Insights into Facile Methane Activation by a Spin Forbidden Reaction with Ta⁺ Ions in the Gas Phase

Yang Liu,^a Milan Ončák,^{b,*} Tucker W. R. Lewis,^c Marcel Meta,^d Shaun G. Ard,^c Nicholas S.

Shuman,^{c,*} Jennifer Meyer,^d Albert A. Viggiano,^c and Hua Guo^{a,*}

^aDepartment of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States

^bUniversität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria

^cAir Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States

^dRPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany

Supporting Information

 $*: corresponding \ authors: Milan. On cak@uibk.ac.at, nicholas. shuman. 1@spaceforce.mil, hguo@unm.edu$

Spacios	Mathad	Г	Frequencies											
Species	Method	Ľ	1	2	3	4	5	6	7	8	9	10	11	12
⁵ Ta ⁺ + CH ₄	PES ^a DFT ^b DFT ^c CC ^d Expt. ^e	0 0 0 0 0	1308 1303	1308 1303	1308 1303	1529 1522	1529 1522	3037 3028	3143 3144	3143 3144	3143 3144			
³ Ta ⁺ + CH ₄	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>} Expt. ^{<i>e</i>}	$\begin{array}{c} 0.404 \\ 0.387 \\ 0.402 \\ 0.393 \\ 0.428 \end{array}$	1308 1303	1308 1303	1308 1303	1540 1522	1540 1522	3018 3028	3230 3144	3230 3144	3230 3144			
¹ Ta ⁺ + CH ₄	PES ^a DFT ^b DFT ^c CC ^d Expt. ^e	0.593 0.584 1.900 1.328 1.216	1303 1303	1303 1303	1303 1303	1513 1522	1513 1522	3077 3028	3103 3144	3103 3144	3103 3144			
⁵ INT1	PES ^a DFT ^b DFT ^c CC ^d	-0.634 -0.611 -0.561 -0.691	144 71	209 209	238 491	1147 1156	1313 1289	1344 1374	1451 1454	1507 1561	2838 2670	2885 3016	3110 3107	3199 3173
³ INT1	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	-0.322 -0.333 -0.232 -0.417	173 209	233 277	640 673	1046 1094	1354 1335	1397 1341	1428 1485	1521 1552	2499 2482	2625 2671	3043 3073	3129 3149
¹ INT1	PES ^a DFT ^b DFT ^c CC ^d	-0.098 -0.118 0.840 -0.176	96 140	174 164	423 599	1045 1103	1277 1322	1398 1362	1423 1447	1523 1571	2523 2542	2636 2804	2975 3080	3062 3158
⁵ INT2	PES ^a DFT ^b DFT ^c CC ^d	0.743 0.530 0.631 0.642	133 177	153 224	269 281	380 331	449 425	966 913	1326 1323	1343 1349	1768 1620	3004 2973	3150 3127	3170 3173
³ INT2	PES ^a DFT ^b DFT ^c CC ^d	-1.805 -1.802 -1.637 -1.736	251 260	366 261	349 340	521 554	621 612	1147 1152	1318 1314	1344 1321	1890 1951	2887 2938	2998 3028	3040 3054
¹ INT2	PES ^a DFT ^b DFT ^c CC ^d	-1.619 -1.612 - 1.440 -1.540	288 262	299 271	379 321	527 536	645 639	1152 1153	1317 1304	1373 1328	1929 1964	2887 2913	2968 2992	3013 3084
⁵ INT3	PES ^a DFT ^b DFT ^c CC ^d	1.829 1.826 2.037 2.083	124 101	168 172	393 405	462 584	530 629	635 658	662 723	809 991	1375 1298	1661 1509	3072 3053	3082 3155
³ INT3	PES ^a DFT ^b	-0.738 -0.731	125 151	350 311	385 325	594 597	673 647	716 727	806 808	1323 1311	1946 1949	2008 1956	3036 3041	3141 3141

Table S1. ZPE-corrected energies (eV) and vibrational harmonic frequencies (cm⁻¹) of the stationary points along the reaction $Ta^+ + CH_4 \rightarrow TaCH_2^+ + H_2$

	CC ^d	-0.488 -0.595												
¹ INT3	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	-1.678 -1.665 1.420 -1.823	214 283	492 538	543 562	713 659	720 733	782 763	946 894	1314 1341	1922 1957	1939 1973	2547 2629	3157 3213
⁵ INT4	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	0.269 0.246 0.401 0.293	197 164	331 242	394 405	556 499	633 637	782 730	913 871	1357 1310	1422 1339	3009 3038	3099 3149	3479 3413
³ INT4	PES ^{<i>a</i>} DFT ^{<i>b</i>} CC ^{<i>d</i>}	-0.511 -0.571 -0.686	<i>i</i> 160 228	319 309	412 398	685 565	825 655	869 734	996 863	1325 1079	1595 1358	2774 2631	3517 3218	3937 3806
³ INT5	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	-0.859 -0.861 -0.688 -0.901	180 188	408 318	460 519	733 702	750 735	810 837	1085 1068	1288 1272	1704 1686	2781 2748	3002 3041	3163 3138
¹ INT4	PES ^{<i>a</i>} DFT ^{<i>b</i>} CC ^{<i>d</i>}	-0.576 -0.609 -0.748	353 236	409 360	436 521	501 645	719 789	740 818	851 985	1339 1301	1498 1570	2622 2725	3047 3092	3241 3213
¹ INT5	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	-0.605 -0.614 0.168 -0.660	167 174	389 321	588 546	728 736	833 738	871 843	1034 1044	1281 1269	1727 1672	2739 2777	3070 3042	3157 3140
⁵ SP1	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	0.735 0.732 0.832 0.779	i221 i315	<i>i</i> 111 71	227 251	383 338	424 359	1046 1016	1362 1363	1369 1376	1935 1879	3098 3041	3246 3222	3287 3237
³ SP1	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	-0.362 -0.370 -0.190 -0.454	i787 i848	366 381	420 508	912 917	1065 1020	1246 1181	1319 1366	1389 1411	1693 1747	1886 1841	3091 3043	3171 3114
¹ SP1	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	-0.164 -0.161 1.361 -0.221	i627 i692	273 346	381 425	1018 954	1066 1067	1264 1219	1285 1353	1391 1389	1638 1728	1802 1827	3048 3044	3188 3116
⁵ SP2	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	2.093 2.090 2.300 2.128	i834 i854	98 345	168 351	326 443	652 539	677 626	732 698	840 849	1319 1289	1688 1673	3017 3054	3212 3154
³ SP2	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	-0.601 -0.597 -0.227 -0.481	i482 i497	313 304	341 387	474 452	686 666	747 691	823 803	1299 1299	1903 1871	1959 1942	3021 3046	3178 3150
¹ SP2	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	-0.872 -0.863 -0.614 -1.064	<i>i</i> 759 i1018	366 410	632 672	705 725	739 740	847 852	1262 1332	1344 1367	1823 1861	1991 1968	1998 1980	3171 3219
⁵ SP3	PES a	2.009	<i>i</i> 111	75	233	396	500	536	670	812	1298	1906	3064	3168

	DFT ^b DFT ^c CC ^d	1.996 2.224 2.162	<i>i</i> 163	138	298	298	441	515	663	735	1256	1919	3042	3166
³ SP3	PES ^a DFT ^b DFT ^c CC ^d	0.141 0.145 0.027 0.323	i1052 i1188	<i>i</i> 292 344	415 374	563 493	599 535	710 670	892 817	1440 1324	1772 1840	1925 1895	3025 2993	3180 3152
¹ SP3	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	-0.542 -0.563 0.329 -0.701	i846 i1024	313 358	533 523	586 539	702 715	810 819	843 870	1335 1334	1849 1809	2084 2007	2642 2613	3298 3217
⁵ SP4	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	1.216 1.214 1.431 1.233	i685 i770	205 135	420 414	444 513	974 947	987 1037	1216 1190	1371 1343	1523 1545	1790 1789	3038 3066	3089 3173
³ SP4	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	-0.888 -0.884 -0.686 -0.940	i573 i507	240 246	562 569	734 737	846 859	922 904	1040 1049	1289 1282	1869 1865	2099 2046	3003 3042	3148 3138
¹ SP4	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	-0.632 -0.637 0.223 -0.701	i607 i528	231 239	646 598	724 740	896 863	993 939	1034 1035	1292 1279	1933 1867	1974 2031	3057 3041	3141 3137
⁵ TaCH ₂ ⁺ + H ₂	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^{<i>c</i>} CC ^{<i>d</i>}	0.764 0.773 0.854 0.819	398 441	642 634	701 723	1295 1306	3104 3050	3188 3129		4360 4356				
³ TaCH ₂ ⁺ + H ₂	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^{<i>c</i>} CC ^{<i>d</i>} Expt. <i>f</i>	-0.204 -0.177 0.253 -0.297 -0.10 ±0.02	475 569	707 701	872 883	1327 1345	2688 2576	3219 3215		4439 4356				
$^{1}TaCH_{2}^{+}\\+H_{2}$	PES ^{<i>a</i>} DFT ^{<i>b</i>} CC ^{<i>d</i>}	-0.171 -0.162 -0.302	531 562	729 723	902 896	1380 1355	2537 2571	3226 3212		4403 4356				
⁵ HTaCH ⁺ + H ₂	PES ^{<i>a</i>} DFT ^{<i>b</i>} CC ^{<i>d</i>}	1.869 1.941 1.990	496 389	542 506	599 507	751 731	1961 1943	3162 3172		4360 4356				
³ HTaCH ⁺ + H ₂	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	0.860 0.864 0.969 0.793	495 595	634 685	656 707	913 909	2040 1962	3272 3188		4439 4356				
¹ HTaCH ⁺ + H ₂	PES ^{<i>a</i>} DFT ^{<i>b</i>} DFT ^c CC ^{<i>d</i>}	0.282 0.284 0.398 0.017	621 567	770 752	799 757	1069 1020	1963 1931	3180 3188		4403 4356				
^a This	work,	PES. b	This	worl	к, В.	3LYP/	DZ.	^c B3	LYP/I	HW+/	6-311-	++G(3)	df,3p)	$1^{1} d$

CCSD(T)//B3LYP.² ^e Experimental values.^{3 f} Experimental exothermicity.¹

Figure S1. Comparison of geometries in internal coordinates (distances in Å and angles in degrees) for the stationary points on the quintet state. The values correspond to PIP-NN PES, B3LYP/DZ, and B3LYP/HW+/6-311++G(3df,3p)¹ from top to bottom.

Figure S2. Similar to Figure S1 but for the triplet state.

Figure S3. Similar to Figure S1 but for the singlet state.

Figure S4. (a) Fitting error ($E_{\text{fit}} - E_{\text{target}}$, in eV) of the quintet, triplet, and singlet PESs as a function of the DFT energy (eV). (b) Distributions of the absolute fitting errors.

Figure S5. MEPs of the quintet state along (a) SP1, (b) SP2, (c) SP3, and (d) SP4.

Figure S6. Similar to Figure S5 but for the triplet state.

Figure S8. Comparison of geometries in internal coordinates (distances in Å and angles in degrees) for the MECP and ³SP1 at the B3LYP/DZ level.

Figure S9. Correlation diagrams between the impact parameter and the scattering angle at different collision energies.

Figure S10. (a) Experimental velocity distributions of the $TaCD_2^+$ product ion at $E_c = 1.2$ eV. (b) Similar to (a) but for theoretical data. (c) Comparison of experimental integrated angular distributions between $Ta^+ + CD_4$ reaction at $E_c = 1.2$ eV and $Ta^+ + CH_4$ reaction at $E_c = 1.3$ eV. (d) Similar to (d) but for theoretical data. (e) Comparison of experimental distribution of the internal energy between $Ta^+ + CD_4$ reaction at $E_c = 1.2$ eV and $Ta^+ + CH_4$ reaction at $E_c = 1.3$ eV. (f) Similar to (e) but for theoretical data.

Figure S12. 1D cuts for the interaction potential energy surface between Ta^+ and CH_4 (top panels) and between $TaCH_2^+$ and H_2 (lower panels) with other coordinates fixed at their equilibrium values.

References:

- 1. L. G. Parke, C. S. Hinton and P. B. Armentrout, *J. Phys. Chem. C*, 2007, **111**, 17773-17787.
- 2. M. Meta, M. E. Huber, M. Birk, M. Wedele, M. Ončák and J. Meyer, *Faraday Disc.*, 2024, **251**, 587-603.
- 3. A. Kramida, Y. Ralchenko and J. Reader, NIST Atomic Spectra Database (ver. 5.8), Available: https://physics.nist.gov/asd. 2020.