Supporting Information

for

Orthologous Mammalian A3A-Mediated Single-Nucleotide Resolution Sequencing of DNA Epigenetic Modification 5-Hydroxymethylcytosine

Xia Guo,^{1,2,3,#} Jianyuan Wu,^{4,#} Tong-Tong Ji,³ Min Wang,¹ Shan Zhang,³ Jun Xiong,¹ Fang-Yin Gang,¹ Wei Liu,¹ Yao-Hua Gu,^{1,5} Yu Liu,^{1,6,*} Neng-Bin Xie,^{1,*} and Bi-Feng Yuan^{1,2,3,*}

¹ Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.

² Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan 430060, China.

³ College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China.

⁴ Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.

⁵ School of Nursing, Wuhan University, Wuhan 430071, China.

⁶ Hubei Key Laboratory of Tumor Biological Behaviors, Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.

[#] These authors contributed equally to this work.

* Corresponding author:

Bi-Feng Yuan. E-mail: bfyuan@whu.edu.cn

Neng-Bin Xie. E-mail: nengbinxie@whu.edu.cn

Yu Liu. E-mail: liuyu97@whu.edu.cn

Table of Contents

Page S3-S4	In vitro expression and purification of orthologous mammalian A3A proteins;
	Colony sequencing; Enzymatic digestion of DNA; LC-MS/MS analysis.
Page S5	Table S1. Sequences of oligonucleotides.
Page S6	Table S2. Information of orthologous mammalian A3A proteins.
Page S7	Table S3. Sequences of dsDNA.
Page S8	Table S4. The MRM parameters for analysis of nucleosides by LC-MS/MS.
Page S9	Table S5. Information of detected 5hmC sites in genomic DNA of human lung tissue and the adjacent normal tissue and the PCR primers.
Page S10	Figure S1. Multiple sequence alignment of mammalian A3A proteins using CLUSTALW.
Page S11	Figure S2. Expression and purification of hA3A and evaluation of the deaminase activity of hA3A.
Page S12	Figure S3. Expression and purification of cowA3A and evaluation of the deaminase activity of cowA3A.
Page S13	Figure S4. Expression and purification of porpoiseA3A and evaluation of the deaminase activity of porpoiseA3A.
Page S14	Figure S5. Expression and purification of pandaA3A and evaluation of the deaminase activity of pandaA3A.
Page S15	Figure S6. Expression and purification of gmA3A.
Page S16	Figure S7. Expression and purification of dogA3A.
Page S17	Figure S8. LC-MS/MS analysis of dA, dG, and T from gmA3A or dogA3A treated DNA.
Page S18	Figure S9. Evaluation of the deaminase activity of gmA3A toward 5mC and 5hmC at TC and CC sites by colony sequencing.
Page S19	Figure S10. Evaluation of the deaminase activity of dogA3A toward 5mC and 5hmC at GC and AC sites by colony sequencing.
Page S20	Figure S11. Schematic overview of the ACE-seq method.
Page S21	Figure S12. Site-specific and quantitative detection of 5hmC in genomic DNA of lung cancer tissue and the matched adjacent normal tissue by OMA-seq and ACE-seq at chr4:169198493 (TC site).
Page S22	Figure S13. Site-specific and quantitative detection of 5hmC in genomic DNA of lung cancer tissue and the matched adjacent normal tissue by OMA-seq and ACE-seq at chr2:101493058 (CC site).
Page S23	Figure S14. Site-specific and quantitative detection of 5hmC in genomic DNA of lung cancer tissue and the matched adjacent normal tissue by OMA-seq and ACE-seq at chr1:211984122 (GC site).
Page S24	Figure S15. Site-specific and quantitative detection of 5hmC in genomic DNA of lung cancer tissue and the matched adjacent normal tissue by OMA-seq and ACE-seq at chr3:46967292 (AC site).
Page S25	References

Methods

In vitro expression and purification of orthologous mammalian A3A proteins

The sequences for orthologous mammalian A3A proteins are obtained from the NCBI database and are listed in Table S2. For the expression and purification of the human A3A (hA3A) protein, the coding sequence was incorporated into the pET-41a(+) plasmid, which was synthesized de novo by TsingKe Co., Ltd. (Beijing, China). This plasmid includes a human rhinovirus 3C protease (HRV 3C) site between the glutathione S-transferase (GST) tag and the hA3A protein sequence. The resulting plasmid, pET-41a(+)-hA3A, was transformed into the E. coli BL21(DE3) pLysS strain (Sangon). The transformed E. coli cells were cultured in LB medium at 37°C, supplemented with kanamycin (30 µg/mL) and chloramphenicol (10 µg/mL). When the optical density at 600 nm (OD600) reached 0.6 to 0.8, hA3A expression was induced by adding isopropyl- β -D-thiogalactoside (IPTG) to a final concentration of 1 mM and incubating at 25°C for 20 h. The E. coli cells were then harvested by centrifugation at 8,000 rpm for 3 min. For purification of the hA3A protein, the cell pellets were resuspended in PBS buffer and sonicated using an Ultrasonic Homogenizer JY92-IIN (Scientz). The lysate was centrifuged at 8,000 rpm for 20 min to remove cell debris. The resulting supernatant was filtered through a 0.22-µm membrane and incubated with BeyoGold[™] GST-tag Purification Resin (Beyotime) for 2 h. After digestion with HRV 3C protease (Sangon), the supernatant containing hA3A protein was concentrated using a 10-kDa ultrafiltration spin column (Millipore) and equilibrated with a storage solution containing 50 mM Tris-HCl (pH 7.5), 50 mM NaCl, 0.01 mM EDTA, 0.5 mM DTT, and 0.01% Tween-20. The purity of the protein was assessed by SDS-PAGE, and was stored at -80°C after the addition of 25% glycerol. The concentration of the purified protein was quantified using the BCA protein assay kit (Beyotime).

The expression and purification of other mammalian A3A proteins, including cowA3A, pandaA3A, porpoiseA3A, gmA3A, and dogA3A, were conducted in a similar manner to that of hA3A.

Colony sequencing

Colony sequencing was performed as previously described.^{1, 2} Briefly, DNA treated with gmA3A or dogA3A was amplified by PCR and purified using KAPA Pure beads (Roche) according to the manufacturer's protocol. The purified products (50 ng) were then cloned into the pCE2 TA/Blunt-Zero vector (Vazyme Biotech Co., Ltd, Nanjing, China) and transformed into competent *E. coli* cells. Fifty clones were randomly picked up and sequenced, and the percentage of T/(C+T) at specific sites was calculated from the sequence data, providing a measure of gmA3A or dogA3A deamination activity at those sites.

Enzymatic digestion of DNA.

DNA digestion was performed as previously described.³ Briefly, DNA was digested in a 50- μ L solution containing 5 μ L of neutral buffer (500 mM Tris–HCl, 10 mM MgCl₂, 100 mM NaCl, 10 mM ZnSO₄, pH 7.0), 2.5 U of DNase I, 90 U of S1 nuclease, 7.5 U of alkaline phosphatase, and 0.125 U of venom phosphodiesterase I at 37°C for 6 h. The reaction mixture was then diluted with 250 μ L of H₂O and extracted with 300 μ L of chloroform three times to remove proteins. The aqueous layer was lyophilized and reconstituted in 50 μ L of H₂O, followed by LC-MS/MS analysis.

LC-MS/MS analysis

The analysis of nucleosides was conducted using an LC-MS/MS system, which included a Shimadzu 8045 mass spectrometer (Kyoto, Japan) with a Turbo Ionspray electrospray ionization source, coupled with a Shimadzu LC-30AD UPLC system. Separation of the digested nucleosides was achieved on a Shim-pack GIST C18 column (2.1 mm \times 100 mm, 2.0 µm, Shimadzu, Japan) at a flow rate of 0.3 mL/min and a temperature of 40°C. Solvent A (0.05% formic acid) and solvent B (methanol) were used as the mobile phases, with a 15-min gradient for separation as follows: 0-3 min at 5% B, 3-7 min ramping from 5% to 80% B, 7-10 min at 80% B, 10-12 min ramping from 80% to 5% B, and 12-15 min at 5% B. The nucleosides were monitored using multiple reaction monitoring (MRM) in positive-ion mode. The optimized MRM parameters are provided in Table S4.

Oligonucleotides	Sequence (5' to 3')
TC-C	GTATGATTCGAATGAGATGTATTG
CC-C	GTATGAT <u>C</u> GAATGAGATGTATTG
GC-C	GTATGATGCGAATGAGATGTATTG
AC-C	GTATGATACGAATGAGATGTATTG
TC-5mC	GTATGATT5mCGAATGAGATGTATTG
CC-5mC	GTATGATC5mCGAATGAGATGTATTG
GC-5mC	GTATGATG5mCGAATGAGATGTATTG
AC-5mC	GTATGATA5mCGAATGAGATGTATTG
TC-5hmC	GTATGATT5hmCGAATGAGATGTATTG
CC-5hmC	GTATGATC5hmCGAATGAGATGTATTG
GC-5hmC	GTATGATG5hmCGAATGAGATGTATTG
AC-5hmC	GTATGATA5hmCGAATGAGATGTATTG

Table S1. Sequences of oligonucleotides.

Note: the "<u>C</u>" represented 5'-aza-2'-deoxycytidine.

Name	Source	NCBI Reference Sequence	Amino acid composition
hA3A	Homo sapiens	NP_001180218.1	MEASPASGPRHLMDPHIFTSNFNNGIGRHKTYLC YEVERLDNGTSVKMDQHRGFLHNQAKNLLCGF YGRHAELRFLDLVPSLQLDPAQIYRVTWFISWSPC FSWGCAGEVRAFLQENTHVRLRIFAARIYDYDPL YKEALQMLRDAGAQVSIMTYDEFKHCWDTFVD HQGCPFQPWDGLDEHSQALSGRLRAILQNQGN
gmA3A	Chlorocebus aethiops	ADO85881.1 (GenBank)	MDGSPASRPRHLMDPDTFTFNFNNDLSILGRRQT YLCYEVERLDNGTWVPMDERRGFLHNKAKNLP HGDYGCHAELCFLGEVPSWQLDPAQTYRVTWFI SWSPCFSRGCAGQVRAFLQENTHMKLRIFAARIY DSDFLYEKALRTLRDAGAQVSIMTYEEFKHCWD TFVDHQGRPFQPWDGLDEHSQALSGRLRAILQN QGN
cowA3A	Bos taurus	NP_001157408.1	MDEYTFTENFNNQGRPSKTYLCYEMERLDGNAT IPLDEYKGFVRNKGLDQPEKPCHAELYFLGKIRS WNLDRNQHYRLTCFISWSPCYDCAQKLTTFLKE NHHISLHILASRIYTRNHFGCHQSGLCELQAAGA RITIMTFEDFKHCWETFVDHKGKPFQPWEGLNV KSQALCAELQAILKTQQN
porpoiseA3A	Neophocaena asiaeorientalis asiaeorientalis	XP_024617343.1	MEASTAPWTSCLLDENTFTENFMNRLRPRKTYL CYKVEILDGDARVPLDEKKGFVRNKVTDPACPQ QAGPPYCGTLRVEGCQLHTGCPTSSLTPGPCRCY RCSAWNQGANEPGMPRHAECYFLDRIRSWNLD RGLHYRLTCFISWTPCHSCAQELATFLGENSHVS LHIFASRIYRRPGYEAGILTLRAAGAQIAIMTSKE FQHCWENFVDHQERPFRPWVGLEVESQHQCNEL QAILQTQAN
pandaA3A	Ailuropoda melanoleuca	XP_002914629.1	MDAGAEAWDRHLLDEDTFTENFRNDDWPSRTY LCYKVEGPDQGSGVPLGQDKGILHNKPAQGPEP SRHAECYLLEQIQSWNLDPKLHYGVTCFLSWSPC AKCAQKMARFLQENSHVSLKLFASRLYTRERWD EDYKEGLRTLKRAGASIAIMTYREFEHCWKTFVL HDQEGSCFQPWPFLHKESQKFSEKLQAILQGA
dogA3A	Canis lupus familiaris	NP_001333061.1	MEAGPEDWDRHLLDENTFTQNFRNDHNPSKTYL CYQVELSDGSSGVLLDQDKDIVQNEGGGGGQHAE WFLLEHIRSRNLDQKLSYKVTCFLSWTPCEKCAE EIIRFLAKNRHVSLSILASRIYTMGPYVKGLRELY DAGVHISIMTFRDFEYCWQTFVDHQDSPFQPWA DLDRRSQQLSQQLRAILQKEPEGWTSVCL

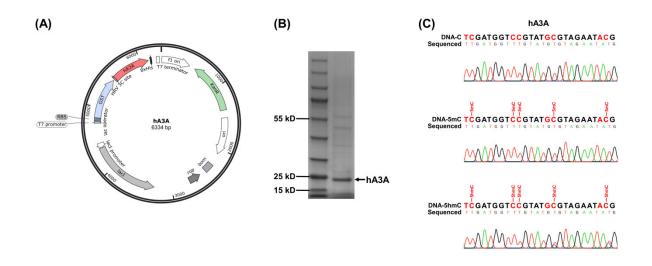
Table S2. Informati	on of orthologous mar	mmalian A3A proteins.

Table S3. Sequences of dsDNA.

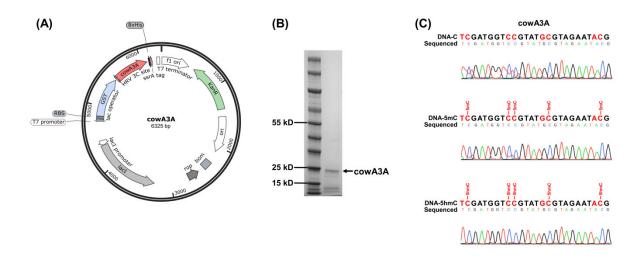
Name	Sequence (5' to 3')					
	AGTGACGCTGAGCTTGACGTCGCGCGATGAGAGGTGATTATG					
	AGTATGTATAGTGTTAGGAAGAGTGTAGTAATAGGATGAAGA					
	TGATTATATGA <mark>TC</mark> GATGGT <mark>CC</mark> GTAT <mark>GC</mark> GTAGAAT <mark>AC</mark> GTTGTTG					
DNA-C	TAGTGATTATAATGGAGTGAGAATGTAGATGAGTGGAGTAGG					
	TAGTAAGATGTAGTGGTGATAGAGAGTAATTGTTAGTGGAAT					
	GTTGG					
	AGTGACGCTGAGCTTGACGTCGCGCGATGAGAGGTGATTATG					
	AGTATGTATAGTGTTAGGAAGAGTGTAGTAATAGGATGAAGA					
	TGATTATATGA <mark>T5mC</mark> GATGGT <mark>5mC5mC</mark> GTAT <mark>G5mC</mark> GTAGAAT <mark>A</mark>					
DNA-5mC	5mCGTTGTTGTAGTGATTATAATGGAGTGAGAATGTAGATGA					
	GTGGAGTAGGTAGTAAGATGTAGTGGTGATAGAGAGTAATTG					
	TTAGTGGAATGTTGG					
	AGTGACGCTGAGCTTGACGTCGCGCGATGAGAGGTGATTATG					
	AGTATGTATAGTGTTAGGAAGAGTGTAGTAATAGGATGAAGA					
	TGATTATATGA <mark>T5hmC</mark> GATGGT <mark>5hmC5hmC</mark> GTAT <mark>G5hmC</mark> GTAGA					
DNA-5hmC	AT <mark>A5hmC</mark> GTTGTTGTAGTGATTATAATGGAGTGAGAATGTAGA					
	TGAGTGGAGTAGGTAGTAAGATGTAGTGGTGATAGAGAGTAA					
	TTGTTAGTGGAATGTTGG					
	ACTAGTAGTGACGCTGAGCTTGACGTCGCGCGATGAGAGGTG					
	ATTATGAGTATGTATAGTGTTAGGAAGAGTGTAGTAATAGGA					
229 h. DNA	TGAAGATGATTATATGA <mark>TC</mark> GATGGT <mark>CC</mark> GTAT <mark>GC</mark> GTAGAAT <mark>AC</mark>					
228-bp DNA	GTTGTTGTAGTGATTATAATGGAGTGAGAATGTAGATGAGTG					
	GAGTAGGTAGTAAGATGTAGTGGTGATAGAGAGTAATTGTTA					
	GTGGAATGTTGGCTCGAG					

Nucleosides	Precursor ion (m/z)	Product ion (m/z)	Q1 Prerod (V)	CE (V)	Q2 Prerod (V)
dG	268.2	152.1	-22	-50	-29
dA	252.2	136.1	-20	-50	-20
dC	228.2	112.1	-11	-50	-20
Т	243.2	127.0	-12	-40	-22
5mC	242.2	126.1	-18	-10	-25
5hmC	258.2	142.1	-19	-9	-24

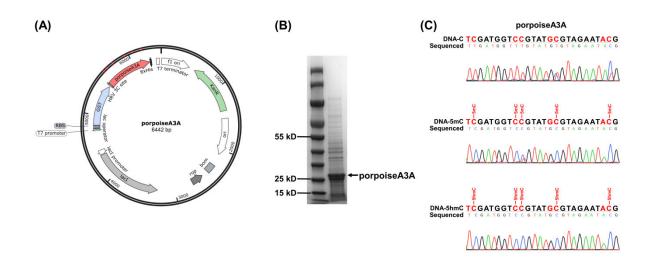
Table S4. The MRM parameters for analysis of nucleosides by LC-MS/MS.

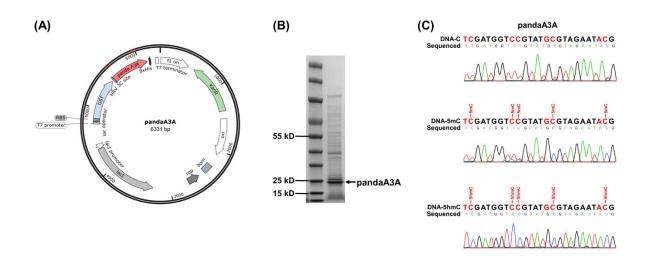

Table S5. Information of detected 5hmC sites in genomic DNA of human lung tissue and the adjacent normal tissue and the PCR primers. The GRCh37 version of human genomic DNA (from NCBI) was used for the genome location.

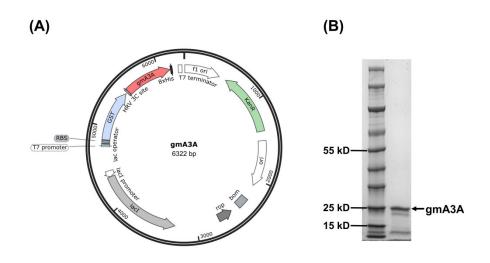
Genome location	Site type	Primers		Sequence (5' to 3')	
		Without gmA3A	Forward	GGTATCCACAGCAGCTTTGGAAGAACTC	
chr4:169198493	TC	treatment	Reverse	GCAAATATATAGCACATCCATAAGCACCT	
cm4.109196493	IC	With gmA3A	Forward	GGTATTTATAGTAGTTTTGGAAGAATTTAGTG	
		treatment	Reverse	ACAAATATATAACACATCCATAAACACCT	
		Without gmA3A	Forward	GGCCTTTCCATTTGGCCATATGTCA	
chr2:101493058	CC	treatment	Reverse	AAACAGATGGGATTAGGCCTGAGCC	
cm2.101495058		With gmA3A treatment	Forward	GTTGTTTAGTTGTATTTGGAGATTATAG	
			Reverse	AAACCACCATAACATACACACTCCT	
	GC	Without dogA3A	Forward	CACTTATTGGGAATAAAAAAAAAAA	
chr1:211984122		treatment	Reverse	CCTGGCCTAAAGTCTAGTATCTGAC	
cm1.211984122		With dogA3A	Forward	GAAGTTAGGAAAAGAAGTTATTGTGAGTTG	
		treatment	Reverse	AACCTACTTCCCTCTATTATCACCTATATAATAAT	
	AC	Without dogA3A	Forward	GGGACTGGCTGCCCTCCAGAGGC	
chr3:46967292		treatment C With dogA3A	Reverse	CCTTGAGCTAAGATGTGCAGCCACTGCTGTGT	
cm3.+0707272			Forward	GGAGGAGAAGTATAGAATGGAGTGTTATTAGGTAGG	
		treatment	Reverse	TCTCTCTAACCTCCAATCCCCTTATCTATCAAAT	

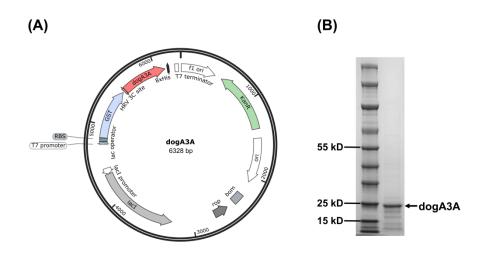

Figure S1. Multiple sequence alignment of mammalian A3A proteins using CLUSTALW. Conserved regions are highlighted in blue, with the intensity of blue indicating the degree of sequence conservation.

		10	20	30 4	0 50	0 6	0 70	80	
hA3A gmA3A cowA3A porpoiseA3A dogA3A pandaA3A	1 MDGSPASR 1 1 MEASTAPW 1 MEAGPEDW	PRHLMDPDTF MDEYTF TSCLLDENTF DRHLLDENTF	FNFNNDLSIL ENFNNQ G ENFMNR L QNFRND H	GRRQ <mark>TYLCY</mark> EV RPSKTYLCYEM RPRKTYLCYKV NPSKTYLCYQV	VERLDNGTWVP MERLDGNATIP VEILDGDARVP VELSDGSSGVL	MDERRGFLH LDEYKGFVR LDEKKGFVRN LDQDKDIVQ	KVTDPACPQQA	GPPYCGTLRVEGCQLH	- 59 - 44 IT 85 - 56
	90	100	110	120	130	140	150 1	160 170	
gmA3A cowA3A porpoiseA3A dogA3A	60	PGPCRCYRCS	<mark>NKAKNLPHG</mark> NKGLDQPE- AWNQGANEPG- NEGGGG	DYGC <mark>HAELCFL</mark> - KPCHAELYFL - MPRHAECYFL QHAEWFLL	GEVPSWOLDP GKIRSWNLDR DRIRSWNLDR EHIRSRNLDQ	AQTYRVTWFI NQHYRLTCFI GLHYRLTCFI KLSYKVTCFL	SWSPCFSRGCA SWSPCYD CA SWTPCHS CA SWTPCEK CA	SEVRAFLQENTHVRLR GQVRAFLQENTHMKLR QKLTTFLKENHHISLH QELATFLGENSHVSLH EEIIRFLAKNRHVSLS QKMARFLQENSHVSLK	1 127 1 108 1 169 1 116
gmA3A cowA3A porpoiseA3A dogA3A	128 FAARIYDS 109 LASRIYTR 170 FASRIYRR 117 LASRIYTM	DFL YEKA NHFG - CHQSG PGY EAG G PYVKG	RT L RD AG AQ V CE L Q A AG AR I L T L R A AG AQ I RE L Y D AG V H I	SIMTYEEFKHO TIMTFEDFKHO AIMTSKEFQHO SIMTFRDFEYO	WDTFVDHQG- WETFVDHKG- WENFVDHQE- WQTFVDHQD-	- RP FQPWDGL - KP FQPWEGL - RP F RPWVGL - SP FQPWADL	DEH <mark>SQ</mark> ALSGRL NVKSQALCAEL EVE <mark>SQ</mark> HQCNEL DRRSQQLSQQL	250 260 RAILQNQGN QAILQNQGN QAILKTQQN RAILQKEPEGWTSVCL QAILQGA	202 185 243 197


Figure S2. Expression and purification of hA3A and evaluation of the deaminase activity of hA3A. (A) Schematic illustration of the pET-41a(+)-hA3A plasmid. (B) SDS-PAGE analysis of the purified hA3A. (C) Characterization of the deaminase selectivity of hA3A towards C, 5mC and 5hmC in different sequence contexts by Sanger sequencing.


Figure S3. Expression and purification of cowA3A and evaluation of the deaminase activity of cowA3A. (A) Schematic illustration of the pET-41a(+)-cowA3A plasmid. (B) SDS-PAGE analysis of the purified cowA3A. (C) Characterization of the deaminase selectivity of cowA3A towards C, 5mC and 5hmC in different sequence contexts by Sanger sequencing.


Figure S4. Expression and purification of porpoiseA3A and evaluation of the deaminase activity of porpoiseA3A. (A) Schematic illustration of the pET-41a(+)-porpoiseA3A plasmid. (B) SDS-PAGE analysis of the purified porpoiseA3A. (C) Characterization of the deaminase selectivity of porpoiseA3A towards C, 5mC and 5hmC in different sequence contexts by Sanger sequencing.


Figure S5. Expression and purification of pandaA3A and evaluation of the deaminase activity of pandaA3A. (A) Schematic illustration of the pET-41a(+)-pandaA3A plasmid. (B) SDS-PAGE analysis of the purified pandaA3A. (C) Characterization of the deaminase selectivity of pandaA3A towards C, 5mC and 5hmC in different sequence contexts by Sanger sequencing.

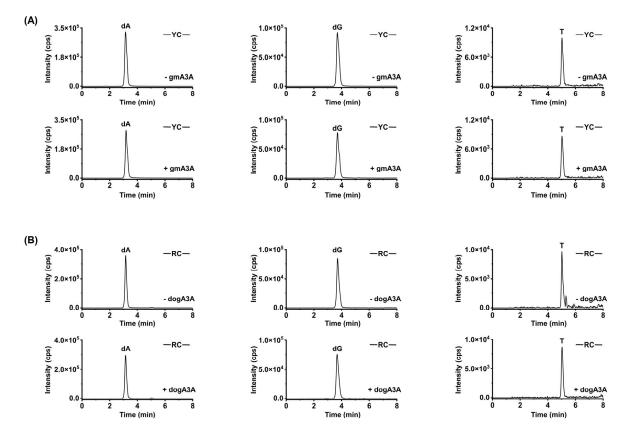
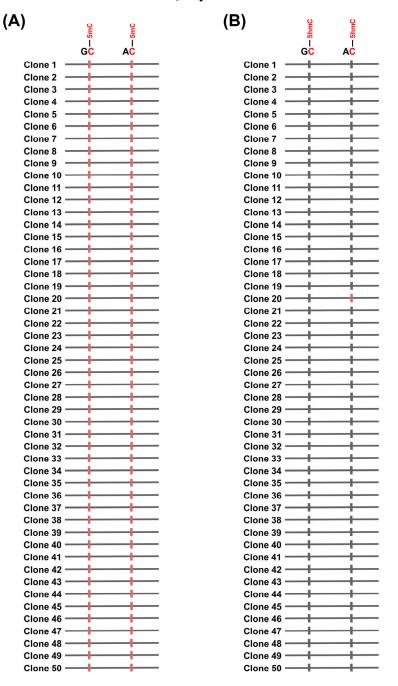

Figure S6. Expression and purification of gmA3A. (A) Schematic illustration of the pET-41a(+)-gmA3A plasmid. (B) SDS-PAGE analysis of the purified gmA3A.

Figure S7. Expression and purification of dogA3A. (A) Schematic illustration of the pET-41a(+)-dogA3A plasmid. (B) SDS-PAGE analysis of the purified dogA3A.

Figure S8. LC-MS/MS analysis of dA, dG, and T from gmA3A or dogA3A treated DNA. (A) Extracted-ion chromatograms of dA, dG, and T in DNA with gmA3A treatment. (B) Extracted-ion chromatograms of dA, dG, and T in DNA with dogA3A treatment.


Figure S9. Evaluation of the deaminase activity of gmA3A toward 5mC and 5hmC at TC and CC sites by colony sequencing. (A) 5mC at TC and CC sites from DNA-5mC were all deaminated and read as T. (B) 5hmC at TC and CC sites from DNA-5hmC were resistant to deamination and were still read as C (only one was deaminated and read as T at CC sites).

(A)	T	() () () () () () () () () ()	D - 5mC - 5mC		(B)
Clone 1			-H		
Clone 2			÷i-		
Clone 3			÷i-		
Clone 4		_	÷ii		
Clone 5			-ii-		
Clone 6			÷i-		
Clone 7			-ii-		
Clone 8			÷i-	_	
Clone 9			÷ii –		
Clone 10			-ii		
Clone 11			÷ii –		
Clone 12			÷ii-		
Clone 13			÷ii		
Clone 14			-ii		
Clone 15			-ii-		
Clone 16			÷i-		
Clone 17			÷i-		
Clone 18			÷ii-		
Clone 19			-ii-		
Clone 20			-ii-		
Clone 21		-	÷ii-		
Clone 22			-ii-		
Clone 22			ii-		
Clone 24			÷ii-		
Clone 25			÷ii –		
Clone 26			-ii-		
Clone 27			÷ii-		
Clone 28			-ii-		
Clone 29			÷ii-		
Clone 30			÷i-		
Clone 31			-ii-		
Clone 32			-ii-		
			÷ii		
Clone 33 Clone 34			-ii		
Clone 35			÷i-		
Clone 36			÷i-		
Clone 37			÷ii-		
Clone 38			÷ii-		
Clone 39			÷i-		
Clone 40			÷i-		
Clone 40			÷i-		
Clone 42			-ii		
Clone 42 Clone 43			÷ii-		
Clone 43			÷ii –		
Clone 44 Clone 45					
Clone 45 Clone 46			÷ii-		
Clone 46 Clone 47			÷ii –		
Clone 47 Clone 48					
Clone 48 Clone 49			-ii	_	
Clone 50			÷ii –		
Cione 30					

5)	ShmC	Shm C Shm C
	_Ï	ĨĨ
	TC	CC
Clone 1		
Clone 2		
Clone 3		
Clone 4		
Clone 5		
Clone 6	_	
Clone 7		
Clone 8		
Clone 9		
Clone 10		
Clone 11		
Clone 12		
Clone 13 Clone 14		
Clone 15		
Clone 16		
Clone 17		
Clone 18 Clone 19		
Clone 19		
Clone 20		
Clone 21		
Clone 22		
Clone 21 Clone 22 Clone 23 Clone 24		
Clone 24		
Clone 25 Clone 26		
Clone 27 Clone 28		
Clone 28 Clone 29		
Clone 29	\Rightarrow	
Clone 30		
Clone 30 Clone 31 Clone 32		
Clone 32		
Clone 33 Clone 34		
Clone 34		
Clone 36	- i-	
Clone 37		
Clone 38		
Clone 39		
01 40		
Clone 41		
Clone 40 Clone 41 Clone 42		
Clone 43		
Clone 43 Clone 44 Clone 45		
Clone 45	—i-	
Clone 46	—i-	
Clone 47		
Clone 48		
Clone 49		
Clone 50		

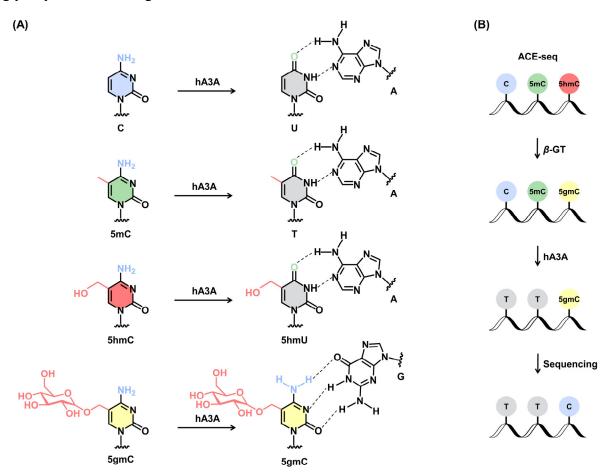

Represent T Represent C

Figure S10. Evaluation of the deaminase activity of dogA3A toward 5mC and 5hmC at GC and AC sites by colony sequencing. (A) 5mC at GC and AC sites from DNA-5mC were all deaminated and read as T. (B) 5hmC at GC and AC sites from DNA-5hmC were resistant to deamination and were still read as C (only one was deaminated and read as T at AC sites).

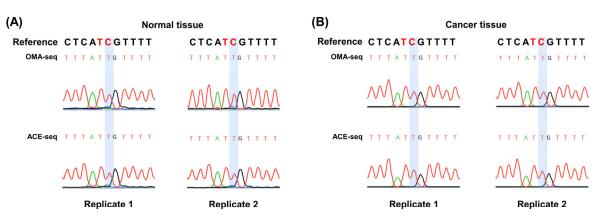


Figure S11. Schematic overview of the ACE-seq method. (A) Deamination of C, 5mC, and 5hmC by hA3A yields U, T, and 5-hydroxymethyluracil (5hmU), respectively, all of which pair with A. Glycosylated 5hmC (β -glucosyl-5-hydroxymethyl-2'-deoxycytidine, 5gmC) is resistant to deamination by hA3A and still pairs with G. (B) hA3A completely deaminates C and 5mC, resulting in T reads. In contrast, 5hmC is protected from deamination by glycosylation, allowing it to be read as C.

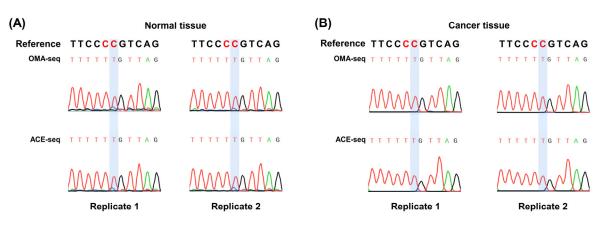


Figure S12. Site-specific and quantitative detection of 5hmC in genomic DNA of lung cancer tissue and the matched adjacent normal tissue by OMA-seq and ACE-seq at chr4:169198493 (TC site). (A) Normal tissue. (B) Cancer tissue.

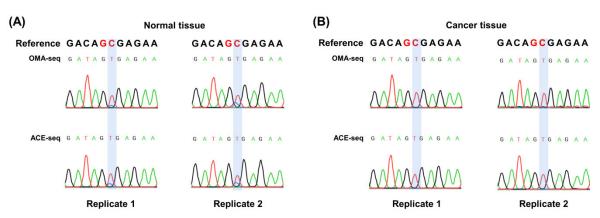

chr4:169198493 TC site

Figure S13. Site-specific and quantitative detection of 5hmC in genomic DNA of lung cancer tissue and the matched adjacent normal tissue by OMA-seq and ACE-seq at chr2:101493058 (CC site). (A) Normal tissue. (B) Cancer tissue.

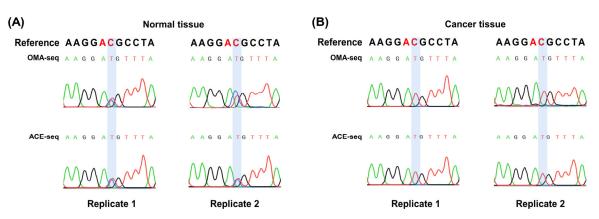

chr2:101493058 CC site

Figure S14. Site-specific and quantitative detection of 5hmC in genomic DNA of lung cancer tissue and the matched adjacent normal tissue by OMA-seq and ACE-seq at chr1:211984122 (GC site). (A) Normal tissue. (B) Cancer tissue.

chr1:211984122 GC site

Figure S15. Site-specific and quantitative detection of 5hmC in genomic DNA of lung cancer tissue and the matched adjacent normal tissue by OMA-seq and ACE-seq at chr3:46967292 (AC site). (A) Normal tissue. (B) Cancer tissue.

chr3:46967292 AC site

References

1. Xiong, J.; Wang, P.; Shao, W. X.; Li, G. J.; Ding, J. H.; Xie, N. B.; Wang, M.; Cheng, Q. Y.; Xie, C. H.; Feng, Y. Q.; Ci, W. M.; Yuan, B. F., Genome-wide mapping of N-4-methylcytosine at single-base resolution by APOBEC3A-mediated deamination sequencing. *Chem Sci* **2022**, *13* (34), 9960-9972.

2. Tang, F.; Liu, S.; Li, Q. Y.; Yuan, J.; Li, L.; Wang, Y.; Yuan, B. F.; Feng, Y. Q., Location analysis of 8-oxo-7,8-dihydroguanine in DNA by polymerase-mediated differential coding. *Chem Sci* **2019**, *10*, 4272–4281.

3. Ma, C. J.; Li, G.; Shao, W. X.; Min, Y. H.; Wang, P.; Ding, J. H.; Xie, N. B.; Wang, M.; Tang, F.; Feng, Y. Q.; Ci, W.; Wang, Y.; Yuan, B. F., Single-Nucleotide Resolution Mapping of N(6)-Methyladenine in Genomic DNA. *ACS Cent Sci* **2023**, *9* (9), 1799-1809.