis of crude product; $[\alpha_D^{25}] = -77.6$ (c = 5.28 in CHCl₃); 95% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 95/5, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 7.61 min (minor), t_R = 9.69 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.13–7.05 (m, 1H), 6.93–6.86 (m, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.75–6.70 (m, 1H), 6.70–6.62 (m, 2H), 6.48–6.41 (m, 1H), 6.23 (d, J = 2.8 Hz, 1H), 6.16 (d, J = 8.0 Hz, 1H), 4.96 (s, 1H), 4.77 (s, 1H), 4.55 (s, 1H), 3.40 (s, 3H), 2.29–2.14 (m, 2H), 2.11–1.99 (m, 2H), 1.91–1.72 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.7, 155.7, 153.5, 150.5, 142.6, 132.4, 127.8, 127.6, 123.6, 123.0, 122.7, 121.8, 120.4, 117.6, 108.0, 105.5, 86.3, 63.1, 50.7, 36.4, 36.0, 26.8, 23.8, 23.6; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₅H₂₃NO₂Na⁺ 392.1621; Found 392.1623.

Synthesis of 3c: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)-4,4-dimethylcyclohexyl *tert*-butyl carbonate 1c (41.7 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxybenzylidene)-1-methylindolin-2-one 2a (25.1 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg,

0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/7). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give the product **3c**: 24.7 mg (0.0600 mmol), as a white solid, 60% yield; mp 197–198 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_B^{25}] = -31.5$ (*c* = 6.32 in CHCl₃); 56% ee, determined by HPLC analysis (Daicel Chiralpak IBN-5, *n*-hexane/*i*-PrOH = 95/5, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.87 min (minor), t_R = 8.54 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.12–7.02 (m, 1H), 6.95–6.87 (m, 1H), 6.84–6.73 (m, 2H), 6.70–6.57 (m, 2H), 6.48–6.41 (m, 1H), 6.25 (d, *J* = 2.8 Hz, 1H), 6.16 (d, *J* = 7.6 Hz, 1H), 4.96 (s, 1H), 4.76 (s, 1H), 4.55 (s, 1H), 3.39 (s, 3H), 2.18–2.08 (m, 1H), 2.06–1.99 (m, 1H), 1.96–1.80 (m, 2H), 1.68–1.58 (m, 1H), 1.55–1.40 (m, 2H), 1.20–1.13 (m, 1H), 1.01 (s, 3H), 0.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.7, 155.8, 152.9, 152.3, 142.6, 132.4, 127.8, 127.7, 127.6, 124.4, 122.9, 122.7, 121.8, 120.4, 117.5, 108.0, 105.4, 75.9, 62.9, 50.0, 34.3, 34.0, 31.2, 30.5, 29.7, 28.6, 26.8, 25.2; HRMS (ESI-TOF) *m*/z: [M + H]⁺ Calcd for C₂₈H₃₀NO₂⁺ 412.2271; Found 412.2274.

Synthesis of 3d: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cycloheptyl *tert*-butyl carbonate 1d (39.7 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxybenzylidene)-1-methylindolin-2-one 2a (25.1 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2

equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/7). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give the product **3d**: 25.1 mg (0.0631 mmol), as a white solid, 63% yield; mp 174–176 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -55.6$ (c = 4.32 in CHCl₃); 81% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.26 min (minor), t_R = 7.18 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.13–7.04 (m, 1H), 6.94–6.85 (m, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.78–6.71 (m, 1H), 6.70–6.57 (m, 2H), 6.48–6.39 (m, 1H), 6.24 (d, J = 2.8 Hz, 1H), 6.15 (d, J = 7.6 Hz, 1H), 4.96 (s, 1H), 4.74 (s, 1H), 4.55 (s, 1H), 3.40 (s, 3H), 2.36–2.26 (m, 1H), 2.19–2.05 (m, 2H), 2.02–1.91 (m, 1H), 1.84–1.61 (m, 6H), 1.56–1.33 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.7, 155.7, 153.2, 153.0, 142.6, 132.5, 127.74, 127.67, 127.5, 124.4, 122.9, 122.7, 121.6, 120.2, 117.6, 108.0, 105.3, 80.7, 62.9, 49.8, 38.4, 35.3, 30.0, 29.8, 26.8, 22.4, 21.6; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₇H₂₈NO₂⁺ 398.2115; Found 398.2111.

Synthesis of 3e: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl (2-methylhex-5-en-3-yn-2-yl) carbonate 1e (31.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxybenzylidene)-1-methylindolin-2-one 2a

 $_{3e}$ (25.1 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3e**: 23.1 mg (0.0672)

mmol), as a white solid, 67% yield; mp 135–137 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -96.5$ (c = 7.23 in CHCl₃); 92% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 5.07 min (minor), t_R = 6.70 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.13–7.06 (m, 1H), 6.95–6.86 (m, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.76–6.70 (m, 1H), 6.70–6.64 (m, 1H), 6.64–6.56 (m, 1H), 6.47–6.40 (m, 1H), 6.23 (d, J = 2.8 Hz, 1H), 6.16 (d, J = 7.6 Hz, 1H), 4.97 (s, 1H), 4.78 (s, 1H), 4.56 (s, 1H), 3.40 (s, 3H), 1.74 (s, 3H), 1.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.6, 155.6, 153.2, 152.2, 142.6, 132.4, 127.8, 127.73, 127.70, 124.2, 122.9, 122.7, 121.0, 120.3, 117.4, 108.0, 105.5, 75.3, 63.0, 49.8, 26.8, 26.2, 24.9; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₃H₂₂NO₂⁺ 344.1645; Found 344.1644.

Synthesis of 3f: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 2-(but-3-en-1-yn-1-yl)adamantan-2-yl *tert*-butyl carbonate 1f (45.4 mg, 0.150 mmol, 1.5 equiv), (E)-3-(2-hydroxybenzylidene)-1-methyl indolin-2-one 2a (25.1 mg, 0.0999 mmol, 1.0 equiv), Pd(PPh₃)₄ (5.8 mg, 0.0050 mmol, 5 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was

capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 60 °C for 24 h, and monitored by TLC (EtOAc/petroleum ether = 1/6). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/6) to give the product **3f**: 25.7 mg (0.0590 mmol), as a white solid, 59% yield; mp 188–190 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.11–7.02 (m, 1H), 6.95–6.87 (m, 1H), 6.85–6.74 (m, 2H), 6.69–6.61 (m, 1H), 6.59–6.53 (m, 1H), 6.48–6.39 (m, 2H), 6.15 (d, *J* = 8.0 Hz, 1H), 4.96 (s, 1H), 4.70 (s, 1H), 4.50 (s, 1H), 3.38 (s, 3H), 2.66–2.57 (m, 1H), 2.46–2.40 (m, 1H), 2.35–2.27 (m, 1H), 2.25–2.17 (m, 1H), 2.10–2.00 (m, 1H), 2.00–1.88 (m, 3H), 1.85–1.69 (m, 5H), 1.50–1.38 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.9, 156.0, 152.7, 151.4, 142.6, 132.8, 127.74, 127.68, 127.63, 126.7, 123.4, 123.3, 122.6, 120.5, 117.6, 107.8, 105.3, 80.9, 62.5, 51.0, 37.5, 35.4, 34.8, 33.8, 32.6, 31.8, 31.6, 27.3, 27.1, 26.7; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₃₀H₂₉NO₂Na⁺ 458.2091; Found 458.2101.

Synthesis of 3g: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclopentadecyl *tert*-butyl carbonate 1g (55.2 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxybenzylidene)-1-methyl indolin-2-one 2a (25.1 mg, 0.0999 mmol, 1.0 equiv), Pd(PPh₃)₄ (5.8 mg, 0.0050 mmol, 5 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube

was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 60 °C for 24 h, and monitored by TLC (EtOAc/petroleum ether = 1/9). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/9) to give the product **3g**: 33.7 mg (0.0661 mmol), as a white solid, 66% yield; mp 115–117 °C; dr = 10:1, determind by ¹H NMR analysis of crude product; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.10–7.05 (m, 1H), 6.92–6.87 (m, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.68–6.61 (m, 2H), 6.45–6.39 (m, 1H), 6.26 (d, *J* = 2.8 Hz, 1H), 6.16 (d, *J* = 7.6 Hz, 1H), 4.96 (s, 1H), 4.69 (s, 1H), 4.55 (s, 1H), 3.39 (s, 3H), 2.06–1.72 (m, 4H), 1.52–1.25 (m, 24H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.6, 155.6, 153.1, 151.7, 142.6, 132.4, 127.7, 127.7, 127.5, 125.7, 122.9, 122.7, 121.4, 120.2, 117.3, 108.0, 105.2, 80.1, 62.9, 49.8, 35.2, 32.4, 27.8, 27.5, 27.0, 26.9, 26.8, 26.7, 26.6, 26.4, 26.3, 21.8, 21.0; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₃₅H₄₄NO₂⁺ 510.3367; Found 510.3368.

Synthesis of 3h: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate 1a (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxy-3-methylbenzylidene)-1-methylindolin-2-one 2b (26.5 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120

mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3h**: 23.9 mg (0.0601 mmol), as a white solid, 60% yield; mp 151–153 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = +96.5$ (c = 5.22 in CHCl₃); 90% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0

mL/min, 1 = 254 nm) t_R = 5.09 min (minor), t_R = 6.26 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) δ 7.14–7.03 (m, 1H), 6.84–6.73 (m, 2H), 6.71–6.57 (m, 2H), 6.34 (t, *J* = 7.2 Hz, 1H), 6.20 (d, *J* = 2.8 Hz, 1H), 6.01 (d, *J* = 7.6 Hz, 1H), 4.94 (s, 1H), 4.76 (s, 1H), 4.53 (s, 1H), 3.39 (s, 3H), 2.21 (s, 3H), 2.19–2.12 (m, 1H), 2.05–1.91 (m, 3H), 1.85–1.68 (m, 2H), 1.60–1.25 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.8, 155.9, 153.0, 151.0, 142.6, 132.6, 128.9, 127.7, 126.5, 125.1, 123.8, 122.9, 122.6, 121.1, 119.7, 108.0, 105.1, 75.9, 63.0, 50.0, 34.5, 32.5, 26.8, 25.7, 21.6, 16.3; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₇H₂₈NO₂⁺ 398.2115; Found 398.2114.

Synthesis of 3i: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate **1a** (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxy-4-methylbenzylidene)-1-methylindolin-2-one **2c** (26.5 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050

mmol, 5 mol%), **L3** (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3h**: 29.9 mg (0.0752 mmol), as a white solid, 75% yield; mp 155–157 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[a_D^{25}] = +84.3$ (c = 5.87 in CHCl₃); 90% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.33 min (minor), t_R = 8.62 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) δ 7.14–7.05 (m, 1H), 6.80 (d, J = 7.6 Hz, 1H), 6.72–6.58 (m, 3H), 6.31–6.23 (m, 1H), 6.21 (d, J = 2.8 Hz, 1H), 6.04 (d, J = 8.0 Hz, 1H), 4.94 (s, 1H), 4.72 (s, 1H), 4.53 (s, 1H), 3.39 (s, 3H), 2.12 (s, 3H), 2.11–1.83 (m, 4H), 1.80–1.67 (m, 2H), 1.62–1.24 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.8, 155.9, 152.8, 152.7, 142.6, 137.6, 132.5, 127.7, 127.3, 124.3, 123.0, 122.7, 121.4, 118.7, 117.9, 107.9, 105.2, 76.0, 62.9, 49.7, 34.4, 32.6, 26.7, 25.6, 21.7, 21.3, 21.1; HRMS (ESI-TOF) *m*/z: [M + H]⁺ Calcd for C₂₇H₂₈NO₂⁺ 398.2115; Found 398.2111.

Synthesis of 3j: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate 1a (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxy-5-methoxy benzylidene) -1-methylindolin-2-one 2d (28.1 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0

mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3j**: 29.8 mg (0.0721 mmol), as a white solid, 72% yield; mp 167–169 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = +142.2$ (*c* = 6.34 in CHCl₃); 90% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 8.19 min (minor), t_R = 12.70 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.1–7.07 (m, 1H), 6.81 (d, *J* = 7.6 Hz, 1H), 6.74–6.65 (m, 3H), 6.52–6.47 (m, 1H), 6.23 (d, *J* = 2.8 Hz, 1H), 5.71 (d, *J* = 3.4 Hz, 1H), 4.97 (s, 1H), 4.71 (s, 1H), 4.56 (s, 1H), 3.39 (s, 3H), 3.36 (s, 3H), 2.15–1.89 (m, 4H), 1.79–1.64 (m, 2H), 1.57–1.33 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.7, 155.6, 153.2, 152.6, 147.0, 142.6, 132.4, 127.9, 124.5, 123.0, 122.9, 122.3, 118.2, 114.8, 111.4, 107.9, 105.4, 75.9, 62.9, 55.4, 50.4, 34.4, 32.3, 26.8, 25.6, 21.7, 21.3; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₇H₂₈NO₃⁺ 414.2064; Found 414.2069.

Synthesis of 3k: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate **1a** (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxy-5-(methyl thio)benzylidene)-1-methylindolin-2-one **2e** (29.7 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L3** (9.8 mg, 0.012 mmol, 12 mol%)

and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3k**: 34.0 mg (0.0791 mmol), as a white solid, 79%

yield; mp 211–213 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -131.7$ (*c* = 5.81 in CHCl₃); 89% ee, determined by HPLC analysis (Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 95/5, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.27 min (minor), t_R = 7.28 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.14–7.05 (m, 1H), 6.94–6.88 (m, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 6.73–6.65 (m, 2H), 6.63–6.58 (m, 1H), 6.25 (d, *J* = 2.8 Hz, 1H), 6.19–6.10 (m, 1H), 4.98 (s, 1H), 4.72 (s, 1H), 4.56 (s, 1H), 3.40 (s, 3H), 2.15–2.00 (m, 2H), 1.99 (s, 3H), 1.98–1.89 (m, 2H), 1.81–1.67 (m, 2H), 1.59–1.27 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.6, 155.4, 151.9, 151.7, 142.6, 132.3, 129.3, 128.6, 128.2, 127.9, 124.9, 123.1, 122.9, 122.6, 118.0, 108.0, 105.8, 76.4, 62.7, 50.0, 34.3, 32.6, 26.8, 25.6, 21.6, 21.3, 18.1; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₂₇H₂₇NO₂SNa⁺ 452.1655; Found 452.1648.

Synthesis of 31: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate **1a** (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(4-chloro-2-hydroxybenzylidene)-1-methylindolin-2-one **2f** (28.6 mg, 0.100 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L3** (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg,

0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **31**: 30.6 mg (0.0732 mmol), as a white solid, 73% yield; mp 176–178 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -73.4$ (c = 6.72 in CHCl₃); 88% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 5.75 min (minor), t_R = 6.88 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.15–7.04 (m, 1H), 6.07 (d, J = 8.4 Hz, 1H), 4.97 (s, 1H), 4.70 (s, 1H), 4.55 (s, 1H), 3.39 (s, 3H), 2.18–2.05 (m, 1H), 2.04–1.90 (m, 3H), 1.81–1.67 (m, 2H), 1.58–1.29 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.5, 155.5, 153.7, 151.5, 142.5, 132.7, 132.1, 128.5, 128.0, 124.9, 122.93, 122.91, 120.6, 120.4, 117.8, 108.1, 105.8, 62.7, 49.4, 34.3, 32.6, 26.8, 25.5, 21.6, 21.3; HRMS (ESI-TOF) m/z: C₂₆H₂₄³⁵CINO₂Na⁺ 440.1388; Found 440.1398; [M + Na]⁺ Calcd for C₂₆H₂₄³⁷CINO₂Na⁺

Synthesis of 3m: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate **1a** (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(4-bromo-2-hydroxybenzylidene)-1-methylindolin-2-one **2g** (33.0 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg,

0.0050 mmol, 5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product 3m: 33.9 mg (0.0733 mmol), as a white solid, 73% yield; mp 144-146 °C; >19:1 dr. determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -174.8$ (c = 8.32 in CHCl₃); 85% ee, determined by HPLC analysis (Daicel Chiralpak AD, n-hexane/i-PrOH = 90/10, flow rate =1.0 mL/min, l = 254 nm) t_R = 6.19 min (minor), t_R = 8.25 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.16–7.08 (m, 1H), 6.98 (d, J = 2.0 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.74–6.68 (m, 1H), 6.63– 6.59 (m, 1H), 6.59–6.54 (m, 1H), 6.24 (d, J = 2.8 Hz, 1H), 6.01 (d, J = 8.4 Hz, 1H), 4.97 (s, 1H), 4.68 (s, 1H), 4.55 (s, 1H), 3.39 (s, 3H), 2.13–2.06 (m, 1H), 2.03–1.90 (m, 3H), 1.78–1.68 (m, 2H), 1.61– 1.35 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.5, 155.5, 153.8, 151.4, 142.5, 132.1, 128.8, 128.0, 124.9, 123.5, 123.0, 122.9, 120.9, 120.7, 120.5, 108.1, 105.8, 62.6, 49.4, 34.3, 32.7, 26.8, 25.5, 21.4, 21.3; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₆H₂₅⁷⁹BrNO₂⁺ 462.1063; Found 462.1060; Calcd for C₂₆H₂₅⁸¹BrNO₂⁺ 464.1043; Found 464.1046.

Synthesis of 3n: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate 1a (37.6 mg, 0.150 mmol, 1.5 equiv), methyl (*E*)-4-hydroxy -3-((1-methyl-2-oxoindolin-3-ylidene)methyl)benzoate 2h (30.9 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), L3 (9.8 mg, 0.012 mmol,

12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and backfilled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/6). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/6) to give the product **3n**: 23.5 mg (0.0532 mmol), as a white solid, 53% yield; mp 211–213 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = +82.6$ (c = 4.25 in CHCl₃); 91% ee, determined by HPLC analysis (Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.85 min (minor), t_R = 8.02 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.58 (d, J = 8.4 Hz, 1H), 7.07–7.03 (m, 1H), 6.93 (s, 1H), 6.85–6.76 (m, 2H), 6.67–6.55 (m, 2H), 6.29 (d, J = 2.0 Hz, 1H), 5.02 (s, 1H), 4.75 (s, 1H), 4.62 (s, 1H), 3.71 (s, 3H), 3.43 (s, 3H), 2.16–2.07 (m, 1H), 2.07–1.93 (m, 3H), 1.80–1.69 (m, 2H), 1.60–1.30 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.3, 166.3, 157.0, 154.9, 150.9, 142.7, 132.0, 130.0, 129.4, 128.1, 125.4, 122.7, 122.5, 122.0, 121.4, 117.3, 108.2, 106.3, 63.0, 51.6, 50.0, 34.2, 32.9, 26.8, 25.5, 21.6, 21.3; HRMS (ESI-TOF) m/z; [M + Na]⁺ Calcd for C₂₈H₂₇NO4Na⁺ 464.1832; Found 464.1836.

Synthesis of 30: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl tert-butyl carbonate 1a (37.6 mg, 0.150 mmol, 1.5 equiv), (E)-3-((1-hydroxynaphthalen-2-yl)methylene)-1-methyl indolin-2-one 2i (30.1 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 30 0.0050 mmol, 5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/7). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give the product **30**: 26.5 mg (0.0611 mmol), as a white solid, 61% yield; mp 193–195 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -212.6$ (c = 7.32 in CHCl₃); 97% ee, determined by HPLC analysis (Daicel Chiralpak IF, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0 mL/min, 1 = 254 nm) $t_R = 9.75 \text{ min (minor)}, t_R = 13.43 \text{ min (major)}; {}^{1}\text{H NMR (400 MHz, CDCl_3)}: \delta (ppm) 7.49-7.44 (m, minor)$ 1H), 7.42 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.19–7.11 (m, 1H), 7.11–7.05 (m, 1H), 7.01 (d, J = 8.8 Hz, 1H), 6.81–6.70 (m, 1H), 6.56–6.45 (m, 1H), 6.44–6.36 (m, 2H), 6.34 (d, J = 2.8 Hz, 1H), 5.17 (s, 1H), 4.96 (s, 1H), 4.56 (s, 1H), 3.27 (s, 3H), 2.26–2.14 (m, 1H), 2.14–1.96 (m, 3H), 1.86–1.65 (m, 2H), 1.62–1.35 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.7, 156.0, 153.4, 151.8, 142.2, 132.9, 131.9, 128.9, 128.6, 128.0, 127.3, 125.1, 125.0, 122.9, 122.8, 122.0, 121.9, 119.2, 114.9, 107.6, 105.2, 63.7, 48.6, 34.4, 30.7, 26.9, 25.7, 22.0, 21.5; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₃₀H₂₈NO₂⁺ 434.2115; Found 434.2113.

Synthesis of 3p: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate **1a** (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxybenzylidene)-1,5,7-trimethyl indolin-2-one **2j** (27.9 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol,

5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol,

1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/7). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give the product **3p**: 29.4 mg (0.0714 mmol), as a white solid, 71% yield; mp 167–168 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -132.5$ (*c* = 5.43 in CHCl₃); 82% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 5.01 min (minor), t_R = 6.70 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) δ 6.95–6.86 (m, 1H), 6.82–6.75 (m, 1H), 6.60 (s, 1H), 6.52–6.42 (m, 1H), 6.24 (s, 1H), 6.21 (d, *J* = 2.8 Hz, 1H), 6.18 (d, *J* = 7.6 Hz, 1H), 4.95 (s, 1H), 4.73 (s, 1H), 4.54 (s, 1H), 3.64 (s, 3H), 2.52 (s, 3H), 2.16–2.06 (m, 1H), 2.05–1.94 (m, 3H), 1.93 (s, 3H), 1.83–1.67 (m, 2H), 1.63–1.28 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.5, 156.5, 153.0, 152.5, 138.0, 133.1, 131.99, 131.96, 127.8, 127.5, 124.4, 121.9, 121.6, 120.3, 119.0, 117.3, 105.2, 76.1, 62.3, 50.2, 34.4, 32.6, 30.1, 25.7, 21.7, 21.4, 20.6, 19.0; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₈H₃₀NO₂⁺ 412.2271; Found 412.2270.

Synthesis of 3q: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate 1a (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-5-fluoro-3-(2-hydroxybenzylidene)-1-methyl indolin-2-one 2k (26.9 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol,

5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2

equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The

residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3q**: 29.4 mg (0.0732 mmol), as a white solid, 73% yield; mp 133–135 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_B^{25}] = -89.5$ (c = 8.32 in CHCl₃); 92% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 5.90 min (minor), t_R = 6.77 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.97–6.90 (m, 1H), 6.83–6.75 (m, 2H), 6.74–6.69 (m, 1H), 6.51–6.44 (m, 1H), 6.43–6.35 (m, 1H), 6.22 (d, J = 3.2 Hz, 1H), 6.18 (d, J = 7.6 Hz, 1H), 4.97 (s, 1H), 4.76 (s, 1H), 4.55 (s, 1H), 3.38 (s, 3H), 2.19–2.04 (m, 1H), 2.04–1.90 (m, 3H), 1.79–1.68 (m, 2H), 1.60–1.24 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.3, 159.1 (d, ¹ $_{JFC} = 239.5$ Hz), 155.2, 153.0, 152.6, 138.6 (d, J = 1.9 Hz), 134.0 (d, ³ $_{JFC} = 8.6$ Hz), 128.0, 127.3, 124.3, 121.4, 120.5, 117.7, 114.1 (d, ² $_{JFC} = 23.6$ Hz), 111.0 (d, ¹ $_{JFC} = 24.9$ Hz), 108.4 (d, J = 8.2 Hz), 105.7, 76.1, 63.2, 49.8, 34.4, 32.5, 26.9, 25.6, 21.6, 21.3; ¹⁹F NMR (375 MHz, CDCl₃): δ (ppm) –120.2; HRMS (ESI-TOF) m/z; [M + H]⁺ Calcd for C₂₆H₂₅FNO₂⁺ 402.1864; Found 402.1865.

Synthesis of 3r: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate **1a** (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxybenzylidene)-1-phenylindolin-2-one **2l** (31.4 mg, 0.0100 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%),

L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv).

The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3r**: 27.7 mg (0.0622 mmol), as a white solid, 62% yield; mp 189–191 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -132.4$ (c = 6.43 in CHCl₃); 91% ee, determined by HPLC analysis (Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 7.09 min (minor), t_R = 8.68 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.69–7.50 (m, 4H), 7.50–7.41 (m, 1H), 7.03–6.97 (m, 1H), 6.97–6.91 (m, 1H), 6.86–6.80 (m, 1H), 6.80–6.75 (m, 1H), 6.74–6.61 (m, 2H), 6.57–6.48 (m, 1H), 6.46–6.36 (m, 1H), 6.27 (d, J = 2.8 Hz, 1H), 5.04 (s, 1H), 4.86 (s, 1H), 4.75 (s, 1H), 2.20–2.09 (m, 1H), 2.08–1.92 (m, 3H), 1.84–1.67 (m, 2H), 1.58–1.30 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.0, 156.0, 153.1, 152.5, 142.5, 134.7, 132.2, 129.8, 128.2,

127.8, 127.63, 127.62, 126.5, 124.4, 123.2, 123.1, 121.8, 120.5, 117.6, 109.4, 105.6, 76.2, 63.1, 50.3, 34.4, 32.5, 25.6, 21.7, 21.3; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₃₁H₂₈NO₂⁺ 446.2115; Found 446.2112.

Synthesis of 3s: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate 1a (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxybenzylidene)indolin-2-one 2m (23.7 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube

was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/8). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3s**: 26.3 mg (0.0712 mmol), as a white solid, 71% yield; mp 151–153 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -231.5$ (c = 4.34 in CHCl₃); 88% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 5.08 min (minor), t_R = 9.23 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.40–8.81 (m, 1H), 7.04–6.98 (m, 1H), 6.96–6.85 (m, 2H), 6.81 (d, J = 8.0 Hz, 1H), 6.68–6.57 (m, 2H), 6.52–6.44 (m, 1H), 6.38 (d, J = 7.6 Hz, 1H), 6.26 (d, J = 2.8 Hz, 1H), 5.02 (s, 1H), 4.80 (s, 1H), 4.73 (s, 1H), 2.19–2.08 (m, 1H), 2.06–1.93 (m, 3H), 1.77–1.39 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 155.7, 153.0, 152.6, 139.8, 133.0, 127.79, 127.77, 124.4, 123.3, 122.6, 121.7, 120.5, 117.5, 110.0, 105.6, 76.1, 63.4, 49.9, 34.4, 32.6, 25.6, 21.7, 21.4; HRMS (ESI-TOF) *m*/z: [M + H]⁺ Calcd for C₂₅H₂₄NO²⁺ 370.1802; Found 370.1804.

Synthesis of 3t: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate 1a (37.6 mg, 0.150 mmol, 1.5 equiv), methyl (*E*)-3-(2-hydroxybenzylidene)-2-oxo indoline-6-carboxylate 2n (29.5 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg,

0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h,

and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **3t**: 27.0 mg (0.0632 mmol), as a white solid, 63% yield; mp 175–177 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -176.2$ (c = 6.22 in CHCl₃); 96% ee, determined by HPLC analysis (Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 95/5, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 15.80 min (major), t_R = 20.27 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.62 (s, 1H), 7.55 (s, 1H), 7.42–7.32 (m, 1H), 6.96–6.89 (m, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.67 (d, J = 7.6 Hz, 1H), 6.51–6.43 (m, 1H), 6.35 (d, J = 7.6 Hz, 1H), 6.25 (d, J = 2.4 Hz, 1H), 5.02 (s, 1H), 4.83 (s, 1H), 4.71 (s, 1H), 3.84 (s, 3H), 2.16–1.94 (m, 4H), 1.79–1.67 (m, 2H), 1.61–1.27 (m, 4H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 180.6, 166.5, 155.0, 152.9, 152.6, 139.8, 138.0, 129.8, 128.0, 127.5, 124.5, 124.2, 123.2, 121.3, 120.7, 117.6, 110.6, 106.0, 76.2, 63.3, 52.1, 49.9, 34.4, 32.5, 25.6, 21.6, 21.3; HRMS (ESI-TOF) m/z; [M + Na]⁺ Calcd for C₂₇H₂₆NO4⁺ 428.1856; Found 428.1853.

Synthesis of 3u: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate **1a** (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2-hydroxybenzylidene)-1,3-dihydro-2*H*-pyrrolo[2,3-*b*]pyridin-2-one **2o** (23.8 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg,

0.0050 mmol, 5 mol%), **L3** (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **3u**: 24.5 mg (0.0661 mmol), as a white solid, 66% yield; mp 193–195 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -95.3$ (c = 6.12 in CHCl₃); 93% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.63 min (minor), t_R = 9.88 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.31 (s, 1H), 8.04 (d, J = 5.2 Hz, 1H), 6.99–6.94 (m, 1H), 6.89–6.85 (m, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.62–6.58 (m, 1H), 6.57–6.53 (m, 1H), 6.44 (d, J = 7.6 Hz, 1H), 6.23 (d, J = 2.8 Hz, 1H), 5.03 (s, 1H), 4.83 (s, 1H), 4.79 (s, 1H), 2.11–1.94 (m, 4H), 1.73–1.35 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.4, 155.5, 154.8, 152.9, 152.4, 146.2, 131.1, 128.1, 127.64, 127.60, 124.2, 121.3, 120.8, 118.2,

117.7, 106.1, 76.2, 63.2, 49.5, 34.3, 32.3, 25.6, 21.7, 21.3; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₃N₂O₂⁺ 371.1754; Found 371.1756.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl tert-butyl carbonate 1a (37.6 mg, 0.150 mmol, 1.5 equiv), (E)-2-(2hydroxy benzylidene)acenaphthylen-1(2H)-one 4 (27.2 mg, 0.0999 mmol, 1.0 equiv), Pd2dba3 (4.6 mg, 0.0050 mmol, 5 mol%), L3 (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry DMA (2.0 mL) was added via syringe. The mixture was stirred at 45 °C for 60 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product 5: 30.4 mg (0.0751 mmol), as a white solid, 75% yield; mp 163–165 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = +154.2$ (c = 9.43 in CHCl₃); 83% ee, determined by HPLC analysis (Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 95/5, flow rate =1.0 mL/min, 1 = 254 nm) $t_R = 8.08 \text{ min (minor)}, t_R = 8.62 \text{ min (major)}; {}^{1}\text{H NMR (400 MHz, CDCl_3)}: \delta (\text{ppm}) \delta 8.19 - 8.05 (\text{m}, \text{major}); \delta (\text{major}); \delta (\text{ma$ 2H), 7.77 (t, J = 7.2 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.25–7.21 (m, 1H), 6.90–6.75 (m, 3H), 6.25 (d, J = 2.4 Hz, 1H), 6.21–6.12 (m, 1H), 5.79 (d, J = 7.6 Hz, 1H), 4.90 (s, 2H), 4.33 (s, 1H), 2.24–2.12 (m, 1H), 2.11–1.96 (m, 3H), 1.86–1.62 (m, 3H), 1.60–1.53 (m, 1H), 1.53–1.37 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 206.2, 157.9, 152.8, 152.6, 141.9, 141.6, 133.6, 132.0, 130.8, 128.8, 128.0, 127.8, 127.5, 124.4, 123.7, 122.2, 122.1, 120.1, 119.7, 117.5, 105.6, 76.2, 68.1, 49.7, 34.5, 32.6, 25.7, 21.8, 21.4; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₉H₂₅O₂⁺ 405.1849; Found 405.1851.

4.2 Procedure for asymptric synthesis of 7 and 9

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl tert-butyl carbonate 1a (37.6 mg, 0.150 mmol, 1.5 equiv), 2-(2-hydroxy benzylidene)-1H-indene-1,3(2H)-dione 6 (25.0 mg, 0.0999 mmol, 1.0 equiv), Pd2dba3 (4.6 mg, 0.0050 mmol, 5 mol%) and L4 (9.1 mg, 0.020 mmol, 20 mol%). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry Tol (1.0 mL) was added via syringe. The mixture was stirred at 80 °C for 24 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product 7: 21.9 mg (0.0573 mmol), as a white solid, 57% yield; mp 234–236 °C; $[\alpha_D^{25}] = +175.3$ (c = 4.23 in CHCl₃); 51% ee, determined by HPLC analysis (Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, flow rate =1.0 mL/min, l = 254 nm) t_R = 7.75 min (major), $t_R = 8.49$ min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20–8.13 (m, 1H), 7.94–7.84 (m, 3H), 7.07–6.98 (m, 1H), 6.94–6.85 (m, 1H), 6.58–6.50 (m, 1H), 6.21 (d, J = 7.6 Hz, 1H), 6.10 (d, *J* = 2.8 Hz, 1H), 4.97 (s, 1H), 4.86 (s, 1H), 4.28 (s, 1H), 2.17–2.10 (m, 1H), 2.03–1.88 (m, 3H), 1.78–1.68 (m, 2H), 1.60–1.23 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.3, 195.1, 154.4, 153.1, 153.0, 143.6, 142.7, 136.1, 135.6, 128.1, 126.6, 124.7, 123.71, 123.68, 121.9, 120.5, 118.1, 106.2, 76.0, 68.6, 47.2, 34.2, 32.8, 25.6, 21.6, 21.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₂NO₃Na⁺ 405.1461; Found 405.1459.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate **1a** (37.6 mg, 0.150 mmol, 1.5 equiv), 5-(2-hydroxy benzylidene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione **8** (26.0 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%) and L4 (9.1 mg, 0.020 mmol, 20 mol%). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 24 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **9**: 21.6 mg (0.0550 mmol), as a white solid, 55% yield; mp 148–150 °C; $[\alpha_D^{25}] = +98.3$ (c = 5.32 in CHCl₃); 61% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 5.22 min (minor), t_R = 6.21 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.14–7.07 (m, 1H), 6.93 (d, J = 8.0 Hz, 1H), 6.82–6.75 (m, 1H), 6.53 (d, J = 7.6 Hz, 1H), 6.01 (d, J = 2.8 Hz, 1H), 5.13 (s, 1H), 5.07 (s, 1H), 4.76 (s, 1H), 3.52 (s, 3H), 3.08 (s, 3H), 2.15–2.06 (m, 1H), 2.02–1.85 (m, 3H), 1.77–1.60 (m, 3H), 1.52–1.33 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 170.0, 165.7, 154.5, 153.7, 153.2, 151.2, 128.2, 125.3, 122.3, 121.6, 120.9, 118.2, 105.7, 76.1, 65.6, 50.4, 34.2, 32.7, 29.4, 28.8, 25.5, 21.5, 21.2; HRMS (ESI-TOF) *m*/z: [M + Na]⁺ Calcd for C₂₃H₂₄N₂O₄Na⁺ 415.1628; Found 415.1628.

5 General procedure for reactions of racemic 1-alkyl-substituted 4-aken-2ynyl carbonates 10

General procedure: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-alkyl-substituted 4-aken-2-ynyl carbonate **10** (0.2 mmol, 2.0 equiv), activated alkene **11**, **13** or **15** (0.1 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (9.8 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the product.

Synthesis of 12a: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl hept-6-en-4-yn-3-yl carbonate **10a** (42.1 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)-phenyl) benzene sulfonamide **11a** (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg,

0.0050 mmol, 5 mol%), L5 (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **12a**: 34.8 mg (0.0701 mmol), as a white solid, 70% yield; mp 134–136 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -135.7$ (c = 12.3 in CHCl₃); 93% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 4.92 min (minor), t_R = 7.77 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.63 (d, *J* = 8.0 Hz, 1H), 7.34–7.27 (m, 2H), 7.21–7.14 (m, 3H), 7.14– 7.08 (m, 1H), 6.89 (d, J = 7.6 Hz, 1H), 6.79–6.68 (m, 2H), 6.58 (d, J = 6.8 Hz, 1H), 6.05 (s, 1H), 5.74 $(d, J = 7.6 \text{ Hz}, 1\text{H}), 5.33-5.20 \text{ (m, 1H)}, 4.71 \text{ (s, 1H)}, 4.38 \text{ (s, 1H)}, 3.31 \text{ (s, 3H)}, 3.02 \text{ (s, 1H)}, 2.45 \text{ (s, 1H)}, 3.31 \text{ (s, 2H)}, 3.02 \text{ (s, 2$ 3H), 1.73–1.52 (m, 2H), 1.17 (t, J = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 176.7, 155.0, 153.3, 144.8, 142.5, 135.8, 134.3, 132.3, 131.6, 129.8, 129.5, 128.1, 126.7, 126.6, 126.5, 126.2, 124.4, 122.6, 122.4, 108.5, 103.3, 61.6, 58.1, 50.1, 31.5, 26.7, 21.7, 10.8; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₃₀H₂₈N₂O₃SNa⁺ 519.1713; Found 519.1720.

Recovered S-10a: 43% yield; $[\alpha_D^{25}] = -75.5$ (c = 2.2 in CHCl₃); 68% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 99/1, flow rate =0.4 mL/min, 1 = 254 nm) t_R = 11.24 min (minor), t_R = 13.06 min (major).

Asymmetric synthesis of 12a on a 1.0 mmol scale: To an oven-dried 50 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl hept-6-en-4-yn-3-yl carbonate 10a (420.6 mg, 2.000 mmol), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)phenyl) benzenesulfon amide 11a (404.5 mg, 1.000 mmol), Pd₂(dba)₃ (45.8 mg, 0.0500 mmol, 5 mol%), L5 (46.4 mg, 0.120 mmol, 12 mol%) and KHCO₃ (120.2 mg, 1.201 mmol). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (10 mL) was added via syringe. The

mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **12a**: 322.9 mg (0.6502 mmol), as a white solid, 65% yield, >19:1 dr, 93% ee.

Synthesis of 12b: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butylhept-6-en-4-yn-3-yl carbonate 10a (42.1 mg, 0.200 mmol, 2.0 equiv), (*E*)-*N*-(4-methoxy-2-((1-methyl-2-oxoindolin-3-ylidene) methyl)phenyl)-4-methylbenzenesulfonamide 11b (43.4 mg, 0.0999 mmol, 1.0

equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), L5 (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and backfilled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **12b**: 34.9 mg (0.0663 mmol), as a white solid, 66% yield; mp 154–156 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $\left[\alpha_D^{25}\right] = -114.7$ (c = 0.30 in CHCl₃); 93% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 5.17 min (minor), t_R = 8.29 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.51 (d, J = 8.8 Hz, 1H), 7.33–7.29 (m, 2H), 7.23– 7.16 (m, 3H), 6.88 (d, J = 7.6 Hz, 1H), 6.77 (t, J = 7.2 Hz, 1H), 6.70–6.63 (m, 1H), 6.61 (d, J = 7.2Hz, 1H), 6.04 (s, 1H), 5.29–5.16 (m, 2H), 4.72 (s, 1H), 4.37 (s, 1H), 3.31 (s, 3H), 3.28 (s, 3H), 2.93 (s, 1H), 2.47 (s, 3H), 1.70–1.62 (m, 1H), 1.59–1.49 (m, 1H), 1.15 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.7, 157.7, 154.9, 153.2, 144.8, 142.5, 135.8, 133.4, 131.8, 130.6, 129.8, 128.2, 126.9, 126.6, 124.5, 122.9, 122.8, 112.9, 111.2, 108.3, 103.4, 61.5, 58.0, 55.0, 50.5, 31.4, 26.7, 21.7, 10.8; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₃₁H₃₀N₂O₄SNa⁺ 549.1818; Found 549.1816.

Synthesis of 12c: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl hept-6-en-4-yn-3-yl carbonate 10a (42.1 mg, 0.200 mmol, 2.0 equiv), (*E*)-*N*-(4-fluoro-2-((1-methyl-2-oxoindolin-3-ylidene) methyl)phenyl)-4-methylbenzenesulfonamide 11c (42.2 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), L5 (4.6 mg, 0.012 mmol, 12

mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and backfilled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **12c**: 36.6 mg (0.0711 mmol), as a white solid, 71% yield; mp 132–134 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $\left[\alpha_{D}^{25}\right] = -85.8$ (c = 0.86 in CHCl₃); 90% ee, determined by HPLC analysis (Daicel Chiralpak AD, nhexane/*i*-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 5.20 min (minor), t_R = 8.58 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.60 (dd, J = 8.8, 5.6 Hz, 1H), 7.34–7.28 (m, 2H), 7.25-7.15 (m, 3H), 6.90 (d, J = 8.0 Hz, 1H), 6.86-6.80 (m, 1H), 6.80-6.74 (m, 1H), 6.58 (d, J = 7.6Hz, 1H), 6.06 (s, 1H), 5.47–5.39 (m, 1H), 5.28–5.22 (m, 1H), 4.74 (s, 1H), 4.38 (s, 1H), 3.32 (s, 3H), 2.92 (s, 1H), 2.48 (s, 3H), 1.71–1.62 (m, 1H), 1.58–1.50 (m, 1H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.4, 160.7 (d, ¹*J*_{FC} = 245.1 Hz), 154.7, 152.4, 145.1, 142.5, 135.6, 134.7 (d, ${}^{3}J_{FC} = 8.3$ Hz), 131.2, 131.14, 131.10, 130.2 (d, J = 2.9 Hz), 129.9, 128.5, 126.6, 124.8, 122.8, 122.5, 113.7 (d, ${}^{2}J_{FC} = 22.3 \text{ Hz}$), 113.3 (d, ${}^{2}J_{FC} = 24.3 \text{ Hz}$), 108.7, 103.8, 61.4, 58.0, 50.2, 31.4, 26.7, 21.7, 10.7; ¹⁹F NMR (375 MHz, CDCl₃): δ (ppm) –113.6; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₃₀H₂₇FN₂O₃SNa⁺ 537.1619; Found 537.1617.

Synthesis of 12d: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl hept-6-en-4-yn-3-yl carbonate 10a (42.1 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-N-(2-((1,5,7-trimethyl-2-oxoindolin-3-ylidene) methyl)phenyl)benzenesulfonamide 11d (43.2 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), L5 (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃

(12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **12d**: 36.8 mg (0.0701 mmol), as a white solid, 70% yield; mp 160–161 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -65.8$ (*c* = 8.23 in CHCl₃); 94% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH =
90/10, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 8.90 min (minor), t_R = 12.76 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.64 (d, *J* = 8.0 Hz, 1H), 7.33–7.27 (m, 2H), 7.20–7.08 (m, 3H), 6.80 (t, *J* = 7.6 Hz, 1H), 6.71 (s, 1H), 6.22 (s, 1H), 6.02 (s, 1H), 5.80 (d, *J* = 8.0 Hz, 1H), 5.31–5.20 (m, 1H), 4.71 (s, 1H), 4.37 (s, 1H), 3.55 (s, 3H), 3.02 (s, 1H), 2.56 (s, 3H), 2.45 (s, 3H), 1.98 (s, 3H), 1.75–1.64 (m, 1H), 1.61–1.52 (m, 1H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 177.6, 155.7, 153.4, 144.8, 137.8, 135.9, 134.3, 132.4, 132.39, 132.35, 131.8, 129.8, 129.4, 126.6, 126.5, 126.4, 124.4, 121.2, 119.6, 103.2, 61.1, 58.1, 50.5, 31.4, 30.0, 21.7, 20.7, 19.1, 10.8; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₃₂H₃₃N₂O₃S⁺ 525.2206; Found 525.2210.

Synthesis of 14: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl hept-6-en-4-yn-3-yl carbonate **10a** (42.1 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((2-oxoacenaphthylen-1(2*H*)-ylidene)methyl) phenyl)benzenesulfonamide **13** (42.5 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg,

0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/6). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/6) to give the product 14: 31.6 mg (0.0610 mmol), as a white solid, 61% yield; mp 126–128 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -75.3$ (c = 0.56 in CHCl₃); 90% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = $\frac{80}{20}$, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 4.77 min (minor), t_R = 6.70 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.14 (d, J = 8.0 Hz, 1H), 8.04 (d, J = 6.8 Hz, 1H), 7.81–7.77 (m, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.65–7.61 (m, 1H), 7.35–7.29 (m, 3H), 7.23–7.19 (m, 2H), 7.07 (t, J = 6.8Hz, 1H), 6.81 (d, J = 6.8 Hz, 1H), 6.53 (t, J = 7.6 Hz, 1H), 6.04 (s, 1H), 5.39 – 5.30 (m, 2H), 4.65 (s, 1H), 4.12 (s, 1H), 3.09 (s, 1H), 2.56 (s, 3H), 1.79–1.63 (m, 2H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 203.9, 157.3, 153.5, 144.9, 141.2, 141.1, 135.8, 134.3, 133.1, 132.9, 132.0, 131.2, 129.8, 129.7, 128.7, 128.3, 126.61, 126.59, 126.4, 126.3, 124.3, 124.1, 122.1, 119.3, 103.8, 66.8, 58.2, 49.7, 31.7, 21.8, 10.8; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₃H₂₈NO₃S⁺ 518.1784; Found 518.1793.

Synthesis of 16a: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl hept-6-en-4-yn-3-yl carbonate **10a** (42.1 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)-1*H*-indol-1-yl)benzenesulfonamide **15a** (44.3 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃

(12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **16a**: 39.2 mg (0.0732 mmol), as a white solid, 73% yield; mp 114–116 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -37.6$ (c = 0.73 in CHCl₃); 85% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 95/5, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 10.67 min (minor), t_R = 13.42 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.55 (d, J = 8.4 Hz, 1H), 7.50–7.42 (m, 2H), 7.27–7.25 (m, 2H), 7.25– 7.22 (m, 1H), 7.22–7.18 (m, 1H), 7.18–7.12 (m, 1H), 7.06–6.98 (m, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.76–6.72 (m, 1H), 6.57 (d, J = 7.6 Hz, 1H), 6.15–6.08 (m, 1H), 5.37–5.28 (m, 1H), 4.84 (s, 1H), 4.72 (s, 1H), 4.43 (s, 1H), 3.29 (s, 3H), 3.10 (s, 1H), 2.54 (s, 3H), 1.58–1.49 (m, 1H), 1.39–1.26 (m, 1H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.4, 154.5, 148.1, 146.9, 142.8, 136.8, 132.8, 132.0, 131.2, 130.3, 128.5, 128.3, 126.4, 125.3, 123.8, 122.4, 122.3, 120.8, 120.1, 110.8, 108.2, 105.6, 98.1, 61.0, 60.8, 48.7, 30.0, 26.7, 21.9, 11.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₂₉N₃O₃SNa⁺ 558.1822; Found 558.1819.

Synthesis of 16b: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl hept-6-en-4-yn-3-yl carbonate **10a** (42.1 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene) methyl)-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)benzenesulfonamide **15b** (44.4 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (4.6 mg, 0.012

mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/3).

After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/3) to give the product **16b**: 23.2 mg (0.0432 mmol), as a white solid, 43% yield; mp 176–178 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -74.8$ (c = 0.57 in CHCl₃); 96% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 8.32 min (minor), t_R = 10.30 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.22 (d, J = 3.6 Hz, 1H), 7.82–7.70 (m, 2H), 7.68–7.58 (m, 1H), 7.41–7.37 (m, 1H), 7.26 (s, 2H), 7.14–7.10 (m, 1H), 7.05–6.91 (m, 3H), 6.25 (s, 1H), 5.52 (s, 1H), 5.29–5.18 (m, 1H), 4.87 (s, 1H), 4.25 (s, 1H), 3.91 (s, 1H), 3.23 (s, 3H), 2.50 (s, 3H), 1.64–1.55 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 174.9, 152.7, 147.4, 147.3, 145.2, 144.2, 143.6, 134.5, 134.1, 129.8, 129.3, 129.2, 128.5, 126.5, 124.0, 122.9, 118.5, 117.1, 108.2, 105.7, 93.9, 61.7, 60.3, 49.6, 29.5, 26.4, 21.8, 10.5; HRMS (ESI-TOF) *m*/z: [M + Na]⁺ Calcd for C₃₁H₂₈N₄O₃SNa⁺ 559.1774; Found 559.1780.

Synthesis of 12e: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl hexadec-1-en-3-yn-5-yl carbonate **10b** (67.3 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)phenyl)benzenesulfonamide **11a** (40.4 mg, 0.0999 mmol, 1.0

equiv), Pd2dba3 (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (4.6 mg, 0.012 mmol, 12 mol%) and KHCO3 (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **12e**: 38.1 mg (0.0612 mmol), as a white solid, 61% yield; mp 112–114 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -32.0 \ (c = 0.15 \ in CHCl_3)$; 95% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 3.85 min (minor), t_R = 7.33 min (major); ¹H NMR (400 MHz, CDCl_3): δ (ppm) 7.65–7.59 (m, 1H), 7.33–7.27 (m, 2H), 7.22–7.10 (m, 4H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.79–6.72 (m, 2H), 6.58 (d, *J* = 8.0 Hz, 1H), 5.34 (t, *J* = 7.2 Hz, 1H), 4.71 (s, 1H), 4.37 (s, 1H), 3.32 (s, 3H), 2.99 (s, 1H), 2.46 (s, 3H), 1.64–1.59 (m, 2H), 1.36–1.17 (m, 18H), 0.89 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl_3):

δ (ppm) 176.7, 155.1, 153.6, 144.8, 142.5, 135.8, 134.3, 132.4, 131.7, 129.8, 129.6, 128.1, 126.7, 126.58, 126.56, 126.1, 124.3, 122.7, 122.5, 108.5, 103.2, 61.6, 56.7, 50.1, 38.4, 32.0, 29.68, 29.66, 29.63, 29.57, 29.4, 29.1, 26.7, 26.0, 22.7, 21.7, 14.2; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₃₉H₄₆N₂O₃SNa⁺ 645.3121; Found 645.3130.

Synthesis of 12f: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl (1-cyclohexylhept-6-en-4-yn-3-yl) carbonate **10c** (58.5 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl -2-oxoindolin-3-ylidene)methyl)phenyl)benzenesulfonamide **11a** (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (4.6 mg,

0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/6). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/6) to give the product **12f**: 40.7 mg (0.0703) mmol), as a white solid, 70% yield; mp 116-118 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $\left[\alpha_{D}^{25}\right] = +78.5$ (c = 0.43 in CHCl₃); 94% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 60/40, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 4.05 min (minor), $t_{\rm R} = 5.87 \text{ min (major)}; {}^{1}{\rm H} \text{ NMR (400 MHz, CDCl_3)}: \delta (ppm) 7.61 (d, J = 8.0 \text{ Hz}, 1\text{H}), 7.32-7.27 (m, J)$ 2H), 7.23–7.10 (m, 4H), 6.89 (d, J = 7.6 Hz, 1H), 6.80– 6.72 (m, 2H), 6.58 (d, J = 7.2 Hz, 1H), 6.03 (s, 1H), 5.73 (d, J = 7.6 Hz, 1H), 5.37 - 5.24 (m, 1H), 4.71 (s, 1H), 4.37 (s, 1H), 3.32 (s, 3H), 2.97 (s, 2H), 5.73 (s, 2H),1H), 2.46 (s, 3H), 1.80–1.64 (m, 5H), 1.61–1.44 (m, 4H), 1.32–1.11 (m, 4H), 1.00–0.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.7, 155.1, 153.6, 144.9, 142.5, 135.8, 134.3, 132.4, 131.7, 129.8, 129.6, 128.1, 126.8, 126.60, 126.57, 126.1, 124.3, 122.7, 122.5, 108.5, 103.3, 61.6, 57.0, 50.1, 37.2, 35.8, 33.6, 33.5, 33.3, 26.7, 26.6, 26.40, 26.37, 21.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₃₈N₂O₃SNa⁺ 601.2495; Found 601.2498.

Synthesis of 12g: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl (1-phenylhept-6-en-4-yn-3-yl) carbonate 10d (57.3 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)phenyl)benzenesulfonamide 11a (40.4 mg, 0.0999 mmol, 1.0

equiv), Pd2dba3 (4.6 mg, 0.0050 mmol, 5 mol%), L5 (4.6 mg, 0.012 mmol, 12 mol%) and KHCO3 (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/7). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give the product **12g**: 41.3 mg (0.0721 mmol), as a white solid, 72% yield; mp 147–149 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = +132.8$ (c = 0.45 in CHCl₃); 93% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = $\frac{80}{20}$, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.01 min (minor), t_R = 10.28 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.66 (d, J = 8.0 Hz, 1H), 7.34–7.27 (m, 4H), 7.27–7.25 (m, 1H), 7.25– 7.12 (m, 6H), 6.87 (d, J = 8.0 Hz, 1H), 6.78 (t, J = 7.6 Hz, 1H), 6.71 (t, J = 7.6 Hz, 1H), 6.54 (d, {J = 7.6 Hz, 1H), 7.6 (d, {J = 7. 8.0 Hz, 1H), 6.07–6.02 (m, 1H), 5.73 (d, J = 8.0 Hz, 1H), 5.47–5.39 (m, 1H), 4.71 (s, 1H), 4.37 (s, 1H), 3.31 (s, 3H), 3.07–2.90 (m, 3H), 2.47 (s, 3H), 1.95–1.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.7, 155.0, 153.1, 145.0, 142.5, 141.4, 135.7, 134.2, 132.5, 131.6, 129.9, 129.7, 128.7, 128.5, 128.1, 126.9, 126.7, 126.6, 126.3, 126.1, 124.7, 122.7, 122.5, 108.5, 103.6, 61.6, 56.7, 50.1, 40.3, 32.6, 26.7, 21.7; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₃₆H₃₂N₂O₃SNa⁺ 595.2026; Found 595.2033.

Synthesis of 12h: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl (1-(quinolin-6-yl)hept-6-en-4-yn-3-yl) carbonate 10e (67.5 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)phenyl)benzenesulfonamide 11a (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5

mol%), L5 (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/4). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to give the product 12h: 33.8 mg (0.0542 mmol), as a white solid, 54% yield; mp 154–156 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = +76.8$ (c = 0.68 in CHCl₃); 97% ee, determined by HPLC

analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 5.59 min (minor), t_R = 12.87 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.95–8.83 (m, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.74 (s, 1H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.65–7.56 (m, 1H), 7.43–7.36 (m, 1H), 7.33–7.27 (m, 2H), 7.25–7.10 (m, 4H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.80 (t, *J* = 7.2 Hz, 1H), 6.70 (t, *J* = 7.6 Hz, 1H), 6.54 (d, *J* = 7.2 Hz, 1H), 6.05 (s, 1H), 5.75 (d, *J* = 7.6 Hz, 1H), 5.53–5.41 (m, 1H), 4.71 (s, 1H), 4.38 (s, 1H), 3.31 (s, 3H), 3.26–3.12 (m, 2H), 2.96 (s, 1H), 2.47 (s, 3H), 2.02–1.90 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.6, 154.9, 153.0, 149.9, 147.2, 145.1, 142.5, 139.7, 135.8, 135.5, 134.1, 132.5, 131.6, 131.0, 129.9, 129.7, 129.5, 128.4, 128.2, 127.0, 126.9, 126.8, 126.6, 126.4, 124.8, 122.7, 122.5, 121.2, 108.5, 103.7, 61.6, 56.5, 50.0, 40.2, 32.6, 26.7, 21.7; HRMS (ESI-TOF) *m*/z: [M + H]⁺ Calcd for C₃₉H₃₄N₃O₃S⁺ 624.2315; Found 624.2323.

Synthesis of 12i: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 10-(9*H*-carbazol-9-yl)dec-1-en-3-yn-5-yl *tert*-butyl carbonate **10f** (83.5 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)phenyl)benzenesulfonamide **11a** (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5

mol%), **L5** (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/4). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to give the product **12i**: 47.3 mg (0.0672 mmol), as a white solid, 67% yield; mp 95–97 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; [α_D^{25}] = -56.8 (*c* = 3.68 in CHCl₃); 93% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 60/40, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 5.75 min (minor), t_R = 8.94 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.10 (d, *J* = 8.0 Hz, 2H), 7.66–7.57 (m, 1H), 7.46–7.38 (m, 4H), 7.29–7.25 (m, 2H), 7.24–7.19 (m, 2H), 7.19–7.13 (m, 3H), 7.13–7.06 (m, 1H), 6.86 (d, *J* = 7.6 Hz, 1H), 6.75 (t, *J* = 7.6 Hz, 1H), 6.67 (t, *J* = 8.4 Hz, 1H), 6.49 (d, *J* = 7.2 Hz, 1H), 5.98–5.90 (m, 1H), 5.71 (d, *J* = 7.6 Hz, 1H), 5.31 (t, *J* = 7.6 Hz, 1H), 4.68 (s, 1H), 4.40–4.29 (m, 3H), 3.30 (s, 3H), 2.96 (s, 1H), 2.45 (s, 3H), 2.01–1.89 (m, 2H), 1.76–1.64 (m, 2H), 1.57–1.33 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.7, 155.0, 153.3, 144.9, 142.5,

140.5, 135.7, 134.2, 132.4, 131.7, 129.8, 129.6, 128.1, 126.9, 126.7, 126.6, 126.3, 125.7, 124.5, 122.8, 122.7, 122.5, 120.3, 118.8, 108.7, 108.5, 103.4, 61.6, 56.6, 50.1, 42.9, 38.2, 28.9, 26.7, 26.5, 25.8, 21.7; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₄₅H₄₁N₃O₃SNa⁺ 726.2761; Found 726.2757.

Synthesis of 12j: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(benzyloxy)oct-7-en-5-yn-4-yl *tert*-butyl carbonate **10g** (66.1 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)phenyl)benzenesulfonamide **11a** (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L5**

(4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/6). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/6) to give the product **12j**: 47.6 mg (0.0772) mmol), as a white solid, 77% yield; mp 167-169 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -88.4$ (c = 12.5 in CHCl₃); 95% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.18 min (minor), $t_R = 9.08 \text{ min (major)}; {}^{1}\text{H NMR (400 MHz, CDCl_3)}: \delta (\text{ppm}) 7.60 (d, J = 7.6 \text{ Hz}, 1\text{H}), 7.38-7.33 (m, J) = 7.6 \text{ Hz}, 1\text{H}, 7.38-7.33 (m, J) = 7.6 \text{ Hz}, 1\text{Hz}, 1\text{Hz},$ 3H), 7.32–7.28 (m, 2H), 7.28–7.25 (m, 2H), 7.22–7.15 (m, 3H), 7.14–7.09 (m, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.80–6.68 (m, 2H), 6.58 (d, J = 7.2 Hz, 1H), 6.04 (s, 1H), 5.73 (d, J = 8.0 Hz, 1H), 5.38– 5.31 (m, 1H), 4.71 (s, 1H), 4.53 (s, 2H), 4.37 (s, 1H), 3.71–3.63 (m, 1H), 3.59–3.52 (m, 1H), 3.31 (s, 3H), 2.97 (s, 1H), 2.46 (s, 3H), 2.01–1.91 (m, 2H), 1.83–1.74 (m, 1H), 1.60–1.53 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.7, 155.0, 153.2, 144.9, 142.5, 138.6, 135.7, 134.2, 132.4, 131.7, 129.8, 129.7, 128.4, 128.1, 127.7, 127.6, 126.8, 126.64, 126.59, 126.2, 124.6, 122.7, 122.5, 108.5, 103.4, 72.8, 69.2, 61.6, 56.4, 50.1, 34.9, 26.7, 26.1, 21.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₈H₃₆N₂O₄SNa⁺ 639.2288; Found 639.2295.

Synthesis of 12k: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl pentadeca-1,14dien-3-yn-5-yl carbonate 10h (64.1 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl) phenyl)benzenesulfonamide 11a (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd2dba3 (4.6 mg, 0.0050 mmol, 5 mol%), L5 (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/6). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/6) to give the product 12k: 46.3 mg (0.0763 mmol), as a white solid, 76% yield; mp 105–107 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -65.8$ (c = 7.67 in CHCl₃); 94% ee, determined by HPLC analysis (Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 4.18 min (minor), $t_R = 8.45$ min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.61 (d, J = 7.6 Hz, 1H), 7.35–7.27 (m, 2H), 7.24–7.08 (m, 4H), 6.88 (d, J = 7.6 Hz, 1H), 6.81–6.68 (m, 2H), 6.58 (d, J = 7.2 Hz, 1H), 6.03 (s, 1H), 5.88–5.77 (m, 1H), 5.73 (d, J = 8.0 Hz, 1H), 5.34 (t, J = 7.6 Hz, 1H), 5.06–4.96 (m, 1H), 4.94 (d, J = 10.8 Hz, 1H), 4.71 (s, 1H), 4.37 (s, 1H), 3.31 (s, 3H), 2.98 (s, 1H), 2.46 (s, 3H), 2.09–1.99 (m, 2H), 1.63–1.52 (m, 4H), 1.47–1.26 (m, 10H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 176.7, 155.1, 153.6, 144.8, 142.5, 139.2, 135.8, 134.3, 132.4, 131.7, 129.8, 129.6, 128.1, 126.7, 126.6, 126.5, 126.1, 124.3, 122.6, 122.4, 114.1, 108.4, 103.2, 61.6, 56.7, 50.1, 38.4, 33.8, 29.5, 29.4, 29.1, 29.0, 28.9, 26.6, 25.9, 21.6; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₈H₄₃N₂O₃S⁺ 607.2989; Found 607.2994.

Synthesis of 121: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl (12-phenyldodeca 1-en-3,11-diyn-5-yl) carbonate 10i (70.5 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)

phenyl)benzenesulfonamide 11a (40.4 mg, 0.0999 mmol, 1.0 equiv),

 Pd_2dba_3 (4.6 mg, 0.0050 mmol, 5 mol%), L5 (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/7). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give the product 12I: 47.4 mg (0.0742 mmol), as a white solid, 74%

yield; mp 124–126 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -125.8$ (*c* = 8.56 in CHCl₃); 94% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 9.01 min (minor), t_R = 12.36 min (major); ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.62 (d, *J* = 7.8 Hz, 1H), 7.44–7.36 (m, 2H), 7.35–7.26 (m, 5H), 7.21–7.15 (m, 3H), 7.14–7.10 (m, 1H), 6.88 (d, *J* = 7.8 Hz, 1H), 6.79–6.71 (m, 2H), 6.57 (d, *J* = 7.2 Hz, 1H), 6.03 (s, 1H), 5.73 (d, *J* = 7.8 Hz, 1H), 5.39–5.33 (m, 1H), 4.71 (s, 1H), 4.37 (s, 1H), 3.31 (s, 3H), 2.98 (s, 1H), 2.46 (s, 3H), 1.75–1.63 (m, 5H), 1.63–1.58 (m, 3H), 1.57–1.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.7, 155.0, 153.4, 144.9, 142.5, 135.8, 134.3, 132.4, 131.7, 131.6, 129.8, 129.7, 128.2, 128.1, 127.5, 126.8, 126.61, 126.58, 126.2, 124.4, 124.1, 122.7, 122.5, 108.5, 103.3, 90.7, 80.8, 61.6, 56.6, 50.1, 38.3, 28.7, 28.3, 26.7, 25.6, 21.7, 19.4; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ Calcd for C₄₁H₃₈N₂O₃SNa⁺ 661.2495; Found 661.2496.

Synthesis of 12m: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added methyl 6-((*tert*-butoxycarbonyl)oxy) dec-9-en-7-ynoate 10j (59.3 mg, 0.200 mmol, 2.0 equiv), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)phenyl)benzenesulfon amide 11a (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050

mmol, 5 mol%), **L5** (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/6). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/6) to give the product **12m**: 29.9 mg (0.0513 mmol), as a white solid, 51% yield; mp 97–99 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -67.9$ (c = 6.95 in CHCl₃); 95% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 60/40, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.71 min (minor), t_R = 11.76 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.61 (d, J = 8.0 Hz, 1H), 7.31–7.27 (m, 2H), 7.22–7.10 (m, 4H), 6.88 (d, J = 7.6 Hz, 1H), 6.82–6.70 (m, 2H), 6.56 (d, J = 6.8 Hz, 1H), 6.07–6.00 (m, 1H), 5.73 (d, J = 7.6 Hz, 1H), 5.41–5.28 (m, 1H), 4.72 (s, 1H), 4.38 (s, 1H), 3.68 (s, 3H), 3.32 (s, 3H), 2.97 (s, 1H), 2.46 (s, 3H), 2.43–2.33 (m, 2H), 1.84–1.74 (m, 1H), 1.74–1.64 (m, 3H), 1.61–1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.7, 174.1, 155.0,

153.2, 144.9, 142.5, 135.7, 134.1, 132.3, 131.7, 129.8, 129.6, 128.2, 126.8, 126.7, 126.6, 126.2, 124.5, 122.7, 122.5, 108.5, 103.4, 61.6, 56.4, 51.6, 50.0, 38.0, 34.0, 26.7, 25.5, 24.3, 21.7; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₃₄H₃₄N₂O₅SNa⁺ 605.2081; Found 605.2086.

Synthesis of 12n: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*butyl (10-(((*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)

chroman-6-yl)oxy)dec-1-en-3-yn-5-yl) carbonate 10k (136.2 mg, 0.2000 mmol), (E)-4-methyl-N-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)phenyl)benzenesulfonamide 11a (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd2dba3 (4.6 mg, 0.0050 mmol, 5 mol%), L5 (4.6 mg, 0.012 mmol, 12 mol%) and KHCO3 (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/6). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/6) to give the product **12n**: 59.1 mg (0.0611 mmol), as a white solid, 61% yield; mp 81–83 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -35.5$ (c = 6.87 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.62 (d, J = 8.0 Hz, 1H), 7.33–7.27 (m, 2H), 7.23–7.15 (m, 3H), 7.12 (t, J = 8.0 Hz, 1H), 6.88 (d, J = 7.6 Hz, 1H), 6.79–6.72 (m, 2H), 6.58 (d, J = 6.8 Hz, 1H), 6.07–6.02 (m, 1H), 5.73 (d, J = 7.6 Hz, 1H), 5.37 (t, J = 7.2 Hz, 1H), 4.72 (s, 1H), 4.38 (s, 1H), 3.66 (t, J = 6.4 Hz, 2H), 3.32 (s, 3H), 2.99 (s, 1H), 2.57 (t, J = 6.4 Hz, 2H), 2.46 (s, 3H), 2.16 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H), 1.85–1.62 (m, 8H), 1.58–1.20 (m, 20H), 1.15–1.01 (m, 6H), 0.88– 0.83 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.7, 155.1, 153.5, 148.4, 147.7, 144.9, 142.5, 135.8, 134.3, 132.4, 131.7, 129.8, 129.7, 128.1, 127.8, 126.8, 126.6, 126.2, 125.8, 124.4, 122.8, 122.7, 122.5, 117.5, 108.5, 103.3, 74.8, 72.9, 61.6, 56.7, 50.1, 40.1, 39.4, 38.4, 37.6, 37.5, 37.4, 37.3, 32.8, 32.7, 31.3, 30.3, 28.0, 26.7, 26.1, 25.8, 24.84, 24.82, 24.5, 23.9, 22.8, 22.7, 21.7, 21.1, 20.7, 19.8, 19.7, 19.7, 19.6, 12.8, 12.0, 11.8; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₆₂H₈₂N₂O₅SNa⁺ 989.5837; Found 989.5841.

Synthesis of 120: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl carbonate 10l (121.8 mg, 0.2000 mmol), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene) methyl)phenyl)benzenesulfonamide 11a (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050

mmol, 5 mol%), L5 (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **120**: 60.9 mg (0.0680 mmol), as a white solid, 68% yield; mp 110–112 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -27.9$ (c = 8.17 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.61 (d, J = 8.0 Hz, 1H), 7.31–7.27 (m, 2H), 7.22–7.16 (m, 3H), 7.15–7.10 (m, 1H), 6.88 (d, J = 7.6 Hz, 1H), 6.80–6.70 (m, 2H), 6.59 (d, J = 7.2 Hz, 1H), 6.06 (s, 1H), 5.73 (d, J = 7.6 Hz, 1H), 5.40–5.32 (m, 2H), 4.72 (s, 1H), 4.37 (s, 1H), 3.69–3.60 (m, 1H), 3.59–3.52 (m, 1H), 3.31 (s, 3H), 3.21–3.13 (m, 1H), 2.97 (s, 1H), 2.46 (s, 3H), 2.42–2.32 (m, 1H), 2.25–2.16 (m, 1H), 2.03–1.75 (m, 8H), 1.60–1.02 (m, 21H), 1.01 (s, 3H), 0.98–0.95 (m, 1H), 0.93–0.91 (m, 3H), 0.87 (dd, *J* = 6.4, 1.6 Hz, 6H), 0.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.7, 155.0, 153.3, 144.9, 142.5, 141.0, 135.7, 134.2, 132.4, 131.7, 129.8, 129.7, 128.1, 126.8, 126.62, 126.59, 126.2, 124.6, 122.7, 122.6, 121.6, 121.5, 108.5, 103.4, 78.9, 66.8, 61.6, 56.8, 56.3, 56.2, 50.2, 50.1, 42.3, 39.8, 39.5, 39.2, 37.3, 36.9, 36.2, 35.8, 34.9, 32.0, 31.9, 28.55, 28.51, 28.3, 28.0, 26.7, 26.5, 24.3, 23.8, 22.8, 22.6, 21.7, 21.1, 19.4, 18.7, 11.9; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₅₈H₇₄N₂O₄SNa⁺ 917.5262; Found 917.5263.

Synthesis of 12p: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*-butyl (1-(((4*S*,5'*S*,6a*S*,6b*R*,8a*R*,8b*S*, 9*R*, 10*S*,11a*R*,12a*R*,12b*R*)-5',6a,8a,9-tetramethyl-1,3,3', 4,4',5,5',6,6a,6b,6',7,8,8a,8b,9,11a,12,12a,12b-

icosahydrospiro[naphtho[2',1':4,5]indeno[2,1-b]furan-10,2'-pyran]-4-yl)oxy)oct-7-en-5-yn-4-yl) carbonate 10m (127.4 mg, 0.2000 mmol), (E)-4-methyl-N-(2-((1-methyl-2-oxoindolin-3-ylidene) methyl)phenyl)benzenesulfonamide 11a (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd2dba3 (4.6 mg, 0.0050 mmol, 5 mol%), L5 (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product 12p: 66.6 mg (0.0721 mmol), as a white solid, 72% yield; mp 107–109 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -76.9$ (c = 5.84 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.61 (d, J = 8.0 Hz, 1H), 7.30–7.27 (m, 2H), 7.20–7.15 (m, 3H), 7.15–7.10 (m, 1H), 6.88 (d, J = 7.6 Hz, 1H), 6.79–6.71 (m, 2H), 6.59 (d, J = 7.2 Hz, 1H), 6.06 (s, 1H), 5.73 (d, J = 7.6 Hz, 1H), 5.40-5.32 (m, 2H), 4.72 (s, 1H), 4.44-4.39 (m, 1H), 4.37 (s, 1H), 3.68-3.60 (m, 1H), 3.59-3.51 (m, 1H), 3.50–3.45 (m, 1H), 3.38 (t, J = 10.9 Hz, 1H), 3.32 (s, 3H), 3.21–3.13 (m, 1H), 2.97 (s, 1H), 2.46 (s, 3H), 2.42–2.33 (m, 1H), 2.24–2.15 (m, 1H), 2.06–1.66 (m, 12H), 1.61–1.40 (m, 8H), 1.34–1.05 (m, 5H), 1.03 (s, 3H), 1.00–0.94 (m, 4H), 0.81–0.76 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.7, 155.0, 153.3, 144.9, 142.5, 141.1, 135.7, 134.2, 132.4, 131.7, 129.8, 129.7, 128.1, 126.8, 126.62, 126.58, 126.2, 124.6, 122.7, 122.5, 121.30, 121.26, 109.3, 108.5, 103.4, 80.9, 78.9, 78.8, 66.9, 62.1, 61.6, 56.5, 56.3, 50.12, 50.06, 41.6, 40.3, 39.8, 39.2, 37.3, 37.1, 34.9, 32.1, 31.9, 31.5, 31.4, 30.3, 28.8, 28.52, 28.48, 26.7, 26.5, 21.7, 20.9, 19.5, 17.2, 16.3, 14.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₅₈H₇₁N₂O₆S⁺ 923.5027; Found 923.5032.

Synthesis of 12q: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*butyl (10-(((8*S*,9*R*,13*R*,14*R*)-13-methyl-17-oxo-7,8,9,11, 12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenan threne-3-yl)oxy)dec-1-en-3-yn-5-yl) carbonate **10n** (104.2 mg, 0.2001 mmol), (*E*)-4-methyl-*N*-(2-((1-methyl-

2-oxoindolin-3-ylidene)methyl)phenyl)benzenesulfonamide **11a** (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **12q**: 56.6 mg (0.0701 mmol), as a white solid, 70% yield; mp 133–134 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -88.5$ (c = 7.54 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.61 (d, J = 8.0 Hz, 1H), 7.31–7.27 (m, 2H), 7.23-7.09 (m, 5H), 6.88 (d, J = 8.0 Hz, 1H), 6.80-6.69 (m, 3H), 6.69-6.64 (m, 1H), 6.57 (d, J = 7.6Hz, 1H), 6.03 (s, 1H), 5.73 (d, *J* = 7.6 Hz, 1H), 5.36 (t, *J* = 7.6 Hz, 1H), 4.71 (s, 1H), 4.37 (s, 1H), 3.97 (t, J = 6.0 Hz, 2H), 3.32 (s, 3H), 2.97 (s, 1H), 2.95–2.85 (m, 2H), 2.46 (s, 3H), 2.41–2.35 (m, 1H), 2.28–1.94 (m, 5H), 1.89–1.77 (m, 2H), 1.77–1.44 (m, 13H), 0.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 221.0, 176.7, 157.1, 155.0, 153.4, 144.9, 142.5, 137.7, 135.8, 134.2, 132.4, 131.9, 131.7, 129.8, 129.6, 128.1, 126.8, 126.63, 126.58, 126.3, 126.2, 124.4, 122.7, 122.5, 114.6, 112.2, 108.5, 103.4, 67.8, 61.6, 56.6, 50.4, 50.1, 48.1, 44.0, 38.4, 38.3, 35.9, 31.6, 29.7, 29.3, 26.7, 26.6, 26.0, 25.8, 25.6, 21.7, 21.6, 13.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₅₁H₅₄N₂O₅SNa⁺ 829.3646; Found 829.3645.

Synthesis of 12r: To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added (2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(4-((6-((*tert*-but oxycarbonyl)oxy)dec-9-en-7-yn-1-yl)oxy)phenoxy)tetra hydro-2*H*-pyran-3,4,5-triyl triacetate **10o** (138.2 mg,

0.2000 mmol), (*E*)-4-methyl-*N*-(2-((1-methyl-2-oxoindolin-3-ylidene)methyl)phenyl)benzenesulfon amide **11a** (40.4 mg, 0.0999 mmol, 1.0 equiv), Pd₂dba₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (4.6 mg, 0.012 mmol, 12 mol%) and KHCO₃ (12.0 mg, 0.120 mmol, 1.2 equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry MeCN (1.0 mL) was added via syringe. The mixture was stirred at 45 °C for 72 h, and monitored by TLC (EtOAc/petroleum ether = 1/5). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **12r**: 65.6 mg (0.0671 mmol), as a white solid, 67% yield; mp 126–128 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -54.6$ (c = 8.65 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.61 (d, J = 8.0 Hz, 1H), 7.31–7.28 (m, 1H), 7.22–7.16 (m, 3H), 7.15–7.10 (m, 1H), 6.96–6.79 (m, 6H), 6.78–6.71 (m, 2H), 6.56 (d, J = 7.6 Hz, 1H), 6.03 (s, 1H), 5.73 (d, J = 7.6 Hz, 1H), 5.37 (t, J = 7.2 Hz, 1H), 5.31–5.24 (m, 2H), 5.17 (t, J = 9.6 Hz, 1H), 4.96 (d, J = 7.2 Hz, 1H), 4.71 (s, 1H), 4.38 (s, 1H), 4.32–4.28 (m, 1H), 4.19–4.14 (m, 1H), 3.95 (t, J = 6.4 Hz, 2H), 3.84–3.79 (m, 1H), 3.32 (s, 3H), 2.96 (s, 1H), 2.46 (s, 3H), 2.09 (d, J = 2.0 Hz, 6H), 2.04 (d, J = 3.6 Hz, 6H), 1.87–1.79 (m, 2H), 1.75–1.53 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.7, 170.7, 170.3, 169.5, 169.4, 155.3, 155.0, 153.4, 150.8, 145.0, 142.5, 135.7, 134.2, 132.4, 131.6, 129.8, 129.6, 128.2, 126.8, 126.7, 126.5, 126.2, 124.4, 122.7, 122.4, 118.7, 115.2, 108.6, 103.4, 100.3, 72.8, 71.9, 71.2, 68.32, 68.29, 61.9, 61.6, 56.5, 50.0, 38.3, 29.2, 26.7, 25.7, 25.5, 21.7, 20.8, 20.73, 20.68, 20.65; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₅₃H₅₆N₂O₁₄SNa⁺ 999.3344; Found 999.3341.

6. Transformations of 1-aryl-4-alken-2-ynyl carbonates

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*butyl (1-phenylpent-4-en-2-yn-1-yl) carbonate **10p** (51.7 mg, 0.200 mmol, 2.0 equiv), (*E*)-3-(2hydroxybenzylidene)-1-methylindolin-2-one **2a** (25.1 mg, 0.0999 mmol, 1.0 equiv) and Pd(PPh₃)4 (5.8 mg, 0.0050 mmol). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) was added via syringe. The mixture was stirred at 60 °C for 24 h, and monitored by TLC (EtOAc/petroleum ether = 1/6). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/6) to give the product **17**: 42.5 mg (0.0661 mmol), as a white solid, 66% yield; mp 184–186 °C; >19:1 dr, determind by ¹H NMR analysis of crude product;¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.76 (s, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.50 (d, *J* = 7.5 Hz, 1H), 7.45–7.40 (m, 1H), 7.29–7.26 (m, 1H), 7.25–7.23 (m, 1H), 7.21–7.13 (m, 3H), 6.97–6.78 (m, 10H), 6.67–6.62 (m, 1H), 6.57–6.53 (m, 1H), 6.23 (d, *J* = 7.6 Hz, 1H), 5.15–5.08 (m, 1H), 4.71 (t, *J* = 2.8 Hz, 1H), 4.25 (t, *J* = 11.4 Hz, 1H), 3.95 (d, *J* = 7.3 Hz, 1H), 3.80–3.70 (m, 1H), 3.33 (s, 3H), 3.15–3.07 (m, 1H), 2.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.7, 167.9, 154.8, 154.4, 153.3, 144.2, 144.0, 133.6, 133.2, 131.1, 130.9, 130.0, 129.9, 129.7, 128.5, 128.2, 128.1, 127.7, 127.3, 126.8, 126.6, 124.0, 122.8, 121.8, 121.2, 121.0, 120.4, 120.0, 116.9, 108.2, 107.7, 104.1, 64.9, 59.5, 50.8, 39.4, 33.7, 26.2, 26.0; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₄₃H₃₄N₂O₄Na⁺ 665.2411; Found 665.2419.

A possible mechanism for the formation of **17** was proposed. Activation of 1-phenyl-substituted propargylic carbonate *rac*-**10p** by Pd(0) led to the formation of thermally more stable allenyl- π -allyl species **Ib**, which underwent Tsuji–Trost reaction of with **2a** with distinct terminal regioselectivity. The resultant 1,2,3-butatriene intermediate **IIb** could be further HOMO-activated by Pd(0) via similar π -Lewis base catalysis, thus facilitated intramolecular vinylogous addition to generate η^3 -propargylpalladium **IIIb**. Interestingly, **IIIb** was attacked by another **2a**, and subseqent protonation of **IVb** and intramolecular allylation of **Vb** provided complex **17** in a good yield with outstanding diastereo- and *E/Z*-selectivity.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added *tert*butyl (1,1,1-trifluoro-2-phenylhex-5-en-3-yn-2-yl) carbonate 10q (65.3 mg, 0.200 mmol, 2.0 equiv), (*E*)-3-(2-hydroxybenzylidene)-1-methylindolin-2-one 2a (25.1 mg, 0.0999 mmol, 1.0 equiv) and

 $Pd(PPh_3)_4$ (5.8 mg, 0.0050 mmol). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) was added via syringe. The mixture was stirred at 60 °C for 24 h, and monitored by TLC (EtOAc/petroleum ether = 1/7). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel EtOAc/petroleum ether = 1/7 to 1/5) to give the products **18** and **18'** as seperable isomers.

18: 18.9 mg (0.0411 mmol), as a white solid, 41% yield; mp 154–156 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.48–7.41 (m, 2H), 7.34–7.26 (m, 3H), 7.24–7.19 (m, 1H), 7.13–7.05 (m, 2H), 6.79–6.71 (m, 2H), 6.56–6.49 (m, 2H), 5.88 (d, J = 7.6 Hz, 1H), 4.56 (d, J = 9.2 Hz, 1H), 4.42 (d, J = 12.0 Hz, 1H), 4.03–3.97

(m, 2H), 3.25 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 195.5, 176.3, 155.9, 143.9, 132.1, 129.1, 128.9, 128.7, 128.6, 128.4, 127.1, 125.8, 125.2, 123.7, 122.2, 121.9, 121.6, 120.7, 117.7, 111.6, 107.8, 64.8, 59.7, 41.7, 41.5, 26.6; ¹⁹F NMR (375 MHz, CDCl₃): δ (ppm) –60.1; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₈H₂₁F₃NO₂⁺ 460.1519; Found 460.1523.

18': 11.1 mg (0.0241 mmol), as a white solid, 24% yield; mp 152–154 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.39–7.26 (m, 5H), 7.21–7.12 (m, 2H), 7.11–7.06 (m, 1H), 6.77–6.66 (m, 3H), 6.51 (d, *J* = 7.6 Hz, 1H), 6.13 (d, *J* = 7.5 Hz,

1H), 4.56–4.48 (m, 1H), 4.41 (d, J = 12.0 Hz, 1H), 4.06–3.94 (m, 2H), 3.24 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 195.3, 176.8, 156.2, 143.6, 131.7, 129.2, 128.9, 128.8, 128.6, 128.5, 127.1, 125.8, 125.6, 123.8, 122.5, 122.0, 121.4, 120.4, 117.9, 111.6, 107.7, 64.8, 59.3, 41.8, 41.5, 26.6; ¹⁹F NMR (375 MHz, CDCl₃): δ (ppm) –59.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₀F₃NO₂Na⁺ 482.1338; Found 482.1346.

The possible mechanism for the formation of **18** was proposed. (*E*)-3-(2-hydroxy benzylidene) oxindole **2a** underwent similar Tsuji–Trost reaction/vinylogous addition with **2a** efficiently through intermediates **Ic** and **IIc**, respectively, whereas the formed η^1 -allenylpalladium moiety of **IIIc** was intramolecularly captured by enolate to provide intriguing cyclobutane-fused chromanone **18** having a tetrasubstituted exocyclic allene motif in a moderate yield with fair diastereoselectivity

7. Unsuccessful substrates exploration

To further expand substrate scope, more *ortho*-functionalised activated alkenes derived from different backbones and primary carbonates were tested. Unfortunately, messy reaction profiles or no apparent conversions were generally observed, as summarised below.

8. Transformations of product 12a

To a solution of 12a (49.7 mg, 0.100 mmol) in THF/H2O (0.5 mL/ 0.5 mL) was added K2OsO4·2H2O (3.1 mg, 0.010 mmol) and NaIO4 (108.0 mg, 0.5002 mmol). The mixture was stirred at room temperature for 10 h, and monitored by TLC (petroleumether/EtOAc = 5/1). After complete consumption of 12a, the mixture was quenched with saturated aqueous Na₂SO₃, and extracted with ethyl acetate ($3.0 \text{ mL} \times 2$). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (petroleumether/EtOAc = 5/1) to afford product **19**: 30.5 mg (0.0612 mmol), as a white solid, 61%yield; mp 235–237 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -158.4$ (c = 6.88 in CHCl₃); 92% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.85 min (minor), t_R = 11.40 min (major); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: δ (ppm) 7.68 (d, J = 8.0 Hz, 1H), 7.35–7.29 (m, 2H), 7.26–7.14 (m, 4H), 6.91 (d, J = 8.0 Hz, 1H), 6.84 (t, J = 7.6 Hz, 1H), 6.76 (t, J = 7.6 Hz, 1H), 6.35 (d, J = 7.6 Hz, 1H), 6.01 (s, 1H), 5.78 (d, J = 7.6 Hz, 1H), 5.52–5.42 (m, 1H), 3.30 (s, 3H), 3.08 (s, 1H), 2.47 (s, 3H), 1.82–1.72 (m, 1H), 1.67–1.62 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 198.7, 183.2, 172.7, 145.6, 144.3, 135.6, 134.4, 130.2, 129.74, 129.67, 129.0, 127.6, 127.1, 126.7, 126.4, 125.1, 123.6, 122.9, 122.4, 109.1, 66.5, 59.0, 46.6, 31.2, 26.8, 21.7, 10.9; HRMS (ESI-TOF) m/z: [M $+ Na^{+}$ Calcd for C₂₉H₂₆N₂O₄SNa⁺ 521.1505; Found 521.1509.

To a solution of **19** (30.5 mg, 0.0612 mmol) in MeOH (0.5 mL) was added NaBH₄ (7.0 mg, 0.185 mmol) at 0 °C. The mixture was stirred at 0 °C for 1 h, and monitored by TLC (petroleumether/EtOAc = 3/1). After complete consumption of **19**, the mixture was quenched with

water, and extracted with ethyl acetate (3.0 mL × 2). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo, The residue was purified by flash chromatography on silica gel (petroleumether/EtOAc = 3/1) to afford product **20**: 23.3 mg (0.0416 mmol), as a white solid, 68% yield; mp 178–180 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_B^{25}] = -190.5$ (c = 3.54 in CHCl₃); 95% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 4.68 min (minor), t_R = 12.62 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.56 (d, J = 7.6 Hz, 1H), 7.36–7.30 (m, 2H), 7.26–7.18 (m, 3H), 7.15–7.08 (m, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.83–6.74 (m, 3H), 5.79 (d, J = 8.0 Hz, 1H), 5.52 (s, 1H), 5.12–5.05 (m, 1H), 4.93 (d, J = 11.2 Hz, 1H), 3.28 (s, 3H), 2.62 (s, 1H), 2.52 (s, 3H), 1.60–1.45 (m, 2H), 1.40–1.33 (m, 1H), 1.15 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.8, 147.5, 145.0, 144.7, 136.0, 134.1, 133.1, 129.9, 129.8, 129.2, 127.0, 126.8, 126.7, 125.1, 124.8, 124.5, 123.9, 122.3, 108.7, 83.7, 65.6, 57.4, 47.6, 30.8, 26.7, 21.7, 10.8; HRMS (ESI-TOF) *m*/z: [M + Na]⁺ Calcd for C₂₉H₂₈N₂O4SNa⁺ 523.1662; Found 523.1672.

To a solution of **12a** (49.7 mg, 0.100 mmol) in MeOH (1.0 mL) was added Mg powder (19.5 mg, 0.802 mmol), and the resultant mixture was sonicated for 20 minutes. After complete consumption of **12a**, the mixture was quenched with water, and extracted with ethyl acetate (3.0 mL × 2). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo, The residue was purified by flash chromatography on silica gel (petroleumether/EtOAc = 5/1) to afford product **21**: 29.5 mg (0.0861 mmol), as a white solid, 86% yield; mp 132–134 °C; >19:1 dr, determind by ¹H NMR analysis of crude product; $[\alpha_D^{25}] = -232.5$ (*c* = 4.67 in CHCl₃); 91% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 6.84 min (minor), t_R = 8.78 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.13–7.04 (m, 1H), 6.83–6.74 (m, 2H), 6.72–6.64 (m, 2H), 6.49 (d, *J* = 7.6 Hz, 1H), 6.29–6.23 (m, 1H), 6.17 (s, 1H), 6.08 (d, *J* = 7.6 Hz, 1H), 4.93 (s, 1H), 4.80 (s, 1H), 4.51 (s, 1H), 3.97–3.80 (m, 2H), 3.38 (s, 3H), 2.10–1.98 (m, 1H), 1.82–1.72 (m, 1H), 1.15 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.0, 156.3, 150.8, 145.0, 142.7, 132.6, 128.0, 127.6,

127.0, 123.6, 123.0, 122.7, 120.6, 118.2, 114.9, 108.0, 104.6, 63.2, 53.9, 53.3, 26.8, 26.1, 10.4; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₃N₂O⁺ 343.1805; Found 343.1809.

To a solution of **21** (29.5 mg, 0.0861 mmol) in DMF (0.8 mL) was added Cs₂CO₃ (42.1 mg, 0.129 mmol) and DBU (4.0 mg, 0.026 mmol). The mixture was stirred at 70 °C for 8 h and monitored by TLC (petroleumether/EtOAc = 6/1). After complete consumption of **21**, the mixture was quenched with water, and extracted with ethyl acetate (3.0 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (petroleumether/EtOAc = 6/1) to afford product **22**: 26.1 mg (0.0767 mmol), as a white solid, 89% yield; mp 105–107 °C; $[\alpha_D^{25}] = -57.3$ (*c* = 4.89 in CHCl₃); 90% ee, determined by HPLC analysis (Daicel Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, flow rate =1.0 mL/min, 1 = 254 nm) t_R = 5.98 min (minor), t_R = 13.51 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.02 (d, *J* = 8.8 Hz, 1H), 7.50–7.43 (m, 1H), 7.42–7.37 (m, 1H), 7.20–7.15 (m, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 7.00–6.94 (m, 1H), 6.91–6.88 (m, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.65 (d, *J* = 7.6 Hz, 2H), 1.79 (s, 3H), 1.47 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 173.7, 157.3, 148.9, 148.4, 146.7, 144.7, 138.3, 129.8, 129.2, 127.8, 127.8, 127.4, 126.4, 123.6, 123.5, 123.1, 121.4, 108.9, 68.4, 29.9, 27.2, 13.7, 12.9; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₃H₂₁N₂O⁺ 341.1648; Found 341.1652.

It should be noted that the oxindole-fused polycyclic products and their derivatives are core structural subunits of many bioactive natural products and drug candidates, as briefly exemplified below.

(a) M. Banerjee, H. Liu, U. Wiest, J. Zartman, and B. L. Ashreid, *ChemMedChem* 2022, 17, e202100512
 (b) T. Mugishima, M. Tsuda, Y. Kasai, H. Ishiyama, E. Fukushi, J. Kawabata, M. Watanabe, K. Akao, and J. Kobayashi, J. Org. Chem. 2005, 70, 9430–9435;

FigureS1. Selected bioactive spirooxindoles

⁽c) C.-B. Cui, H. Kakeya, and H. Osada, J. Antibiot. 1996, 49, 832-835.

9. Preliminary mechanism investigation

Pd₂dba₃ (5 mol%) L5 (12 mol%) KHCO₃ (1.2 equiv) t-Bu Ī-Bu MeCN, 45 °C, 72 h Et OBoo Eť` L5 NHTs Ťs rac-10a (1.0 equiv) 11a (1.0 equiv) 12a 44%, 93% ee, >19:1 dr Pd₂dba₃ (5 mol%) L5 (12 mol%) KHCO₃ (1.2 equiv) MeCN 45 °C 72 h Eť OBoc Et OBoo Et` Ťs rac-10a (2.0 equiv) 12a 70%, 93% ee, >19:1 dr S-10a, 43% recoverd, 68% ee 11a (1.0 equiv) Pd₂dba₃ (5 mol%) VI. ent-L5 (12 mol%) KHCO₃ (1.2 equiv) ő t-Bu t-Bu MeCN, 45 °C, 72 h ent-L5 Eť. OBoc E NHTs ts S-10a, 68% ee 11a (1.0 equiv) ent-12a 61%, 91% ee, >19:1 dr (1.5 equiv)

9.1 Kinetic studies of the reaction between 10a and 11a

The reaction of *rac*-10a (1.0 equiv) with (2-aminobenzylidene)oxindole 11a delivered product 12a in 44% yield under standard conditions, while a significantly improved yiled was attained by increasing the amounts of *rac*-10a (2.0 equiv). Meanwhile, *S*-10a was recovered in 43% yield with 68% ee. In addition, the reaction of optically active (*S*)-10a under the standard conditions with *ent*-L5 as ligand afforded product *ent*-12a in 61% yield with 91% ee. These results indicated that a kinetic resolution process of *rac*-10a was involved in current tandem transformations.

9.2 Elucidation of the origin of regioselectivity

To shed some light on the origin of the unusual regioselectivity and the complicated reaction process, some control experiments were conducted. As depicted above, the assembly of 4-alken-2-ynyl carbonate **1a** with carbon-centered nucleophile β -ketoesters **23** delivered 1,2,3-butatriene product **24** under the standard conditions, which indicated that the regioselectivity for substitution was governed by the nucleophiles.

9.3 Elucidation of the reaction pathway

Moreover, adding *t*-BuOD to the reaction mixture led to product *d*-**3a** with 40% deuterium incorporated into *endo*-cyclic double bond, as outlined above. As nucleophilic attack on the central carbon of π -allylpalladium had been documented (*JACS* **2007**, *129*, 14866; *JACS* **2010**, *132*, 7508; *Org. Lett.* **2024**, *26*, 5782), this result further indicated that the key palladacyclobutane Va indeed be involved in the reaction process.

Procedure for deuterium labeling experiments

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar were added 1-(but-3-en-1-yn-1-yl)cyclohexyl *tert*-butyl carbonate **1a** (37.6 mg, 0.150 mmol, 1.5 equiv), (*E*)-3-(2hydroxybenzylidene)-1-methylindolin-2-one **2a** (25.1 mg, 0.0999 mmol, 1.0 equiv), Pd(PPh₃)₄ (5.8 mg, 0.0050 mmol) and *t*-BuOD (75.1 mg, 1.00 mmol). The tube was capped, evacuated and backfilled with argon for five times. Then degassed dry MeCN (2.0 mL) was added via syringe. The mixture was stirred at 60 °C for 36 h, and monitored by TLC (EtOAc/petroleum ether = 1/6). After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/6) to give the product *d*-**3a**: 26.1 mg (0.0681 mmol), as a white solid, 68% yield; 40%-D; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.12–7.05 (m, 1H), 6.94–6.88 (m, 1H), 6.84–6.75 (m, 2H), 6.69–6.60 (m, 2H), 6.48–6.41 (m, 1H), 6.24 (d, *J* = 2.8 Hz, 0.6H), 6.17 (d, *J* = 7.6 Hz, 1H), 4.96 (s, 1H), 4.76 (s, 1H), 4.55 (s, 1H), 3.40 (s, 3H), 2.13–2.05 (m, 1H), 2.05– 1.93 (m, 3H), 1.81–1.68 (m, 2H), 1.59–1.31 (m, 4H).

10. Crystal data and structural refinement

Procedure for the recrystallization of 30: To a 10 mL tube containing enantiopure **30** (32 mg) were added *n*-hexane (0.3 mL) and EtOAc (1.4 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of **30**. The data were collected by an Bruker D8 Venture equipped with a Cu radiation source (K α = 1.54178 Å) at 273.0 K. CCDC 2381131 (**30**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Identification code	30
Empirical formula	C ₃₀ H ₂₇ NO ₂
Formula weight	433.52
Temperature/K	273.0
Crystal system	monoclinic
Space group	P21
a/Å	8.6278(4)
b/Å	12.3083(6)
c/Å	10.9519(5)
α/°	90
β/°	95.711(3)
γ/ ^o	90
Volume/Å ³	1157.25(9)
Z	2
$\rho_{calc}g/cm^3$	1.244
μ/mm^{-1}	0.604
F(000)	460.0
Crystal size/mm ³	$0.38 \times 0.25 \times 0.1$
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/	° 8.112 to 140.378

Index ranges	$-10 \leqslant h \leqslant 10, -15 \leqslant k \leqslant 14, -13 \leqslant l \leqslant 12$
Reflections collected	7672
Independent reflections	3988 [$R_{int} = 0.0402, R_{sigma} = 0.0528$]
Data/restraints/parameters	3988/1/300
Goodness-of-fit on F ²	1.077
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0380, wR_2 = 0.0971$
Final R indexes [all data]	$R_1 = 0.0437, wR_2 = 0.1013$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.12
Flack parameter	-0.01(18)

Procedure for the recrystallization of 12g: To a 10 mL tube containing enantiopure **12g** (45 mg) were added *n*-hexane (0.5 mL) and EtOAc (1.5 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absoulte configuration of **12g**. The data were collected by an Bruker D8 Venture equipped with a Mo radiation source (K α = 0.71073 Å) at 303.0 K. CCDC 2381132 (**12g**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

	Ph Ts 12g
Identification code	12g
Empirical formula	$C_{36}H_{32}N_2O_3S$
Formula weight	572.69
Temperature/K	303.0
Crystal system	tetragonal
Space group	P4 ₃ 2 ₁ 2
a/Å	12.4257(6)
b/Å	12.4257(6)
c/Å	42.988(4)
α/\circ	90
β/°	90

$\gamma^{ m o}$	90
Volume/Å ³	6637.3(9)
Z	8
$\rho_{calc}g/cm^3$	1.146
μ/mm^{-1}	0.133
F(000)	2416.0
Crystal size/mm ³	$0.48 \times 0.42 \times 0.26$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	3.786 to 54.894
Index ranges	$-12 \leqslant h \leqslant 15, -16 \leqslant k \leqslant 11, -55 \leqslant l \leqslant 41$
Reflections collected	22897
Independent reflections	7524 [$R_{int} = 0.0566, R_{sigma} = 0.0770$]
Data/restraints/parameters	7524/7/381
Goodness-of-fit on F ²	0.985
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0542, \mathrm{w}R_2 = 0.1043$
Final R indexes [all data]	$R_1=0.1202,wR_2=0.1296$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.21
Flack parameter	0.00(6)

Procedure for the recrystallization of 17: To a 10 mL tube containing racemic **17** (48 mg) were added *n*-hexane (0.5 mL) and EtOAc (1.5 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the relative configuration of **17**. The data were collected by an Bruker D8 Venture equipped with a Mo radiation source (K α = 0.71073 Å) at 304.0 K. CCDC 2381133 (**17**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Identification code	
Empirical formula	$C_{43}H_{34}N_2O_4$
Formula weight	642.72
Temperature/K	304.0
Crystal system	monoclinic
Space group	C2/c
a/Å	21.731(4)
b/Å	9.1510(15)
c/Å	34.748(7)
a',o	90
β/°	107.204(9)
$\gamma/^{\circ}$	90
Volume/Å ³	6601(2)
Z	8
$\rho_{calc}g/cm^3$	1.293
μ/mm^{-1}	0.083
F(000)	2704.0
Crystal size/mm ³	0.12 imes 0.07 imes 0.05
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	3.924 to 49.98
Index ranges	$-25 \leqslant h \leqslant 25, -10 \leqslant k \leqslant 10, -41 \leqslant l \leqslant 41$
Reflections collected	34640
Independent reflections	5737 [$R_{int} = 0.1452$, $R_{sigma} = 0.1134$]
Data/restraints/parameters	5737/0/445
Goodness-of-fit on F ²	1.025
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0831, wR_2 = 0.1892$
Final R indexes [all data]	$R_1 = 0.1959, wR_2 = 0.2470$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.25

Procedure for the recrystallization of 18: To a 10 mL tube containing racemic **18** (42 mg) were added *n*-hexane (0.5 mL) and EtOAc (1.4 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the relative configuration of **18**. The data were collected by an Bruker

D8 Venture equipped with a Mo radiation source (K α = 0.71073 Å) at 227.0 K. CCDC 2381134 (18) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

	CF ₃ O Ph
Identification code	18
Empirical formula	$C_{28}H_{20}F_3NO_2$
Formula weight	459.45
Temperature/K	227.0
Crystal system	triclinic
Space group	P-1
a/Å	9.9196(10)
b/Å	9.9973(9)
c/Å	11.8824(11)
α/\circ	91.791(4)
β/°	104.104(4)
$\gamma/^{\circ}$	102.384(3)
Volume/Å ³	1111.91(18)
Z	2
$ ho_{calc}g/cm^3$	1.372
μ/mm^{-1}	0.103
F(000)	476.0
Crystal size/mm ³	0.45 imes 0.37 imes 0.1
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.858 to 55.012
Index ranges	$-12 \leq h \leq 12, -11 \leq k \leq 12, -15 \leq l \leq 15$
Reflections collected	18358
Independent reflections	$5062 [R_{int} = 0.0935, R_{sigma} = 0.0893]$
Data/restraints/parameters	5062/0/308

Goodness-of-fit on F ²	1.055
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0703, wR_2 = 0.1888$
Final R indexes [all data]	$R_1 = 0.1065, wR_2 = 0.2161$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.28

Procedure for the recrystallization of 20: To a 10 mL tube containing racemic **20** (37 mg) were added *n*-hexane (0.4 mL) and EtOAc (1.4 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the relative configuration of **20**. The data were collected by an Bruker D8 Venture equipped with a Mo radiation source (K α = 0.71073 Å) at 150.0 K. CCDC 2381135 (**20**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

Crystal size/mm ³	0.24 imes 0.15 imes 0.1
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.462 to 49.992
Index ranges	$-8 \leqslant h \leqslant 8, -15 \leqslant k \leqslant 15, -16 \leqslant l \leqslant 16$
Reflections collected	17419
Independent reflections	4281 [$R_{int} = 0.0923$, $R_{sigma} = 0.0765$]
Data/restraints/parameters	4281/0/330
Goodness-of-fit on F ²	1.113
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0965, wR_2 = 0.2626$
Final R indexes [all data]	$R_1 = 0.1265, wR_2 = 0.2881$
Largest diff. peak/hole / e Å ⁻³	0.90/-0.44

11. NMR, HRMS spectra and HPLC chromatograms

S65

¹⁹F NMR (375 MHz, DMSO-*d*₆)

Spectrum from 20240821.wiff2 (sample 17) - 10, +TOF MS (200 - 600) from 0.063 to 0.111 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points), centroided

Totals:

10810.6636

100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.615	BB	0.23	513.2851	7421.3164	50.0775
9.720	BB	0.27	423.6620	7398.3569	49.9225
			Totals:	14819.6733	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.612	BBA	0.22	32.6851	465.2503	2.3032
9.685	BB	0.27	1125.0988	19734.8965	97.6968
			Totals:	20200.1468	100.0000

100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.867	BBA	0.18	243.2090	2777.2302	22.1981
8.543	BBA	0.20	727.0814	9733.8750	77.8019
			Totals:	12511.1052	100.0000

Totals:

7748.3032

Spectrum from 20240821.wilf2 (sample 15) - 8, +TOF MS (200 - 600) from 0.063 to 0.111 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points), centroided

7.258 7.008

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
6.265	BBA	0.16	349.9322	3710.8174	49.8768
7.201	BBA	0.20	291.8110	3729.1545	50.1232
			Totals:	7439.9719	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.258	BBA	0.15	65.9337	642.6335	9.5210
7.183	BBA	0.20	471.5378	6107.0034	90.4790
			Totals:	6749.6369	100.0000

Spectrum from 20230517.wiff2 (sample 97) - 61, +TOF MS (200 - 800) from 0.073 to 0.099 min, subtra... by: [Spectrum from 20230517.wiff2 (sample 97) - 61, +TOF MS (200 - 800) from 1.326 to 1.543 min]

fuund	Type	Lunni	Imaci	[mac s]	[/0]
5.066	BBA	0.15	741.8915	6873.9385	50.0958
6.671	BBA	0.19	561.2289	6847.6372	49.9042
			Totals:	13721.5757	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.068	BBA	0.15	41.3812	384.0868	3.9358
6.693	BBA	0.16	929.2313	9374.7246	96.0642
			Totals:	9758.8114	100.0000

Spectrum from 20230705.wif(2 (sample 77) - 72, +TOF MS (100 - 600) from 0.053 to 0.114 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points), centroided

Counts vs. Mass-to-Charge (m/z)

7.259 7.100 7.100 7.100 7.100 7.100 7.100 7.100 6.874 6.889 6.8874 6.874 6.874 6.873 6.8874 6.873 6.8873 6.889 6.874 6.873 6.625 6.6445 6.6445 6.6445 6.6408 6.640

510.1 510.125 510.15 510.175 510.2 510.225 510.25 510.25 510.275 510.3 510.325 510.35 510.375 510.4 510.425 510.45 510.475 510.5 510.525 510.55 510.575 Counts vs. Mass-to-Charge (m/z)

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
5.081	BBA	0.15	546.0235	5105.6519	49.6539
6.271	BBA	0.18	438.4892	5176.8340	50.3461
			Totals:	10282.4858	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.086	BBA	0.15	52.6610	507.6499	5.2306
6.261	BBA	0.17	833.6223	9197.7656	94.7694
			Totals:	9705.4156	100.0000

Spectrum from 20230517.wiff2 (sample 96) - 60, +TOF MS (200 - 800) from 0.088 to 0.113 min, subtra... by: [Spectrum from 20230517.wiff2 (sample 96) - 60, +TOF MS (200 - 800) from 1.326 to 1.543 min]

S147

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
6.242	BBA	0.16	454.1411	4702.7432	50.2738
8.402	BBA	0.22	330.2756	4651.5200	49.7262
			Totals:	9354.2632	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.332	BBA	0.17	41.2327	461.6652	4.8121
8.615	BBA	0.23	614.2065	9132.0762	95.1879
			Totals:	9593.7414	100.0000

Spectrum from 20230517.wiff2 (sample 94) - 58, +TOF MS (200 - 800) from 0.164 to 0.189 min

$\begin{array}{c} 7.261\\ 7.120\\ 7.$

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.137	BBA	0.22	289.9394	4266.7715	49.1870
12.660	BBA	0.29	229.3670	4407.8218	50.8130
			Totals:	8674.5933	100.0000

0.107	DDA	0.10	51.2025	570.2105	5.0057
12.703	BBA	0.30	356.7078	7021.1616	94.9143
			Totals:	7397.3722	100.0000

Spectrum from 20230517.wiff2 (sample 91) - 55, +TOF MS (200 - 800) from 0.139 to 0.164 min

		and the second			
6.174	BBA	0.13	892.4514	7819.1255	49.9049
7.164	BBA	0.15	777.7509	7848.9243	50.0951
			Totals:	15668.0498	100.0000
	6.174 7.164	6.174 BBA 7.164 BBA	6.174 BBA 0.13 7.164 BBA 0.15	6.174 BBA 0.13 892.4514 7.164 BBA 0.15 777.7509 Totals:	6.174 BBA 0.13 892.4514 7819.1255 7.164 BBA 0.15 777.7509 7848.9243 Totals: 15668.0498

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.265	BBA	0.14	42.4012	373.2176	5.4791
7.278	BBA	0.16	623.3853	6438.4448	94.5209
			Totals:	6811.6624	100.0000

n CI 31 ¹H NMR (400 MHz, CDCl₃) 22:00 22:00 1:01 1:00 1:03 1:03 4 1:03 4 1.00 [⊥] 1.00 [⊥] 1.02 [⊥] 3.00⊣ 1.07 3.03 2.09 4.02 7.5 4.0 3.5 f1 (ppm) 1.0 8.0 7.0 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 0.5 0.0 -0.5 ~155.457 -153.669 ~151.494 142.542 132.707 132.084 128.516 127.974 122.929 122.92 -178.478 -62.690 -49.386 34.264 32.641 26.786 25.501 21.559 21.278 77.351 77.035 76.717 N١ Ô CI 31 ¹³C NMR (100 MHz, CDCI₃) -10 210 120 100 fl (ppm) 50 40 30 20 10 200 190 180 170 160 150 140 130 110 90 80 70 60 ò

5.734	BBA	0.13	1342.9154	11408.9932	50.4141
6.782	BB	0.12	1436.9625	11221.5811	49.5859
			Totals:	22630.5742	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.746	BBA	0.14	19.8359	184.5714	5.7821
6.882	BBA	0.16	285.8464	3007.5542	94.2179
			Totals:	3192.1256	100.0000

100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.187	BB	0.17	126.9802	1423.3439	7.4052
8.248	BBA	0.24	1134.6816	17797.6406	92.5948
			Totals:	19220.9845	100.0000

Totals:

15771.9199

Spectrum from 20230705.wifl2 (sample 75) - 70, +TOF MS (100 - 600) from 0.053 to 0.114 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points), centroided

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.845	BBA	0.18	42.4669	508.9646	4.3805
8.016	BB	0.21	825.9418	11109.8457	95.6195
			Totals:	11618.8103	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.742	BBA	0.22	460.1235	6490.4111	49.9937
13.454	BBA	0.32	313.6683	6492.0356	50.0063
			Totals:	12982.4468	100.0000

13.430	BBA	0.33	690.0911	15012.0088	98.2646
			Totals:	15277.1218	100.0000

Spectrum from 20230705.wiff2 (sample 79) - 74, +TOF MS (100 - 600) from 0.059 to 0.120 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points), centroided

6.710	BBA	0.14	550.9875	5013.2646	49.9806
			Totals:	10030.4302	100.0000
VWD1	A. Wavelens	th=254 nm			

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.012	BB	0.13	102.0049	887.6588	9.0235
6.704	BBA	0.14	976.2433	8949.5518	90.9765
			Totals:	9837.2106	100.0000

Spectrum from 20230705.wilf2 (sample 72) - 67, +TOF MS (100 - 600) from 0.044 to 0.106 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points), Recalibrated, centroided

7.261 6.6.934 6.6.934 6.6.934 6.6.934 6.6.934 6.6.934 6.6.934 6.6.936 6.6.936 6.6.936 6.6.936 6.6.936 6.6.936 6.6.936 6.6.936 6.6.936 6.6.936 6.6.936 6.6.778 6.6.778 6.6.778 6.6.778 6.6.778 6.6.778 6.6.7778 6.6.7778 6.6.7777 6.6.7778 6.6.777775 6.6.7777777775 6.6.47756 6.6

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.846	BBA	0.16	451.7264	4895.7183	50.3676
6.714	BBA	0.18	405.9886	4824.2539	49.6324
			Totals:	9719.9722	100.0000

Spectrum from 20230705.wiff2 (sample 73) - 68, +TOF MS (100 - 600) from 0.053 to 0.114 min, noise filtere...2 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points)], Recalibrated, centroided

S174

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
6.995	BBA	0.27	1077.7903	17849.4648	49.7720
8.591	BBA	0.26	1073.0360	18012.9883	50.2280
			Totals:	35862.4531	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.086	BB	0.16	51.1723	542.4835	4.3210
8.676	BBA	0.19	969.4561	12012.2246	95.6790
			Totals:	12554.7081	100.0000

Spectrum from 20230705.wiff2 (sample 78) - 73, +TOF MS (100 - 600) from 0.059 to 0.120 min, noise filtere....035 to 1.472 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points)], Recalibrated

[mĄu]	×10 3- 1. 8- 1. 7- 1. 6- 1. 5- 1. 4- 1. 3- 1. 2- 1. 1- 0. 9- 0. 8- 0. 7- 0. 6- 0. 5-	VWD1 A, Wavelength=254 nm $ \begin{array}{c} $
	0.5- 0.4- 0.3- 0.2-	£5.078
	0.1-	0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
		[min]

100.0000

13255.0962

Totals:

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.078	BBA	0.14	140.4959	1284.6090	6.1001
9.231	BBA	0.34	882.8427	19774.2598	93.8999
			Totals:	21058.8688	100.0000

$\begin{array}{c} 7,555\\ 7,377\\ 7,377\\ 7,377\\ 7,377\\ 7,377\\ 7,377\\ 7,377\\ 7,357\\ 7,17\\ 7,357\\ 7,17\\ 7,357\\ 7,17\\ 7,357\\ 7,17\\ 7,17\\ 7,357\\ 7,17\\ 7,17\\ 7,357\\ 7,117\\ 7,17\\$

100 90 f1 (ppm) -10

ò

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.792	BB	0.50	179.2602	5878.5820	49.5607
19.682	BBA	0.41	217.1251	5982.7925	50.4393
			Totals:	11861.3745	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.796	BBA	0.50	575.8636	18961.9141	98.2026
20.274	BBA	0.52	10.0001	347.0662	1.7974
			Totals:	19308.9803	100.0000

8.043 8.043 8.043 8.043 8.043 8.043 8.043 8.044 8.044 8.044 8.045 8.046 <

6.674	BBA	0.18	864.6375	10019.2031	49.9140
9.879	BB	0.28	553.8257	10053.7139	50.0860
			Totals:	20072.9170	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.630	BB	0.18	54.6443	641.9444	3.5939
9.877	BB	0.29	940.9167	17220.1152	96.4061
			Totals:	17862.0596	100.0000

371.158 371.16 371.162 371.164 371.166 371.168 371.17 371.172 371.174 371.176 371.178 371.18 371.183 371.184 371.186 371.188 371.19 371.192 371.194 Counts vs. Mass-to-Charge (m/z)

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
8.015	BV	0.21	350.7008	4718.6255	49.9323
8.600	VBA	0.23	315.7699	4731.4258	50.0677
			Totals:	9450.0513	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.081	BV	0.19	86.4970	1072.3313	8.3051
8.623	VBA	0.22	809.1938	11839.3779	91.6949
			Totals:	12911.7092	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
7.733	BV	0.17	471.3006	5264.4287	50.0551
8.419	VBA	0.19	425.1812	5252.8433	49.9449
			Totals:	10517.2720	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.745	BV	0.17	764.2188	8462.1875	75.5785
8.487	VBA	0.19	217.0580	2734.3687	24.4215
			Totals:	11196.5562	100.0000

405.04 405.05 405.06 405.07 405.08 405.09 405.1 405.11 405.12 405.13 405.14 405.15 405.16 405.17 405.18 405.19 405.2 405.21 405.22 405.23 405.24 405.25 Counts vs. Mass-to-Charge (m/z)

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
5.220	BBA	0.14	733.8380	6613.3145	49.8825
6.215	BBA	0.17	622.2565	6644.4639	50.1175
			Totals:	13257.7783	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.217	BBA	0.13	283.1979	2408.3604	19.3641
6.214	BBA	0.16	961.2004	10028.8535	80.6359
			Totals:	12437.2139	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
4.906	BBA	0.15	935.4191	9221.7646	49.9052
7.768	BBA	0.28	524.1456	9256.7979	50.0948
			Totals:	18478.5625	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
4.920	BBA	0.14	117.5743	1106.3406	3.5979
7.774	BBA	0.28	1648.6512	29643.4590	96.4021
			Totals:	30749.7996	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
5.180	BBA	0.13	1133.0798	9818.5264	49.8066
8.253	BBA	0.26	580.9495	9894.7607	50.1934
			Totals:	19713.2871	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
5.171	BBA	0.14	38.6503	352.1087	3.6790
8.295	BBA	0.27	538.2534	9218.6953	96.3210
			Totals:	9570.8040	100.0000

549.135 549.14 549.145 549.15 549.15 549.16 549.165 549.16 549.17 549.175 549.18 549.185 549.19 549.195 549.2 549.205 549.21 549.215 549.22 549.225 549.23 Counts vs. Mass-to-Charge (m/z)

--113.617

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.234	BBA	0.15	2381.8638	22391.8848	49.2868
8.633	BBA	0.27	1325.9989	23039.9160	50.7132
			Totals:	45431.8008	100.0000

0-537.135 537.14 537.145 537.15 537.155 537.16 537.165 537.17 537.175 537.18 537.185 Counts vs. Mass-to-Charge (m/z)

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
8.536	BBA	0.26	2210.6050	36334.6484	49.2347
12.510	BBA	0.35	1650.5771	37464.1758	50.7653
			Totals:	73798.8242	100.0000

12.763	BBA	0.32	1591.7700	33266.9531	97.1048
			Totals:	34258.8123	100.0000

Spectrum from 20240817.wilf2 (sample 9) - 5, +TOF MS (400 - 700) from 0.063 to 0.113 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points), centroided

S209

4.779	BBA	0.12	1636.8729	12525.2695	50.5571
6.738	BBA	0.19	1018.9764	12249.2441	49.4429
			Totals:	24774.5137	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
4.773	BB	0.12	124.6385	955.9208	4.8654
6.700	BBA	0.19	1540.2458	18691.2891	95.1346
			Totals:	19647.2099	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
10.552	BBA	0.28	663.3882	12264.3691	49.8749
13.388	BBA	0.29	626.3311	12325.8848	50.1251
			Totals:	24590.2539	100.0000

13.420	BBA	0.28	763.5140	14219.4668	92.3051
			Totals:	15404.8625	100.0000

S215

[min]	Туре	[min]	[mAU]	[mAU*s]	Area [%]
8.273	BBA	0.34	991.5527	21815.1191	49.8887
10.312	BBA	0.43	793.1179	21912.4746	50.1113
			Totals:	43727.5938	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.320	BBA	0.33	22.4122	476.5341	2.2473
10.303	BBA	0.43	753.7796	20728.4980	97.7527
			Totals:	21205.0321	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
3.856	BBA	0.12	888.1533	6696.6675	49.0735
7.399	BB	0.37	294.7439	6949.5410	50.9265
			Totals:	13646.2085	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
3.848	BBA	0.13	30.5947	259.3460	2.3498
7.329	BBA	0.35	477.0155	10777.4502	97.6502
			Totals:	11036.7962	100.0000

645.075 645.1 645.125 645.15 645.175 645.2 645.225 645.25 645.275 645.3 645.325 645.35 645.375 645.4 645.425 645.45 645.475 645.5 645.525 645.55 Counts vs. Mass-to-Charge (m/z)

S221

100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
4.046	BBA	0.11	48.3694	348.9897	3.0585
5.870	BBA	0.21	829.1635	11061.6025	96.9415
			Totals:	11410.5922	100.0000

Totals:

14120.9199

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
6.029	BBA	0.15	551.4871	5511.3047	49.7055
10.370	BBA	0.31	276.2112	5576.6040	50.2945
			Totals:	11087.9087	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.009	BBA	0.17	85.6434	1001.8586	3.5056
10.277	BBA	0.31	1364.2518	27576.8809	96.4944
			Totals:	28578.7395	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.566	BBA	0.23	1352.6578	20139.9414	50.0449
12.935	BBA	0.93	338.6057	20103.8398	49.9551
			Totals:	40243.7813	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]	
5.594	BBA	0.24	53.7615	821.4728	1.4394	
12.865	BBA	0.94	937.7807	56249.4727	98.5606	
			Totals:	57070.9454	100.0000	

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.790	BBA	0.18	1591.1262	18135.9199	49.7910
9.055	BBA	0.33	869.1802	18288.1602	50.2090
			Totals:	36424.0801	100.0000

			and the second se		
5.753	BBA	0.17	99.4315	1099.3254	3.5334
8.938	BBA	0.32	1450.0912	30013.2988	96.4666
			Totals:	31112.6243	100.0000

	9.083	вва	0.29	254.8855 Totals:	4764.4277 9563.1865	49.8205 100.0000		
	1900	A, Waveleng	th=254 nm					
	1800-							
	1700-							
	1600-							
	1500-							
	1400-			^				
	1300-				ו			
	1200-				L .			
	1100-				N-		თ	
-	1000-				≺ _		. 02	
Find	900-						Ť	
	800-		RnO				Λ	
	700-			~_//,,,_N_	$\sim $			
	600-			Ťs			11	
	500-			12i				

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.175	BB	0.17	39.0287	438.8946	2.6057
9.079	BBA	0.30	865.3759	16404.4570	97.3943
			Totals:	16843.3516	100.0000

Counts vs. Mass-to-Charge (m/z)

100.0000

20094.8291

Totals:

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
4.181	BB	0.12	104.9507	822.0416	2.9815
8.452	BB	0.37	1132.7063	26749.0391	97.0185
			Totals:	27571.0807	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
9.002	BBA	0.31	891.9315	17841.7578	49.6578
12.399	BBA	0.52	540.7164	18087.6445	50.3422
			Totals:	35929.4023	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.014	BBA	0.29	40.3394	763.8903	3.0236
12.356	BBA	0.52	721.9957	24500.3711	96.9764
			Totals:	25264.2614	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
6.645	BV R	0.17	922.2198	10522.9707	49.3114
11.611	BBA	0.34	489.4550	10816.8643	50.6886
			Totals:	21339.8350	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
6.710	BBA	0.17	34.9625	388.7296	2.6562
11.758	BBA	0.34	644.5510	14246.2002	97.3438
			Totals:	14634.9298	100.0000

S245

S247

200 200 200 200 200 200 200 200	61.	8	56.	50.		26. 26. 26. 26. 26. 26. 26. 26. 26. 26.	-21. -19.	710.7
--	-----	---	-----	-----	--	--	--------------	-------

7.652 7.652 7.652 7.652 7.652 7.652 7.652 7.652 7.652 7.752 7.752 7.752 7.752 7.752 7.752 7.752 7.752 6.677 6.675 6.675 6.675 6.675 6.675 6.675 6.675 6.675 6.675 6.675 6.675 6.675 6.675 6.675 6.675 7.1162 7.1162 7.124 6.675 7.1162 7.1176 7.1162 7.1162 7.1162 7.1162 7.1176 7.1162 7.1176 7.1162 7.1176 7.1162 7.1176 7.1162 7.1176 7.

829.25 829.26 829.27 829.28 829.29 829.3 829.31 829.32 829.33 829.34 829.35 829.36 829.37 829.38 829.39 829.4 829.41 829.42 829.43 829.44 829.45 829.46 829.47 Counts vs. Mass-to-Charge (m/z)

Spectrum from 20240817.wiff2 (sample 10) - 6, +TOF MS (800 - 1100) from 0.037 to 0.086 min, noise filtere... 1.154 to 1.354 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points)], centroided

7,464 7,461 7,461 7,461 7,443 7,443 7,443 7,443 7,443 7,444 7,445 7,445 7,445 7,472 7,772

Spectrum from 20240821.wilf2 (sample 16) - 9, +TOF MS (200 - 600) from 0.063 to 0.111 min, noise filtered (noise multiplier = 1.5), Gaussian smoothed (0.5 points), centroided

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
6.748	BBA	0.24	1091.5602	16755.7148	50.0150
11.285	BBA	0.48	545.9031	16745.6582	49.9850
			Totals:	33501.3730	100.0000

11.400	BBA	0.48	1013.0538	31453.7012	96.0492
			Totals:	32747.4833	100.0000

լասոյ	Type	լասոյ	[IIIAU]	[mau*s]	[70]
4.683	BBA	0.15	641.1805	6237.6953	49.9388
12.641	BB	0.56	174.5945	6252.9819	50.0612
			Totals:	12490.6772	100.0000

4.005	DD	0.15	59.5105	572.4205	2.0515
12.622	BBA	0.58	393.7119	14521.3232	97.3687
			Totals:	14913.7496	100.0000

[min]	Type	[min]	[mAU]	[mAU [*] S]	[%]	
6.841	BBA	0.19	588.1586	7042.9995	50.4276	
8.788	BBA	0.24	441.0534	6923.5688	49.5724	
			Totals:	13966.5684	100.0000	

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.837	BB	0.18	53.7135	608.9911	4.3398
8.776	BBA	0.24	854.6207	13423.7334	95.6602
			Totals:	14032.7245	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
5.996	BBA	0.16	1023.4622	10605.2090	49.9482
13.469	BBA	0.39	422.5282	10627.2080	50.0518
			Totals:	21232.4170	100.0000

[min]	Реак Туре	[min]	[mAU]	Area [mAU*s]	Area [%]
5.983	BBA	0.17	32.8479	365.9035	5.0099
13.505	BBA	0.40	271.3038	6937.6753	94.9901
			Totals:	7303.5788	100.0000

7.1.250 7.1.03 7.1.03 7.1.03 7.1.03 7.1.03 7.1.038 7.1.038 7.1.038 7.1.038 7.1.038 7.1.038 7.1.038 7.1.038 7.1.038 6.1017 6.1010

