Supplementary Information for

Highly Efficient Heteronuclear Polarization Transfer by Dipolar-

Echo Edited R-Symmetry Sequences in Solid-State NMR

Lixin Liang¹, Kuizhi Chen¹, Guangjin Hou^{1*}

¹State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center

of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences,

Zhongshan Road 457, Dalian 116023, China.

Corresponding author: ghou@dicp.ac.cn

Table of contents

Supplementary Information	Page		
Figure S1. Simulated performances of DEER-INEPT and SR4-D-RINEPT			
methods, under the combined effects of multiple interferences.			
Figure S2. Pulse sequences and theory of dipolar echo and DEER-INEPT.	S3-S9		
Figure S3. Simulated performances of PMRR-D-RINEPT and SR4-D-			
RINEPT methods.	S10		
Figure S4. Simulated performances of DEER-INEPT and SR4-D-RINEPT			
methods, under the combined effects of multiple interferences, in a tetrahedral	S11		
$^{15}N^{1}H_{4}$ spin system.			
Figure S5. Stabilities of DEER-INEPT and SR4-D-RINEPT to ¹ H resonance			
offset, in ADP sample and 10 kHz MAS.			
Figure S6. Comparisons of the polarization transfer efficiencies between			
DEER-INEPT and SR4-D-RINEPT.	S13		
Figure S7. Experimental spectra of γ -Al ₂ O ₃ and Ga(acac) ₃ .	S14		
Figure S8. SR4-D-HMQC experiments in HY zeolites.	S15		
Figure S9. Experiments and ¹ H- ²⁷ Al distances fitting in HY zeolites.			
Table S1. Parameters of experiments in γ -alumina			
Table S2. Parameters of experiments in Ga(acac)3	S18		
Table S3. Parameters of experiments in HY zeolite	S18		
Pulse Program of DEER-INEPT	S19-S20		
References	S21-S22		

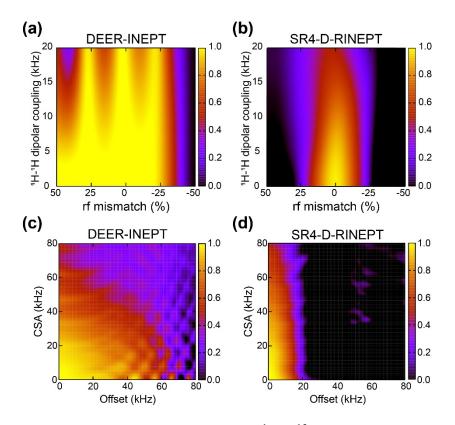
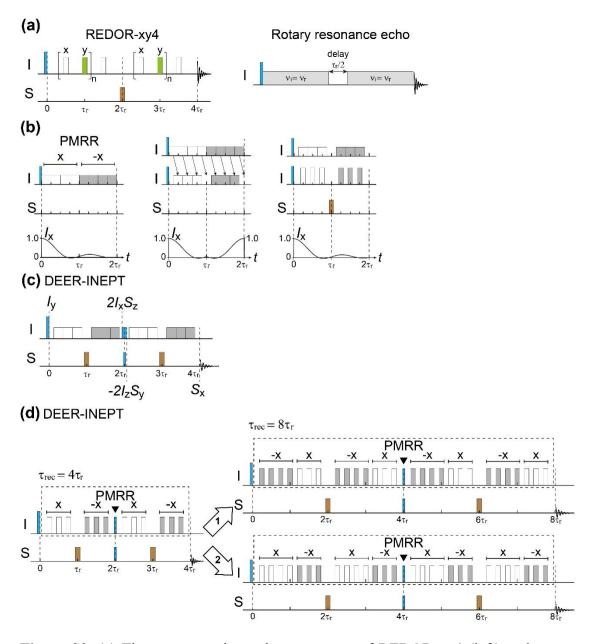



Figure S1. Simulated performances of (a)/(c) ${}^{1}\text{H}\rightarrow{}^{15}\text{N}$ DEER-INEPT ($f_w = 0$) and (b)/(d) ${}^{1}\text{H}\rightarrow{}^{13}\text{C}$ SR4-D-RINEPT methods, under the combined effects of (a)/(b) rf mismatch and ${}^{1}\text{H}-{}^{1}\text{H}$ dipolar coupling, as well as (c)/(d) resonance offset and ${}^{1}\text{H}$ CSA. The simulations use isolated ${}^{1}\text{H}\rightarrow{}^{15}\text{N}$ spin pair, in 18.8 T magnetic field and 60 kHz MAS.

Figure S2. (a) The representative pulse sequences of REDOR-xy4 (left) and rotary resonance echo (right). (b) Construction of dipolar echo in PMRR dipolar recoupling sequence. The curves are the simulated intensities of I_x magnetization dephased by *I-S* dipolar coupling. The simulations use ideal pulses (with pulse duration $\tau_p \rightarrow 0$) in PMRR recoupling; (c) Illustration of the polarization transfer mechanism of DEER-INEPT (d) Two phase cycling scheme for DEER-INEPT pulse sequences as recoupling time increased. The phases of π pulses in PMRR are indicated as x/-x and by white/grey rectangles.

1. Theory

1.1 Dipolar Echo in PMRR sequence

The dipolar echo is inspired by REDOR (Rotational-Echo DOuble Resonance)¹ and rotary resonance echo^{2,3}, proposed by Gullion and Gan, respectively. The pulse sequences of both methods are illustrated in Figure S2a. The REDOR is famous for its accurate measurement of heteronuclear dipolar coupling constant, and the rotary resonance echo can also do the similar job. For REDOR pulse sequence, if one ignores the xy4 phase cycle and expand the durations of π pulses on I spin until the neighboring pulses touches each other, a rotary resonance echo will then be formed on I spin. The similarities of both methods come from their recoupling mechanism, i.e., rotary resonance recoupling (R^3) .^{4,5} The R^3 occurs under MAS condition where the heteronuclear dipolar coupling is averaged out by fast sample spinning. Under MAS condition and in a dislike I-S spin pair coupled through dipolar interaction, if the rf amplitude (v_1) on I spin matches a multiple of the spinning frequency (v_r), i.e., $v_1 = nv_r$ (n = 1, 2), the *I-S* dipolar interaction and also the *I* spin CSA are reintroduced by the rf irradiation.^{4,5} The rotary resonance echo reveals that a central delay, with duration of half (or a quarter of) rotor cycle for n = 1 (or n = 2) matching condition, inverts the I spin magnetization, creating echo of I spin CSA.^{2,3}

As a recently developed sequence for heteronuclear dipolar recoupling, PMRR relies on the $n = 2 \text{ R}^3$ condition.⁶ Therefore, similar to rotary resonance echo, an echo of I-S dipolar interaction can also be constructed during PMRR recoupling. However, different from the rotary resonance echo which has no phase modulation, the PMRR uses (x, -x) phase modulation for robust performance⁶. This phase modulation must be remained in the design of echo. For this purpose, a $\tau_r/4$ time shift is introduced to the PMRR which repetitive unit can be regarded as 8 × π pulses with (xxxx, -x-x-x-x) phase cycle, as shown by **Figure S2b** (left figure). After the time shift, the last pulse in PMRR is placed at the end of the last rotor cycle and thus can be omitted. Then, further removal of the central pulse can reverse the sign of recoupled *I* spin CSA and *I-S* dipolar

Hamiltonian. At the end of the last rotor cycle, an echo of the dipolar Hamiltonian is formed, as illustrated by the **Figure S2b** (middle figure). In order to select the *I-S* dipolar Hamiltonian, a π pulse is applied on *S* spin synchronized with the central delay of PMRR sequence, as shown in **Figure S2b** (right figure). As consequence, this echo is able to refocus the *I* spin CSA, as well as *I* and *S* spin chemical shift. At the same time, the (*x*, *-x*) phase modulation of the PMRR sequence and its rotor synchronization are perfectly remained. In dipolar-coupled *I-S* spin pair, this echo based on PMRR is highly selective for zeroth-order *I-S* dipolar Hamiltonians (I_zS_z), and we would call it dipolar echo.

Importantly, the dipolar echo can compensate the effect from rf inhomogeneity, and suppress the interference from resonance offset. The explanation will be given as follows.

For *I-S* spin pair, the Hamiltonians of spin interactions can be simply described as follows:

$$\widehat{\mathcal{H}} = \widehat{\mathcal{H}}_{ext} + \widehat{\mathcal{H}}_{int} \tag{1}$$

where the first and second terms are external and internal spin interactions, respectively. The external spin interactions exist as the nuclear spin interacts with the external static magnetic field along z axis in laboratory frame $B_0 = (0,0, B_0)$ and rf field at x axis:

$$\boldsymbol{B}_{1}(t) = (\omega_{1} \cos [\omega_{0,rf} t + \varphi(t)], 0, 0)$$
(2)

The *I* spin interacts with rf field since the $B_1(t)$ carrier frequency $\omega_{0,rf}$ coincides with its Larmor frequency $\omega_{0,I} = \gamma_I B_0$, where the γ_I is gyromagnetic ratio of *I* nucleus. The ω_1 is the amplitude (in rad/s) of rf irradiation, $\omega_1/2\pi = \nu_1$, and $\varphi(t)$ is the phase of rf irradiation. This interaction results in the rotating frame first-order averaged Hamiltonian:

$$\widehat{\mathcal{H}}_{1}^{rot} = -\gamma_{I} |\widehat{\boldsymbol{l}} \cdot \boldsymbol{B}_{1}(t)| = -\gamma_{I} \omega_{1} \widehat{l}_{x}$$
(3)

where $\hat{I} = (\hat{I}_x, \hat{I}_y, \hat{I}_z)$. For R³ experiment using n = 2 condition, the rf amplitude is two times of the MAS frequency, $\omega_1 = 2\omega_r$. Apparently, the $\widehat{\mathcal{H}}_1^{rot}$ is time-independent. With the absence of resonance offset and rf mismatch, $\widehat{\mathcal{H}}_1^{rot}$ locks the I spin magnetization at x axis. However, in real experiment, multiple I spin can exhibit different chemical shifts. This leads to difference between rf carrier frequency $\omega_{0,rf}$ and the exact resonance frequency of a specific *I* spin, $\omega_{iso,I} = \gamma_I \sigma_{iso} \boldsymbol{B}_0$, where σ_{iso} is the isotropic part of the *I* spin chemical shielding tensor. The Hamiltonian of the *I* spin offset in rotating frame can be written as:

$$\widehat{\mathcal{H}}_{\Omega}^{rot} = -(\omega_{iso,I} - \omega_{0,rf})\hat{l}_z = -\Omega\hat{l}_z \tag{4}$$

Besides, in the rf coil surrounding the sample rotor, the $B_1(t)$ field is usually inhomogeneity.⁷ This means that at a specific position in the rotor, the actual rf amplitude $\omega_{1,I}$ experienced *I* spin can be mismatched from ω_1 . Therefore, for this *I* spin the Eq.3 should be modified into:

$$\left|\widehat{\boldsymbol{\mathcal{H}}}_{1,l}^{rot}\right| = -\gamma_l \left|\widehat{\boldsymbol{l}} \cdot \boldsymbol{B}_{1,l}(t)\right| = -\gamma_l \omega_{1,l} \widehat{l}_x$$
(5)

Now, applying further frame transformation to $\widehat{\mathcal{H}}_{\Omega}^{rot}$ and $\widehat{\mathcal{H}}_{1,I}^{rot}$ separately, using toggling frame propagator $\widehat{U}(t) = e^{-i\widehat{\mathcal{H}}_{1}^{rot}t}$:

$$\widehat{\boldsymbol{\mathcal{H}}}_{\Omega}^{toggling} = \widehat{U}(t)\widehat{\boldsymbol{\mathcal{H}}}_{\Omega}^{rot}\widehat{U}^{-1}(t) = -\cos\theta \cdot \Omega \widehat{l}_{z}^{\prime}$$
(6)

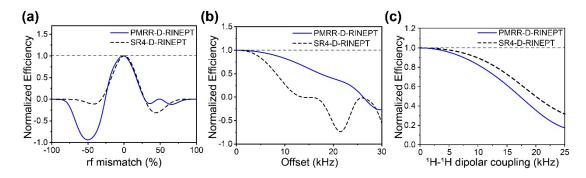
where $\theta = \arctan(\omega_1/\Omega)$ denotes the angle between the B_0 and the effective field to which \hat{I}'_z is parallel. When consider the rf mismatch on *I* spin only, the same frame transformation leads to:

$$\widehat{\mathcal{H}}_{1,l}^{toggling} = \widehat{U}(t)\widehat{\mathcal{H}}_{1,l}^{rot}\widehat{U}^{-1}(t) = -\gamma_l \Delta \omega_1 \widehat{l}'_z \tag{7}$$

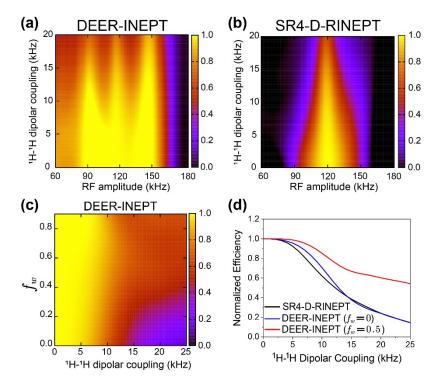
where $\Delta \omega_1 = \omega_1 - \omega_{1,I}$ is the rf mismatch on the specific *I* spin.

According to Eq.6, the size of resonance offset Hamiltonian is reduced by $\cos\theta$ under R³ irradiation. For dipolar echo based on PMRR sequence (**Figure S2b**), the R³ irradiation is not interrupted. Therefore, compared to conventional SR4-D-RINEPT where the SR4 recoupling sequence is separated by multiple echo delays, the DEER-INEPT can suppresses the effect from resonance offset through the entire transfer process. Besides, as the rf amplitude ω_1 increased by window modification and the $\cos\theta$ approaching to zero, the resonance offset Hamiltonian is suppressed more effectively.

As for the effects from rf inhomogeneity, the large rf Hamiltonian $\widehat{\mathcal{H}}_1^{rot}$ is reduced


to a small mismatch term $\widehat{\mathcal{H}}_{1,l}^{toggling}$ in R³ irradiation. Moreover, different from the simple R³ irradiation, the dipolar echo maintains the (x, -x) phase modulation from PMRR. According to Eq. 2, π phase shift in the dipolar echo leads to sign change of the $B_1(t)$ and the resulting mismatch term $\widehat{\mathcal{H}}_{1,l}^{toggling}$. This rf mismatch occurs in macroscopic scale, varying smoothly over the entire sample volume, while the recoupled *I-S* dipolar Hamiltonians $\widehat{\mathcal{H}}_{1S}^{toggling}$ is microscopic (within 1 nm). Thus, the two Hamiltonians, $\widehat{\mathcal{H}}_{1,l}^{toggling}$ and $\widehat{\mathcal{H}}_{1S}^{toggling}$, can be assumed to be commutative with each other, i.e., $[\widehat{\mathcal{H}}_{1,l}^{toggling}, \widehat{\mathcal{H}}_{1S}^{toggling}] \approx 0$. As consequences, (x, -x) phase modulation in dipolar echo can cancel the small rf mismatch term by alternatively changing the sign of $\widehat{\mathcal{H}}_{1,l}^{toggling}$, without significantly effecting the recoupling dipolar term $\widehat{\mathcal{H}}_{1S}^{toggling}$. As the rf mismatch at specific rotor position cancelled out, the DEER-INEPT is thus insensitive to rf inhomogeneity.

1.2 Explanations of DEER-INEPT pulse sequence


The DEER-INEPT has similar mechanism for heteronuclear polarization transfer as the present RINEPT methods^{8,9}. **Figure S2c** provides a simple illustration for the involved spin states in the polarization transfer. In dipolar-based RINEPT (D-RINEPT), the coupled state of *I-S* spin pair is reintroduced by zero-quantum (ZQ) heteronuclear dipolar recoupling sequences, such as REDOR,^{1,10} R³,¹¹ SR4,^{9,12} $R12_3^{5}$,^{13,14} and PMRR⁶. The recoupling sequences, in conventional D-RINEPT, are seperated by echo delayes for rotor synchronization. While in DEER-INEPT, no echo delay is required due to the application of the two dipolar echoes. Therefore, the dipolar recoupling is continuous during the entire polarization transfer process as indicated by the dashed squares in **Figure S2d**. This continuity of the PMRR square in DEER-INEPT means that the $\pi/2$ pulses between two dipolar echoes, as indicated by black trangles in **Figure S2d**, use the same rf amplitude as the PMRR sequence. If these $\pi/2$ pulses use different rf amplitude, the mismatched rf strength during polarization transfer will lower the efficiency of DEER-INEPT. Note, in conventional D-RINEPT, replacing recoupling sequences from SR4 to PMRR indeed can cause different performance, as shown in **Figure S2**, but the discrepency is much less significant compared to DEER-INEPT. Clearly, the dipolar echo design dominates the improvement of DEEr-INEPT over SR4-D-RINEPT.

Apart from the improvement in robustness, the dipolar echoes in DEER-INEPT also allow polarization transfer in short recoupling time, which can be important for short range transfer between strongly coupled spins like bonded ¹H-¹⁷O. Comparison between Figure 2b and Figure 2c clearly shows the compactness of DEET-INEPT over the conventional SR4-D-RINEPT. For the shortest possible recoupling time, the DEER-INEPT requires 4 rotor cycles ($4\tau_r$, as shown in Figure 1b and Figure S2d). However, the SR4-D-RINEPT, even with SR4 sequence using the shortest two-step supercycle instead of the normal three steps¹⁵, requires at least 16 rotor cycles where 8 rotor cycles are used for dipolar recoupling and other 8 rotor cycles are occupied by echo delays. This doubled recoupling time makes SR4-D-RINEPT more susceptive to T_2 relaxation. It is possible to use 4 rotor cycles as total recoupling time in SR4-D-RINEPT, at the expanse of using R41² for heteronuclear dipolar recoupling.¹² On one hand, the R41² sequence also introduces homonuclear dipolar interactions that hampers the transfer efficiency. On the other hand, 8 rotor cycles are still required by echo delays, making the total (shortest possible) duration for SR4-D-RINEPT polarization transfer is 12 rotor cycles. Whereas in the DEER-INEPT using the shortest recoupling time of $4\tau_r$, the PMRR still has complete (x, -x) phase modulation in each dipolar echo (Figure S2d), leading to more effective suppression for homonuclear dipolar coupling. In short, without echo delay, the total duration of DEER-INEPT polarization transfer always equals the dipolar recoupling time, making the method more effective in probing short range atomic correlation and less affected by T_2 relaxation.

As the recoupling time increased, the phase cycling of PMRR sequence in DEER-INEPT is more complicate than SR4-D-RINEPT. The latter increases the recoupling time by simply adding the SR4 unit (usually $[R4_1^2R4_1^{-2}]$ spanning two rotor cycles, or $[R4_1^2]_0[R4_1^2]_{120}[R4_1^2]_{240}$ spinning three rotor cycles), leading to increment of $8\tau_r$. While the DEER-INEPT, with increment of $4\tau_r$, increases the recoupling by adding half of the PMRR unit, $[\pi_x \pi_x \pi_x \pi_x]$ or $[\pi_{-x} \pi_{-x} \pi_{-x} \pi_{-x}]$ both spanning one rotor cycle. As consequences, DEER-INEPT can use two types of PMRR phase cycle, as indicated by scheme 1 and scheme 2 in **Figure S2d**. Both schemes maintain the (x, -x) phase modulation of PMRR sequence through the entire polarization transfer process. The attached pulse program in this supporting information uses the phase cycle of scheme 1.

Figure S3. Simulated robustness of ${}^{1}\text{H} \rightarrow {}^{15}\text{N}$ PMRR-D-RINEPT (solid blue lines) and SR4-D-RINEPT (dashed black lines) under the interferences of (a) rf mismatch, (b) resonance offset and (c) ${}^{1}\text{H} - {}^{1}\text{H}$ dipolar coupling. The PMRR-D-RINEPT uses the same pulse sequence (**Figure 2c**) as SR4-D-RINEPT, but the SR4 sequence is replaced by windowless PMRR sequence. The simulations use 18.8 T magnetic field, with 60 kHz MAS for (a) and (b), 20 kHz MAS for (c).

Figure S4. Simulations of transfer efficiency of (a) DEER-INEPT ($f_w = 0$) and (b) SR4-D-RINEPT in tetrahedral ¹⁵N¹H₄ spin system, under the interferences of ¹H-¹H dipolar coupling and RF mismatch, in 60 kHz MAS. (c) The transfer efficiency of DEER-INEPT under the interferences of ¹H-¹H dipolar coupling with various f_w . (d) Comparisons of the robustness of DEER-INEPT and SR4-D-RINEPT with different ¹H-¹H dipolar couplings. The magnetic field in simulations is 18.8 T, and the spinning frequency is 60 kHz. More details for the simulation parameters are included in **Simulations and Experiments**.

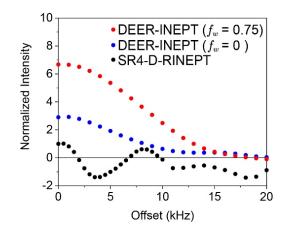
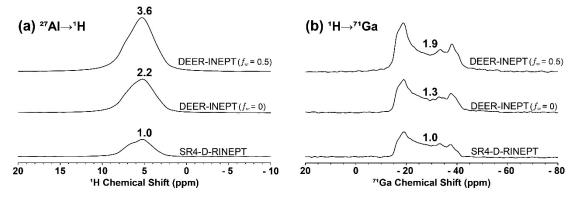
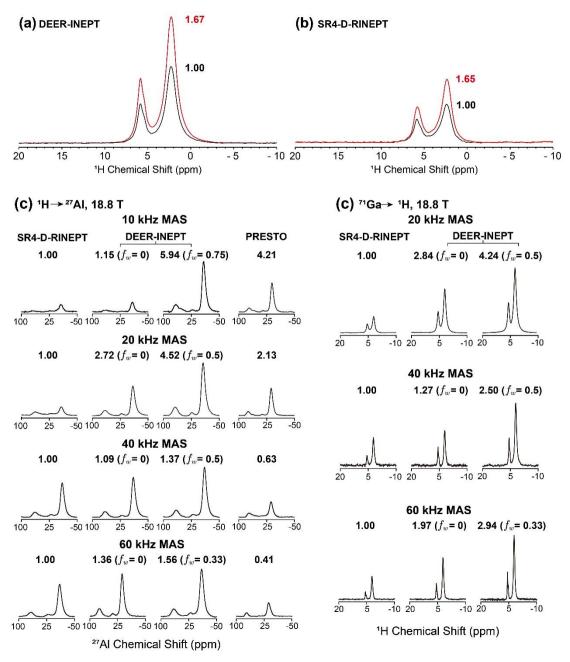
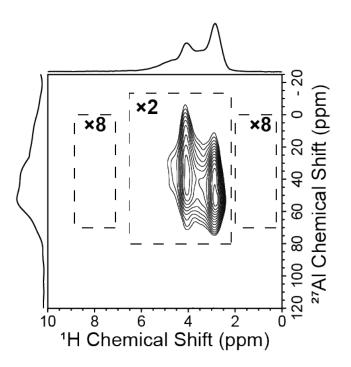


Figure S5. In ADP and 10 kHz MAS, the ${}^{1}\text{H} \rightarrow {}^{31}\text{P}$ transfer efficiency of DEER-INEPT and SR4-D-RINEPT with increasing ${}^{1}\text{H}$ offset. The magnetic field in simulations is 9.4 T. More experimental details are included in **Simulations and Experiments**.

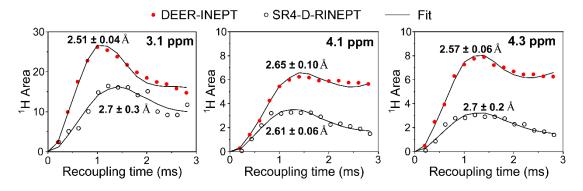

Figure S6. Comparisons of the polarization transfer efficiencies between DEER-INEPT and SR4-D-RINEPT in (a) ${}^{27}Al \rightarrow {}^{1}H$ transfer in γ -Al₂O₃ and (b) ${}^{1}H \rightarrow {}^{71}Ga$ transfer in Ga(acac)₃. The experiments are operated in 18.8 T magnet, using 20 kHz spinning frequency. The total signal areas of each spectrum, compared with the signal areas from SR4-D-RINEPT, are indicated on top of each spectrum.

Figure S7. Experimental spectra of γ -Al₂O₃ and Ga(acac)₃. Enhancement factors from saturation of ⁷¹Ga satellite transition in (a) ⁷¹Ga \rightarrow ¹H DEER-INEPT ($f_w = 0$) and (b) ⁷¹Ga \rightarrow ¹H SR4-D-RINEPT. The experiments are operated in 18.8 T magnet and 20 kHz MAS. The spectra with and without WURST saturation of ⁷¹Ga satellite transition are presented in red and black lines, respectively. (c) ²⁷Al spectra from ¹H \rightarrow ²⁷Al polarization transfer. (d) ⁷¹Ga spectra from ⁷¹Ga \rightarrow ¹H polarization transfer. The methods and MAS conditions are illustrated in the spectra. Experimental details are included in **Simulations and Experiments**.

Figure S8. 2D ¹H-{²⁷Al} SR4-D-HMQC spectra of dehydrated HY zeolite. The details of the experiments are summarized in **Simulation and Experiments**.

Figure S9. Experiments and fitting of the buildup curves from ${}^{27}A1 \rightarrow {}^{1}H$ DEER-INEPT (red dots) and SR\$-D-RINEPT (black circles).

1. Experimental Parameters

1.1 γ-alumina

All experiments of γ -alumina were operated in 18.8 T AV NEO Bruker NMR spectrometer. The experimental parameters from 10 kHz to 60 kHz are listed in **Table S1**.

		-		i γ-alun			
		_					
¹ H pulses		²⁷ Al pulses /kHz		v _{1,rec}	$ au_{rec}$	Recycle	
/kHz							
$\pi/2$	π	π/2 π		/KHZ	/ms	delay /s	
56.2	2			20	0.8	0.5	
	-				0.8		
56.2	-	35.7		80	0.4		
-	-				0.4		
) kHz MA	S (3.2	2 HX prol	be)				
-		-		$v_{1,rec}$	$ au_{\it rec}$	Recycle	
	π			- /kHz	/ms	delay /s	
	3			40	0.8		
0 0.5 65.8	-			40	0.8	1.5	
	_	50	50				
-	_						
L							
		²⁷ Al pulses				Recycle	
-				$v_{1,rec}$ τ_{rec}	$\tau_{\it rec}$		
				/kHz	/ms	delay /s	
				80	0.7		
-	_						
113.6	_	35.7	7			0.5	
-	_						
5							
1		-		$v_{1,rec}$	$ au_{\it rec}$	Recycle	
				/kHz /ms	delay /s		
				120	0.666		
	-					0.5	
113.6	_	35.7	35.7				
				160	0.335		
	$\frac{) \text{ kHz MA}}{^{1}\text{H pul}} / \text{kH:} \pi/2$ $\frac{\pi/2}{56.2}$ $\frac{-}{56.2}$ $\frac{-}{56.2}$ $\frac{-}{65.8}$ $\frac{-}{65.8}$ $\frac{-}{65.8}$ $\frac{-}{65.8}$ $\frac{-}{10} \text{ kHz MA}$ $\frac{1}{^{1}\text{H pul}} / \text{kH:} \pi/2$ $\frac{113.6}{113.6}$ $\frac{-}{10} \text{ kHz MA}$ $\frac{1}{^{1}\text{H pul}} / \text{kH:} \pi/2$ $\frac{-}{113.6}$ $\frac{-}{10} \text{ kHz MA}$ $\frac{-}{^{1}\text{H pul}} / \text{kH:} \pi/2$ $\frac{-}{113.6}$ $\frac{-}{10} \text{ kHz MA}$ $\frac{-}{^{1}\text{H pul}} / \text{kH:} \pi/2$ $\frac{-}{113.6}$ $\frac{-}{^{1}\text{H pul}} / \text{kH:} \pi/2$) kHz MAS (3.2 ¹ H pulses $/kHz$ $\pi/2$ π 56.2 - 56.2 - 56.2 - 56.2 - 0 kHz MAS (3.2 ¹ H pulses /kHz $\pi/2$ π 65.8 - - - 0 kHz MAS (1.3 ¹ H pulses /kHz $\pi/2$ π 113.6 - - - 0 kHz MAS (1.3 - 113.6 - - - 0 kHz MAS (1.3 $\pi/2$ π 113.6 - - - 0 kHz MAS (1.3 $\pi/2$ π 113.6 - - - $\pi/2$ π 113.6 - - - 0 kHz MAS (1.3 $\pi/2$ π 113.6 - - - $\pi/2$) kHz MAS (3.2 HX prol ¹ H pulses 2^{7} Al pu /kHz /kH $\pi/2$ $\pi/2$ 56.2 56.2 56.2 35.7 - $-$ 0 kHz MAS (3.2 HX prol ¹ H pulses 2^{7} Al pu /kHz /kH $\pi/2$ $\pi/2$ 0 kHz MAS (3.2 HX prol ¹ H pulses 2^{7} Al pu /kHz /kH $\pi/2$ $\pi/2$ 65.8 50 - $-$ 0 kHz MAS (1.3 HX prol ¹ H pulses 2^{7} Al pu /kHz /kH $\pi/2$ π 113.6 35.7 - $-$ 0 kHz MAS (1.3 HX prol ¹ H pulses 2^{7} Al pu /kHz /kH $\pi/2$ π 113.6 35.7 - $-$ 0 kHz MAS (1.3 HX prol ¹ H pulses 2^{7} Al pu /kHz /kH $\pi/2$ π	$1 H ext{ Pulses}$ $2^{27} A1 ext{ pulses}$ $1 H ext{ pulses}$ $2^{7} A1 ext{ pulses}$ $\pi/2$ π $\pi/2$ π $\pi/2$ π $\pi/2$ π 56.2 35.7 $ 56.2$ 35.7 $ 0 ext{ kHz } ext{ MAS } (3.2 ext{ HX probe})$ $1 ext{ Hpulses } exts{ /kHz } ext{ /kz } ext$	New Year of the pulses 2^{7} Al pulses $v_{1,rec}$ 1^{H} pulses 2^{7} Al pulses $v_{1,rec}$ $\pi/2$ π $\pi/2$ π 56.2 20 20 56.2 20 20 56.2 35.7 80 - - 90 Net MAS (3.2 HX probe) $v_{1,rec}$ 1 H pulses 2^{7} Al pulses $v_{1,rec}$ $/kHz$ $/kHz$ $/kHz$ $/kHz$ $\pi/2$ π $\pi/2$ π 65.8 40 65.8 40 65.8 - 50 80 - - 90 90 Net MAS (1.3 HX probe) $v_{1,rec}$ $/kHz$ $1H$ pulses 2^{27} Al pulses $v_{1,rec}$ $/kHz$ $/kHz$ $/kHz$ $/kHz$ 113.6 35.7 160 - - 133 $v_{1,rec}$ $/kHz$ $/kHz$ $/kHz$ $v_{1,rec}$ $/kHz$ $/kHz$ $/kHz$ $/kHz$	New product of the second system is a second system of the second system is a second system. The second system is a second system. The second system is a second system is a second system is a second system. The second system is a second system is a second system is a second system. The second system is a second system is a second system is a second system. The second system is a second system is a second system is a second system. The second system is second system is a second system is second sy	

Table S1. Parameters of experiments in γ -alumina

$1.2 \text{ Ga}(\text{acac})_3$

All experiments in Ga(acac)₃ were operated in 18.8 T AV NEO Bruker NMR spectrometer. The experimental parameters from 20 kHz to 60 kHz are listed in **Table S2**.

				1		
20 kHz MAS (3.2 HX probe)						
Methods		⁷¹ Ga pulses /kHz			_ /	Recycle delay /s
		π/2 π		$v_{1,rec}$ /kHz	$ au_{rec}$ /ms	
SR4-D-RINEPT				40	0.8	
DEER-INEPT	$f_w = 0$	27.78		40	0.8	0.15
DEEK-INEP I	$f_{w} = 0.5$			80	0.8	
40 kHz MAS (1.3 HX probe)						
Methods		⁷¹ Ga pulses /kHz			1	D 1 11 /
		π/2	π	$v_{1,rec}$ /kHz	$ au_{rec}$ /ms	Recycle delay /s
SR4-D-RI	NEPT			80	1.2	
DEED NIEDT	$f_w = 0$	50		80	1.2	0.15
DEER-INEPT	$f_{w} = 0.5$			160	1.2	
60 kHz MAS (1.3 HX probe)						
Methods		⁷¹ Ga pulses /kHz			_ /	D 1 - 1 1 /
		π/2	π	$v_{1,rec}$ /kHz	$ au_{rec}$ /ms	Recycle delay /s
SR4-D-RINEPT				120	1.133	
DEER-INEPT	$f_w = 0$	5	50	120	1.2	0.15
	$f_w = 0.33$			180	1.0	

Table S2. Parameters of experiments in Ga(acac)₃

1.3 HY zeolite

All experiments in HY zeolite were operated in 18.8 T AV NEO Bruker NMR spectrometer. The experimental parameters at 20 kHz are list in **Table S3**.

20 kHz MAS (3.2 HX probe)						
Methods $\frac{27 \text{Al pu}}{\pi/2}$		²⁷ Al pulses /kHz		4. /I-II-	- * /	D 1 . 1 1 /
		$\pi/2$	π	- ν _{1,rec} /kHz	τ_{rec} * /ms	Recycle delay /s
SR4-D-RIN	VEPT			40	0.8	
DEED NIEDT	$f_w = 0$	27	70	40	0.8	0.15
DEER-INEPT	$f_w = 0$ $f_w = 0.5$	27.	/8	80	0.8	
SR4-D-HN	/IQC			40	0.8	0.7

Table S3. Parameters of experiments in HY zeolite

* In the experiments of producing ¹H buildup curves from ²⁷Al \rightarrow ¹H transfer, the τ_{rec} is varied from 0.2 to 2.8 ms.

2. Pulse Program of the DEER-INEPT method

;DEER-INEPT using PMRR for heteronuclear dipolar	heteronuclear dipolar recoupling
recoupling	
	,
, ;Written by Lixin Liang 05.15.2020, contact	,
llx_dicp@dicp.ac.cn	
Inx_ulep@ulep.ac.en	mused velations= <aelida on=""></aelida>
, Avenes III version	prosol relations= <solids_cp></solids_cp>
;Avance III version	#include <avancesolids.incl></avancesolids.incl>
;parameters:	#include <avancesolids.incl></avancesolids.incl>
;p3 : Proton 90 deg pulse (pl12) for excitation	;"10 = 0"
;p4 : 180 deg pulse (pl2) in PMRR, must <	<i>`</i>
0.25*rotor_period	$p_2 = p_1 * 2"$
;p5 : 90 deg pulse in PMRR	$p_{4} = p_{3} * 2^{"}$
;p1 : X 90 deg pulse (p1)	$p_{5} = p_{4/2}$
;p20 : Pulse for f1 presat (plw15)	"d3 = 1s/cnst31 - p2/2"
;pl1 : Power level for selective X 90 deg pulse	;"d4 = 1s/cnst31-p2/2-p1/2"
;pl2 : PMRR high power recoupling, must >	"d10 = 10*1s/cnst31 - p2/2"
2*spinning_frequency	"d11 = 10*1s/cnst31 - p2/2 - p1/2"
;	"d12 = 10*1s/cnst31 - p2/2 - de"
	"d0 = 0"
; ##### Further optimization of pl2 is recommended	"in0 = inf1"
for maximizing signal intensity. ######	" $112 = 4*10 - 1$ "
;	
	define delay window
	"window = 0.25s/cnst31 - p4"
;pl12 : H90 & decoupling power level (if not PLW13)	define delay delt180
;pl13 : special decoupling power level	"delt180 = p4"
; $cnst21$: on resonance, usually = 0	define delay delt90
;cpdprg2 : e.g. cw, spinal64 (at PLW12)	"delt90 = $p3$ "
;d1 : recycle delay	define delay delt45
;d10 : echo delay d10 in X chennel	"delt45 = $p3/2$ "
;d11 : echo delay d11 in X chennel	define loopcounter ph_pointer
;d12 : echo delay d12 in X chennel	"ph_pointer = 7 - 112%8"
;10 :loop councter for PMRR, Recoupling time = 4tr*10	
;112 := 10 - 2, = 1,5,9, for complete cycle	1 ze
;pcpd2 : pulse length in decoupling sequence	
;	2 10m
;	
;\$CLASS = Solids	d1 do:f2
;\$DIM = 2D	#ifdef PRESAT1
; $TYPE = H \rightarrow X$ dipolar-based INEPT	30 d20
;\$SUBTYPE = simple 1D	(p21 pl21 ph0):f1
;\$COMMENT = DEER-INEPT using PMRR for	lo to 30 times 120
S19	

#endif	delt180
10u	6 window ipp14
	(p4 ph14^):f2
"ph_pointer = 7 - 112%8"	lo to 6 times 112
	exec_wait
10 1u ipp13 ipp14	
lo to 10 times ph_pointer	exec_on_other
	d10 pl1:f1
(p3 ph1 pl12):f2	(p2 ph4):fl
d0 ;t1	d11
exec_on_chan:f2:t1	(p1 ph5):f1
delt90	d11
3 window	(p2 ph6):fl
(p4 pl2 ph13^):f2	d12
lo to 3 times 112	exec_wait
window	0.05u cpds2:f2
delt180 ;rpp13	go=2 ph31
window ipp13	1m do:f2 mc #0 to 2 F1PH(ip1, id0)
	; exit
4 (p4 ph13^):f2	HaltAcqu, 1m
window	exit
lo to 4 times 112	
	ph0=0
delt45	ph1=0
(p5 ph3):f2	ph3=1 3
delt45	ph4=0 0 2 2
	ph5=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
5 window	ph6=0 0 2 2 1 1 3 3
(p4 ph14^ pl2):f2	ph31=0 2 0 2 1 3 1 3 2 0 2 0 3 1 3 1
lo to 5 times 112	
	ph13 = 2 2 2 2 0 0 0 0
window	$ph14 = 2\ 2\ 2\ 2\ 0\ 0\ 0\ 0$

References

- Gullion, T.; Schaefer, J. Rotational-Echo Double-Resonance NMR. J. Magn. Reson. 1989, 81, 196.
- (2) Gan, Z.; Grant, D. M.; R., E. R. NMR chemical shift anisotropy measurements by RF driven rotary resonance. *Chem. Phys. Lett.* **1996**, *254*, 349.
- (3) Gan, Z. Rotary resonance echo double resonance for measuring heteronuclear dipolar coupling under MAS. *J. Magn. Reson.* **2006**, *183* (2), 235.
- Levitt, M. H.; Oas, T. G.; Griffin, R. G. Rotary Resonance Recoupling in Heteronuclear Spin Pair Systems. *Isr. J. Chem.* 1988, *28*, 271.
- (5) Oas, T. G.; Griffin, R. G.; Levitt, M. H. Rotary resonance recoupling of dipolar interactions in solid-state nuclear magnetic resonance spectroscopy. J. Chem. Phys. 1988, 89 (2), 692.
- (6) Liang, L.; Ji, Y.; Zhao, Z.; Quinn, C. M.; Han, X.; Bao, X.; Polenova, T.; Hou, G. Accurate heteronuclear distance measurements at all magic-angle spinning frequencies in solidstate NMR spectroscopy. *Chem. Sci*, **2021**, *12* (34), 11554.
- (7) Nagashima, H.; Trébosc, J.; Lafon, O.; Pourpoint, F.; Paluch, P.; Potrzebowski, M. J.; Amoureux, J.-P. Imaging the spatial distribution of radiofrequency field, sample and temperature in MAS NMR rotor. *Solid State Nucl. Magn. Reson.* **2017**, *87*, 137.
- (8) Amoureux, J.-P.; Trébosc, J.; Wiench, J.; Pruski, M. HMQC and refocused-INEPT experiments involving half-integer quadrupolar nuclei in solids. *J. Magn. Reson.* 2007, 184 (1), 1.
- (9) Giovine, R.; Trebosc, J.; Pourpoint, F.; Lafon, O.; Amoureux, J.-P. Magnetization transfer from protons to quadrupolar nuclei in solid-state NMR using PRESTO or dipolarmediated refocused INEPT methods. *J. Magn. Reson.* **2019**, *299*, 109.
- (10) Hing, A. W.; Vega, S.; Schaefer, J. Transferred-Echo Double-Resonance NMR. J. Magn. Reson. 1992, 96, 205.
- Trébosc, J.; Hu, B.; Amoureux, J.-P.; Gan, Z. Through-space R3-HETCOR experiments between spin-1/2 and half-integer quadrupolar nuclei in solid-state NMR. *J. Magn. Reson.* 2007, *186* (2), 220.
- (12) Nagashima, H.; Trébosc, J.; Kon, Y.; Sato, K.; Lafon, O.; Amoureux, J.-P. Observation of low-γ quadrupolar nuclei by surface-enhanced NMR spectroscopy. *J. Am. Chem. Soc.* 2020, *142* (24), 10659.
- (13) Levitt, M. H. In *Encyclopedia in Nuclear Magnetic Resonance*; Grant, D. M.;Harris, R. K., Eds.; Wiley: Chichester, 2002; Vol. 9.
- (14) Gómez, J. S.; Rankin, A. G.; Trébosc, J.; Pourpoint, F.; Tsutsumi, Y.; Nagashima, H.; Lafon, O.; Amoureux, J.-P. Improved NMR transfer of magnetization from protons to half-integer spin quadrupolar nuclei at moderate and high MAS frequencies. *Magnetic Resonance Discussions* **2021**, *2021*, 1.
- (15) Brinkmann, A.; Kentgens, A. P. Proton-selective 17O-1H distance measurements in fast magic-angle-spinning solid-state NMR spectroscopy for the determination of hydrogen bond lengths. *J. Am. Chem. Soc.* **2006**, *128* (46), 14758.
- (16) Bak, M.; Rasmussen, J. T.; Nielsen, N. C. SIMPSON: A General Simulation Program for solidstate NMR Spectroscopy. J. Magn. Reson. 2000, 147 (2), 296.
- (17) Lorieau, J.; McDermott, A. E. Order parameters based on (13)C(1)H, (13)C(1)H(2) and

(13)C(1)H(3) heteronuclear dipolar powder patterns: a comparison of MAS-based solidstate NMR sequences. *Magn. Reson. Chem.* **2006**, *44* (3), 334.

- (18) Liang, L.; Ji, Y.; Chen, K.; Gao, P.; Zhao, Z.; Hou, G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. *Chem. Rev.* **2022**, *122* (10), 9880.
- (19) Power, L.; Turner, K.; Moore, F. The crystal and molecular structure of α-glycine by neutron diffraction–a comparison. *Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry* **1976**, *32* (1), 11.
- (20) Juhl, D. W.; Tošner, Z.; Vosegaard, T. In *Annu. Rep. NMR Spectrosc.*; Elsevier, 2020; Vol. 100.
- (21) Bak, M.; Nielsen, N. C. REPULSION, a novel approach to efficient powder averaging in solid-state NMR. *J. Magn. Reson.* **1997**, *125* (1), 132.