Supplementary Information:

Chatbot-Assisted Quantum Chemistry for Explicitly Solvated Molecules

Rohit S. K. Gadde,¹ Sreelaya Devaguptam,¹ Fangning Ren,¹ Rajat Mittal,²

Lechen Dong,¹ Yao Wang,¹ Fang Liu^{1*}

¹Department of Chemistry, Emory University, Atlanta, GA 30322, United States ²Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, United States

Table of Contents

Text S1. The mechanism for the intent-based conservations in AutoSolvateWeb	S2
Text S2. Scaling analysis	S4
Text S3. Implicit solvent model results for the solvatochromism lab.	S4
Text S4. Example conversation for the solvatochromism lab.	S5
Text S5. Job queue	S9
Text S6. Installation guide	S10
Text S7. Example conversation between the chatbot and the user	S11
Figure S1. Conversation flow of AutoSolvateWeb chatbot	S16
Figure S2. Installation guide figure	S17
Figure S3. Job queue figures	S18
Figure S4. An example conversation with an intent match for step3.start	S20
Figure S5. An example page setting with allowed intent routes	S21
Figure S6. Two example conversations showing intent match only happen in scope	S22
Table S1. All intents and their training phrases	S23
Table S2. List of all solvents and their force fields in AutoSolvateWeb	S25
Table S3. Description of all files in the AutoSolvateWeb output ZIP	S25
Table S4. Step-1 runtime for selected solutes and solvents	S32
Table S5. List of labels measured as part of load testing	S35
Table S6. Performance results of each load testing	S35
Table S7. Load testing: the max number of users for the label 'confirmParameters'	S36
Table S8. Load testing: the max number of users that can load the web interface.	S36
Table S9. List of all pages used in the conversation of Autosolvate chatbot	S37

^{*} Electronic mail: fang.liu@emory.edu

Text S1. The mechanism for the intent-based conservations in AutoSolvateWeb

The **Method** section succinctly describes the conversation in DialogFlow CX as a collection of flows embedded in a finite state machine (**Figure S1**). Here, we give a more detailed explanation with some examples.

<u>Overview of the conversation flow</u>. As mentioned in the **Result** section, the AutoSolvate command-line-based backend automates the explicit-solvent simulations in three steps (Step-1, Step-2, Step-3). For each step, the command-line interface requires the user to: (1) specify all keywords, (2) assemble the keywords into a Linux command, (3) execute that command, (4) download output. Hence, the conversation flow focuses on using the chatbot to finish these major tasks (and some associated minor tasks) one by one.

Figure S1 shows the conversation flow of the AutoSolvateWeb chatbot as a state flow diagram, where each state is called a "page", focusing on finishing a different task. Some pages are configured to collect information from the end-user, whereas others just print messages to the user. The arrows in the diagram indicate the direction of the conversation flow. For example, the top of Figure S1 is the Start Page, which begins the conversation. Once the user opens the chatbot, the Start Page is launched, and the chatbot greets the user with messages explaining the function of AutoSolvateWeb. Then, since the solute information is the foundation for all simulation steps, the conversation directly follows the arrow to the Solute Step page to specify the solute by specificizing the IUPAC name or by uploading a .xyz file. Hence, the flow bifurcates to the GetSoluteName page or the UploadFile page. If the user chooses to update the .xyz file (via the page UploadFile) and does not provide the chemical name, they will be led to the GetSoluteCharge page to specify the charge because the .xyz file only contains coordinates and does not imply the molecule's net charge. Then, the flow continues to the Use Suggested Params page, where parameters (input keywords) are automatically populated based on the solute structure, and the chatbot asks the user to check whether they would like to use these default parameters or change them. Once all these solute-related tasks are done, the flow sequentially finishes the tasks related to Step-1 (via three pages: Step-1, Step1 End, Proceed to Step 2), Step-2 (via six pages: Step-2, Step-2 Dry Run, Step-2 No Dry Run, Step-2 QM/MM, Step-2 End, Proceed to Step 3), and Step-3 (via two pages: Step-3, Step-3 End). Here, the Step-X page (X=1, 2, or 3) collects the input parameters for that step by asking the user a sequence of questions. The Step-X End page asks the users to confirm the input parameters and post webhooks to the Autosolvate web server, which assembles the corresponding Linux command and executes the AutoSolvate backend to perform the simulation. Finally, the conversation flow will reach one of the ending pages: NormalEnd, *ErrorEnd*, and *End*. A detailed description of each page is given in **Table S9**.

Throughout the conversation flow, the chatbot always proactively asks the user questions to ensure the direction of the conversation follows the diagram (Figure S1). Hence, the user does not need to worry about conceptualizing the conversation to make the chatbot do the simulation. However, this does not mean that the users cannot answer questions. Users can issue instructions to the chatbot to jump to different pages in the conversation flow by triggering intents.

<u>Intents.</u> An *intent* categorizes an end-user's intention for one conversation turn.¹ For our AutoSolvateWeb chatbot, when an end-user enters a message, the Dialogflow CX compares the input to intent training phrases to find the best match. This process is called intent matching.¹ As mentioned in the **Method** section, we have three intents corresponding to restarting each simulation step: "step1.start" "step2.start", and "step3.start". At any conversation stage, if the user enters a message that fuzzy matches the training phrases of these intents, the corresponding intent will be triggered, and the dialog will be switched to the corresponding page. A complete list of the intents and training phrases defined for our chatbot is listed in **Table S1**.

For example, the intent "step3.start" is trained based on the following phrases: "run step-3", "Run Step-3 with following inputs: id first frame:0 interval:1 step size: 10", "Do Microsolvated cluster extraction", "Microsolvated cluster extraction". At any stage, if the user sends a message vaguely matching the meaning of these training phrases, the conversation will be diverted to the *Step-3* page, and the chatbot will start to ask the user questions related to the parameters of Step-3. **Figure S4** demonstrates an example conversation containing a phrase matching this intent. While the user is still at the beginning of the conversation about solutes, if they say something matching the phrase of the intent "step3.start", they immediately turn to Step-3.

However, it is worth noting that an intent match does not happen whenever the user inputs a message. Intent matching can only occur for intents associated with an *intent route*² in *scope*². In plain language, to make the intent match happen, you must have defined some action to take associated with an intent, which is called an *intent route*. Here, the action can be creating a response (sending back a message to the user) or transitioning the current page to another page (like directly going to Step-3). In addition, intent match requires the intent route to be allowed in the current conversation context, which is controlled in the setting of each page. For example, **Figure S5** shows the settings for the *SoluteStep* page in our flow. In this example, the allowed intent routes are "DownloadRequiredFiles" and "UploadRequiredFiles", as listed below "Routes". Additionally, we made the three intents, "step1.start", "step2.start", and "step3.start", in scope globally in our flow (**Figure S1**), so the intent matching can always happen for them on any page even if they are not explicitly listed under "Routes".

In contrast, other intents defined in our chatbot do not have global scope and cannot always be triggered when the user inputs something matching the phrase. For example, the intent "DownloadRequiredFiles" (to choose to download the solute structure file from the PubChem database by name) is only in scope on the *SoluteStep* page. If you are currently on a different page of the conversation (e.g., setting the solute charge on the *GetSoluteName* page), then intent matching cannot happen even if you send the same message "Download the solute file from Pubchem API" (Figure S6).

Finally, intents allow annotations for the training phrases, which control how data is extracted from the end-user expression to populate DialogFlow parameters. As shown in **Table S1**, the "step2.start" intent has some annotated training phrases like "Do MD automation in dryrun mode and run QM/MM step". Here, the highlighted phrases "in dry-run mode" and "run QM/MM step" are annotations. When the user inputs a message this way, it not only triggers the intent route to restart Step-2, but also directly sets the two parameters, "dry-run mode" and "run QM/MM", to True. In this way, the chatbot will not need to ask further questions about the two parameters, and the experienced user will save time interacting with the chatbot.

Text S2. Scaling Analysis

The runtime for Step-1 was accessed on a test set of 10 solute molecules with different input parameters (**Table S4**). The number of heavy atoms in the solute ranged from 1 to 33 (**Figure S3**). 110 test runs were timed sequentially using the job queue on the AutoSolvate server (4-core Virtual Cloud instance with AMD EPYC-Milan Processor and 15GB RAM; Nvidia A100X-8C virtual GPU, 8 GB DRAM). No other jobs were allowed while the test runs were executed. Further, only 1 test run was allowed at a time. Each solute geometry was specified as a solute geometry file ('.xyz' format) included in **Supplementary Data 2**. For closed-shell solutes (with spin multiplicity 1), AutoSolvate drives AmberTools as the backend to calculate the AM1-BCC atomic charges. For open-shell solutes, AutoSolvate drives the GAMESS quantum chemistry package as the backend to calculate the electrostatic potential needed for fitting the restrained electrostatic potential (RESP)³. Lastly, the GAMESS⁴ executable was configured to use 1 process on 1 node with a word limit of 128MW (with WORD size 8 Bytes).

Text S3. Implicit solvent model results for the solvatochromism lab.

The Polarizable Continuum Model (PCM) implemented in TeraChem was used to simulate the solvent effect. All parameters except the total dielectric constant (epsilon) are set as the default one in TeraChem. The structure of Reichardt's dye was optimized at PBE0/6-31G* level of theory with the dielectric constant ε =36.65 (acetonitrile) and 33.00 (methanol), respectively. Then, the HOMO-LUMO gap was computed in different solvents with the corresponding minimized geometry, resulting in 2.420 eV in acetonitrile and 2.415 eV in methanol. The difference between these two gaps is no greater than 0.01 eV, far from reproducing the 0.40 eV change in the experimental absorption spectrum.

To comprehensively consider the response of the solvent during the excitation of the solute, we also utilized the non-equilibrium linear response PCM (neq-LR-PCM)⁵ and non-equilibrium state-specific PCM (neq-SS-PCM)⁶ to evaluate the vertical excitation energy of the first singlet excited state. The time-dependent density functional theory (TDDFT) with the Tamm-Dancoff Approximation was used to evaluate the excited state energy.⁷ Result shows that no matter which formula of PCM is used, the difference between the excitation energy in different solvents is no greater than 0.01 eV, still very far from reproducing the experimental 0.40 eV difference. The corresponding results are summarized in the "result.txt" in the "PCM" folder of **Supplementary Data 3**.

Text S4. Example conversation between the chatbot and the user for the solvatochromism lab.

Step - 1

User Chatbot	Open the chat box of AutoSolvateWeb I can automate initial structure generation for explicitly solvated systems. This includes input file preparation. Additionally automated QM/MM trajectory generation and microsolvated cluster extraction is supported for the explicitly solvated systems.
	Alright, Let's start by specifying the solute file. You can either:
	'I will upload a .xyz file'
	'Download from PubChem'
User ChatBot	I will Download from PubChem (user choose download option) Please enter the IUPAC name of the solute
User	Reichardt's dye
ChatBot	The solute entered is Reichardt's dye. Please confirm if the solute is correct?
User	Yes, it' correct (user confirmed solute name is correct)
ChatBot	You have selected Reichardt's dye as the solute. The following are the recommended solute parameters for this solute:
	Solute Charge: 0
	Solute Spin Multiplicity: 1
	Solvent Cube Size (Angstrom): 33.05
	Do you want to proceed with the above solute parameters?
User	No
Chatbot	Alright. You will be prompted for each parameter required for Step-1.
	What is the charge of the solute?
User	0
Chatbot	A sample solute spin multiplicity is 1. What do you want to use here?
User	1
ChatBot	What is the solvent? Currently, I support the following.

	Water	
	Methanol	
	Chloroform	
	NMA	
	Acetonitrile	
User	Acetonitrile (Input "Methanol" to generate the methanol solvated clu	sters)
ChatBot	What charge method do you want to use for force field fitting?	
		bcc
		resp
User	bcc	
ChatBot	Please provide the solvent box size in Angstrom.	
User	45.0	
ChatBot	All input parameters for Step-1 are validated.	
	The following are the inputs given for Step -1:	
	Solvent: methanol	
	Charge Method for Force Field Fitting: bcc	
	Solute Charge is 0	
	Solute Spin Multiplicity is 1	

Do you want to proceed with the above inputs for Step -1?

Solvent Cube Size is 45.0 Angstrom.

User Yes

ChatBot Job Launched. Job ID: <job-id>

{Button to show output of Step-1}

{Button to download output of Step-1}

Do you want to proceed to Step-2?

Please launch a job for Step-2 only after Step-1 Job completes!

(The user needs to wait for the job to be completed.)

User	Yes
### Step - 2	
ChatBot	Let's start with step -2: MD Automation
Would you lik	te to run the run simulation in the dry run mode?
User	
	Yes
ChatBot	Please provide the temperature in Kelvin.
User	300
Chatbot	Please provide the temperature in bar, to equilibrate during the MM NPT step.
User	1.0
ChatBot	Welcome to MD Automation (Dry Run Mode). This will only generate the commands to run MD programs without executing.
	Now for the Classical MD control options. What do you want the MM minimization steps to be? The default value is 100.
User	1000
Chatbot	What do you want the MM heat up steps to be?
User	1000
Chatbot	What do you want the MM NVE steps to be?
User	0
Chatbot	What should the MM NPT pressure equilibration steps be? By default is 100.
User	500000
Chatbot	Do QM/MM?
User	No
Chatbot	Let me generate MD input files and job scripts.
	You have entered the following inputs as parameters to run MD-Automation. Please confirm if they are right
	Solute Charge: 0 Solute Spin Multiplicity: 1
	Temperature: 300 K Pressure: 1.0 Bar

steps: 100 3. MM NPT pressure equilibration steps: 500000 4. MM NVE production run steps: 0 QM/MM control options - 1. QM/MM Minimization Steps: 0 2. QM/MM heat up steps: 0 3. QM/MM NPT pressure equilibration steps: 0 4. QM/MM NVE production run steps: 0 User Yes Chatbot Job Launched. Job ID: <job-id> {Button to download output of Step-2} Do you want to proceed to Step-3? Please launch a job for Step-3 only after Step-2 Job completes!

Classical MD control options - 1. MM minimization steps: 1000 2. MM heat up

(Note: In the preliminary version of AutoSolvateWeb, due to the computational resource limit, the user may need to run this simulation on their own clusters with the generated input files.)

User

Step - 3

ChatBot	Nc	W
let's start with Microsolvated Cluster Extraction.		
This step requires two files: 1) '.prmtop' file 2) '.netcdf' file. These f	iles	were

created when you ran Step-1 and Step-2. I will load these files for you. You will have to select the 'ID' of the first frame to be extracted, Interval' for cluster extraction and lastly, 'Shell thickness' in Angstrom. Please specify each of them as prompted.

What is the ID of the first frame to extract? The default is 0.

50 (To start extract after 100 ps of equilibration) ChatBot What is the Cluster extraction interval (steps)? Default value is 1. User

User

1000

Yes

ChatBot provide the Sł	nell thickness in Angstrom. Default value is 4.0.	Please
User		
		4.0
ChatBot confirm the at	pove inputs to run Step-3.	Please
User		
		Yes
(User confirm	ed inputs are correct)	
ChatBot	Job Launched. Job ID: <job-id></job-id>	
	{Button to download output of Step-3}	

The AutoSolvateWeb output files are presented in Supplementary Data 3.

Text S5. Job Queue

The job queue (**Figure S3a**) uses Celery,⁸ a Python library that provides task queues for handling the execution of jobs. Celery is chosen for its simplicity and fail-safe execution. Redis,⁹ a prominent key-value database is used to store data related to jobs launched by the user. Celery integrates seamlessly with Redis.

Two task queues, "cpuQueue" and "gpuQueue", handle user-created jobs. The "cpuQueue" is attached to four processes on a 4-core cloud instance, whereas the "gpuQueue" is attached to 1 process on the same cloud instance. However, the user interacts with a single abstracted queue that accepts only two jobs (Figure S3a). When the user submits a job, it is queued to either the "cpuQueue" or "gpuQueue" based on its nature: Step-1 and Step-3 jobs are launched on the "cpuQueue", and Step-2 jobs are launched on the "gpuQueue" due to the requirement for executing TeraChem on GPUs. At any given time, four CPU jobs and one GPU job may run in parallel.

When a user submits a job, Celery creates a unique job ID (**Figure S3b**). Celery stores all job data in the Redis database using this job ID. The job status and output can be retrieved using this unique job ID as a key. Users can also delete a job (**Figure S3c**). However, a job already running may or may not be canceled. Usually, when a user requests the cancellation of a job, the job is marked as "deleted" in the database. When the job reaches the end of the queue, it is ignored. Thus, stopping a job in progress may not be possible. However, the user is safeguarded from this issue. When a user deletes a job, they can immediately add another job to the queue, regardless of the deleted job's status.

Text S6. Installation guide.

- AutoSolvateWeb does not need installation. Users can directly launch the webpage (<u>https://autosolvate.che230059.projects.jetstream-cloud.org</u>) in their web browser.
- Upon entering the website, users should click on the "I am human" button and respond to a hCaptcha question to validate that they are human users (Figure S2).
- Once the validation is completed, users can click on the chatbot icon in the lower right corner of the webpage (**Figure S2**) and start interacting with the chatbot. A video tutorial is available on YouTube (https://youtu.be/kBhugQ6cbc0).

Text S7. Example conversation between the chatbot and the user.

Step - 1

User Chatbot	Open the chat box of AutoSolvateWeb I can automate initial structure generation for explicitly solvated systems. This includes input file preparation. Additionally automated QM/MM trajectory generation and microsolvated cluster extraction is supported for the explicitly solvated systems.
Alright, Let's s	start by specifying the solute file. You can either:
'I will upload	a .xyz file'
'Download fro	om PubChem'
User Chatbot	I will upload a .xyz file (user choose upload option) Sure, Please click the button below to upload the solute file
yes	
User	File Uploaded successfully (sent on user behalf if file uploaded successfully)
ChatBot	Please consider providing the name of the solute. If you provide the name of the solute, I can fill most of the parameters required for step-1. Please note that I only support solute compounds that are available on PubChem API. Would you like to provide a solute name?
User	Yes (User chooses to provide the solute name)
ChatBot	Please enter the IUPAC name of the solute
User	naphthalene
ChatBot	The solute entered is napthalene. Please confirm if the solute is correct?
User	Yes, it' correct (user confirmed solute name is correct)
ChatBot	You have selected napthalene as solute. The following are the recommended solute parameters for this solute:
	Solute Charge: 0
	Solute Spin Multiplicity: 1
	Solvent Cube Size(Angstrom): 25.21
	Do you want to proceed with the above solute parameters?
User	Yes

ChatBot	Alright, you will have to set the solvent and solvent related parameters	s manually.
	What is the solvent? Currently, I support the following:	
	Water	
	Methanol	
	Chloroform	
	NMA	
	Acetonitrile	
User	Water	
ChatBot	What charge method do you want to use for force field fitting?	
		bcc
		resp

User	bcc	
ChatBot	All input parameters for Step-1 are validated.	
	The following are the inputs given for Step -1:	
	Solvent: water	
	Charge Method for Force Field Fitting: bcc	
	Solute Charge is 0	
	Solute Spin Multiplicity is 1	
	Solvent Cube Size is 25.21 Angstrom.	
	Do you want proceed with above inputs for Step -1?	
User	Yes	
ChatBot	Job Launched. Job ID:552109a1-82fa-41a6-bffa-ebff6c5c1017	
n to sh	ow output of Step-1}	{Butto
		{Butto
n to do	ownload output of Step-1}	
	Do you want to proceed to Step-2?	

	Please launch a job for Step-2 only after Step-1 Job completes!	
User	Yes	
### Step - 2		
ChatBot	Let's start with sten -2: MD Automation	
Would you	like to run the run simulation in the dry run mode?	
User	nke to full the full simulation in the dry full mode.	
0301		No
(user replied	d 'No', dry run mode will be disabled, parameters are limited)	
ChatBot	Since you have chosen not run in the 'Dry Run' mode, I have restricted the of steps to be run in the simulation. The following options will be set to the values. Classical MD control options:	ne number he default
	1. MM minimization steps: 100	
	2. MM heat up steps: 100	
	3. MM NPT pressure equilibration steps: 100	
	4. MM NVE production run steps: 0	
	Do you want add QM/MM simulation to Step -2 (MD Automation)?	
User		
		Yes
(QM/MM w	vill be added to Step-2)	
ChatBot		QM/M
M control o	ptions	
	Please select a QM Method. I support the following methods right now:	
	{Button to reply 'B3LYP'}	
	{Button to reply 'HF'}	
User		
		HF
ChatBot	The following are the inputs entered for Step-2. Please confirm if these correct:	inputs are

Classical MD control options - 1. MM minimization steps: 100 2. MM heat up steps: 100 3. MM NPT pressure equilibration steps: 100 4. MM NVE production run steps: 0

QM/MM control options - 1. QM/MM Minimization Steps: 10 2. QM/MM heat up steps: 10 3. QM/MM NPT pressure equilibration steps: 10 4. QM/MM NVE production run steps: 0

User

Yes (User confirmed inputs are correct) Chatbot Job Launched. Job ID: <job-id> {Button to download output of Step-2} Do you want to proceed to Step-3? Please launch a job for Step-3 only after Step-2 Job completes! User ### Step - 3

ChatBot

let's start with Microsolvated Cluster Extraction.

This step requires two files: 1) '.prmtop' file 2) '.netcdf' file. These files were created when you ran Step-1 and Step-2. I will load these files for you.

Now

You will have to select the 'ID' of the first frame to be extracted, 'Interval' for cluster extraction and lastly, 'Shell thickness' in Angstrom. Please specify each of them as promped.

What is the ID of first frame to extract? The default is 0.

User

	0
ChatBot	What
is the Cluster extraction interval (steps)? Default value is 1.	
User	
	2
ChatBot	Please
provide the Shell thickness in Angstrom. Default value is 4.0.	

User

		4.0
ChatBot confirm the	e above inputs to run Step-3.	Please
User		Yes
(User confi	rmed inputs are correct)	
ChatBot	Job Launched. Job ID:82a0fabb-a684-4747-aafd-15ec202fc910	
	{Button to download output of Step-3}	

The downloaded output files for this demo are provided as **Supplementary Data 1**.

Figure S1. Conversation flow of AutoSolvateWeb chatbot. The conversation with the DialogFlow CX virtual agent can be seen as a state flow diagram, where each state is a page.

AutoSolva	ate About Source C	ode Installation	n Instructions Tu	itorials Documentation	How to Cite			
Aut Salvate								
	I am human KCeptha Newsy Terms Newsy Terms Access Autosolvate This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply.							
				9.992 Liu Group				
			ų	9 2023, Liu Group.				
AutoSolva	i te About Source C	ode Installatio	n Instructions Tu	utorials Documentation	How to Cite			
This open-source package enables auto	nated initial structure g	A			ate	itionally automated QM/MM traj	ectory generation and microsolvated	
	0	cluster	r extraction is sup	ported for the explicitly so	olvated systems.	~		
	Job-Id	Step	Status	Output	Download	Delete		
				You have no Jobs				
Solvate bo:	Step 1 and MD parameter gen	eration		Step 2 MD automation		Step 3 Microsolvated cluster extraction	on	
Input				Browse	No file selected.		View	
				© 2023, Liu Group.				

Figure S2. Installation instruction figures.

Figure S3. Job queue figures.

(b) The job queue and the icon to refresh the queue status.

	to the first state of the state					0 4	
→ G is autosolvate.che230059.proj	ects.jetstream-cloud.org					থ ম	7
	AutoSolvate About Source Code Installat	tion Instructions Tutorial	Is Documentation How to Cite				
	۸		^с П	_			
	A	Uter	Selvate				
This open-source package enables automated in	nitial structure generation for explicitly solvated systems. This in	ncludes input file preparat	tion. Additionally automated QM/MM	1 trajectory generation and micro	osolvated cluster extraction is	supported for the explicitly solvated systems.	
	Current Jobs				ə ┥	- click this icon	
	Job-Id	Step	Status Output	Download	Delete	to get updated	
job queue	2d1f5735-2920-4855-b21c-abe6066e1189	Step-1	SUCCESS Show	Download	Delete	queue status	
	d59e7179-82fe-4cf7-b14a-04383545512d	Step-2	PENDING	Download	Delete		
	Step 1 Solvate box and MD parameter generation	MD	Step 2 automation	Step 3 Microsolvated cluster e	straction		
	Step 1 Solvate box and MD parameter generation	MD a	Step 2 automation	Step 3 Microsolvated cluster ea	straction		
	Step 1 Solvate box and MD parameter generation	MD a	Step 2 automation	Step 3 Microsolvated cluster e	xtraction		
Input	Skys 1 Solvate box and MD parameter generation	MD a	Step 2 automation	Step 3 Microsolvated cluster er	straction		
Input	Skyn 1 Solvate box and MD parameter generation	MD a	Step 2 automation Choose File No file c	Step 3 Microsolvated cluster e nosen	xtraction	Inny	
Input	Skys 1 Solvate box and MD parameter generation	MD a	Step 2 automation Choose File No file c Select Solvent	Step 3 Microsolvated cluster e	xtraction	llew .	
Input	Step 1 Solvate box and MD parameter generation	MD	Step 2 Automation Choose File No file c Select Solvent water	Step 3 Microsolvated cluster e	draction	View -	
Input	Step 1 Sofeste box and MD parameter generation	MD (Step 2 automation Choose File No file c Select Solvent water Select charge method for for	Step 3 Microsolvated cluster er nosen	straction	view V	(•
Input	Step 1 Soteste box and MD parameter generation	MD a	Skep 2 automation Choose File No file c Select Solvent water Select churge method for for bot Solute charge	Step 3 Microsolvated cluster e	draction	Viety V	(•

(b) Once a job is launched, its Job ID will be displayed in the chatbox and the job queue.

🗕 🕘 🖉 Autosolvate 🛛 🗙 🚽		
→ ♂ S autosolvate.che230059.proj.	ects.jetstream-cloud.org	\$
AutoSo	vate About Source Code Installation Instructions Tutorials Documentation How to Cite	
This open-source package enables autor	Autor SolvateBot	×
	Current Jobs	Yes
	2d1f5735:2920-4855b21c-abe6066e1189 Step-1 PENDING Show Downlos Job Launched. Job ID:2d1f5735:2920-4855b21c- abe6056e1189	
Solvate	Step 1 Step 2 Download Step-1 Output for Step-1 Download Step-1 Output	
	Do you want to proceed to Step-27 Enter a message	
Input		
	Choose File No file chosen View	
	© 2023, Liu Group.	

(c) The job queue only allows two jobs simultaneously. To start the job for Step-3, one should first delete the old job from Step-1.

Figure S4. An example conversation containing an intent match for the intent "step3.start". The beginning of the conservation is on SoluteStep page, where the chatbot asks the user to choose from the two options to specify their solute. However, the user does not respond to the question but send a message that matches the training phrase of the intent "step3.start". The intent match triggers the route to transition to Step-3, so the chatbot asks the user whether they would like to proceed to Step-3.

SoluteStep	×
Description	
Step-1 starts here. In this page, user h	has to specif
Entry fulfillment	
Alright, Let's start by specifying the so	olute file. Yo
Parameters	+
Routes	+
DownloadRequiredFiles	۵
UploadRequiredFiles	۵
Event handlers	+
sys.no-match-default	۵
Add state handler	

Figure S5. An example page setting with allowed intent routes. The screen snapshot are the settings of the *SoluteStep* page. Allowed intent routes are listed under "Routes" and can be modified by the developer.

Figure S6. Two example conversations showing that intent match only happens when an intent is in scope. (a) The conversation is on the *SoluteStep* page, where the "DownloadRequiredFiles" is an allowed intent route. Hence, the user's message "Download the solute file from Pubchem API" triggers an intent match, and the chatbot transition to the *GetSoluteName* page and send messages accordingly. (b) The conversation is on the *GetSoluteName* page, where the intent route "DownloadRequiredFiles" is not in scope. Hence, the user's message "Download the solute file from Pubchem API" states are intent match and the chatbot transition to the *GetSoluteName* page, where the intent route "DownloadRequiredFiles" is not in scope. Hence, the user's message "Download the solute file from Pubchem API" does not lead to an intent match to transition the page. Instead, the chatbot stays on page and repeats the previous question.

Table S1. List of all intents and their training phrases used in AutoSolvateWeb's chatbot.Highlighted parts in the phrases are annotations, which control how data is extracted from the end-userexpression to populate DialogFlow parameters.

Intent	Description	Training phrases
step1.start	Triggers Step-1	"Restart Step-1"
-		"Start the process"
		"Help me"
		"I need help with input file preparation."
		"Yes. I would like that."
step2.start	Triggers Step-2	"run step-2"
-		"run step 2 with qm"
		"MD Automation"
		"Proceed to Step - 2"
		"Do MD automation in dry-run mode and run
		QM/MM step"
		"MD automation with dry-run mode activated
		and run QM/MM step"
		"MD automation with dry-run activated and run
		QM/MM step"
		"MD automation in normal mode and run
		QM/MM step"
		"Run MD Automation step with normal mode
		deactivated and run QM/MM step"
		"Run MD Automation step with normal mode
		activate and run QM/MM step"
step3.start	Triggers Step-3	"run step-3";
		"Run Step -3 with following inputs: id first
		frame:0 interval:1 step size: 10";
		"Do Microsolvated cluster extraction."
		"Run Step-3"
		"Microsolvated cluster extraction"
default welcome intent	Triggers the basic input	"yes please";
	flow	"repeat once again";
		"please start again"
		"reset everything";
		"start again";
		"re-run";
		"Restart the simulation";
		"I would like that.";
		"Yes. I need help with"
default negative intent	user wants to end the	"goodbye";
	conversation at any point	"No I am Done";
	of time bye saying	"End the session";
	'GoodBye'	"End the chat";
		"No Thanks";
		"Good Bye"
UserQuestion	When user asks a	"Define Solvent Cube Size"
	question about the	"What is Solvent cube size?"
	parameters	"What is spin multiplicity?"

		"Define spin multiplicity" "Define charge of the solute" "What is solute charge?" "Define charge method for force field fitting" "Define Solvent" "Define Solute"
DownloadRequiredFiles	Whenever user has to download the following intent will be triggered. Remember any download request should trigger this intent (not just a specific file type like solute file)	"Download the solute file from Pubchem API" "Download the file" "Download from PubChem API"
step1.new	Gives inputs to complete step 1	 "2 Angstrom" "solvent cube size is 300" "solute spin multiplicity is 20" "solute charge 1" "My solute charge is 100." "Use bcc as charge method for force field fitting." "Use nma as the solvent." "Select methanol as the solvent and resp as a charge method" "Select bcc charge method for force field fitting" "My solvent is water."
TaskFailure		"File could not be uploaded" "File upload failed" "The task failed" "File download failed" "File could not be downloaded"
TaskSuccess		"File was uploaded successfully" "File was downloaded successfully"

solvent name	IUPAC name	chemical structure	force field
water	oxidane	H ^{∠O} `H	TIP3P ¹⁰
methanol	methanol	H₃C-OH	non-polarization
			force field by P.
			Kollman <i>et al.</i> ¹¹
chloroform	chloroform	CI	non-polarization
		CI	force field by P.
			Kollman <i>et al.</i> ¹¹
NMA	N-Methylaniline		non-polarization
		N ^{-CH₃}	force field by P.
		H	Kollman <i>et al.</i> ¹¹
acetonitrile	acetonitrile	N=-CH ₃	six-site model by C.
			Jaime <i>et al.</i> ¹²

Table S2. List of all solvents and their force fields in AutoSolvateWeb

Table S3. Description of all files in the AutoSolvateWeb output ZIP.

name	file type	usage	remarks
	Step-1	generated files	
solute.xyz	Xyz molecular	Storing the element and coordinates	
	structure file	of the solute molecule.	
solute.xyz.pdb	Protein data bank	Solute PDB file converted from the	
	(PDB) format	solute.xyz file by OpenBabel. Atom	
	structure file	names are not uniquely named.	
solute.pdb	Protein data bank	Refined solute PDB file (compared	
	(PDB) format	to solute.xyz.pdb) with unique atom	
	structure file	names for each atom.	
solute.mol2	Mol2 molecular	Storing the molecular information of	
	structure file	the solute, including the element,	
		atom type, coordinates, connectivity,	
		charge, etc.	
solute.frcmod	AMBER force field	Adding the forcefield parameters	
	parameter	that are missing from the original	
	modification file	GAFF forcefield.	
solute.lib	LEaP library file	A human-readable format generated	
		by the LEaP program. Stores the	
		solute information, including the	
		element, atom type, coordinates,	
		connectivity, charge, and GAFF	
		force field parameters.	
solvated.inpcrd	AMBER format	The initial coordinate of the solvated	
	coordinate file	system (solute + solvent box).	

solvated.pdb	Protein data bank	PDB structure file of the solvated	
	format structure file	system (solute + solvent box). It can	
		be viewed by many programs, such	
		as Pymol and Avogadro.	
solvated.prmtop	AMBER format	Storing the charge, topology, and	
	parameter/topology	force field parameters for each bond,	
	file	angle, dihedral, and nonbonded	
		interaction of the whole solvated	
		system.	
resp_scr	folder	This folder contains the temporary	Use "resp"
		output files of the RESP charge	for charge
		fitting of the solute.	fitting
ANTECHAMBER	Antechamber	Output information during running	
_AC.AC	intermediate file	Antechamber	
ANTECHAMBER	Antechamber	Output information during running	
_AC.AC0	intermediate file	Antechamber	
ANTECHAMBER	Antechamber	Output information during running	Use "bcc"
_AM1BCC_PRE.A	intermediate file	Antechamber	for charge
С			fitting
ANTECHAMBER	Antechamber	Output information during running	Use "bcc"
_AM1BCC.AC	intermediate file	Antechamber	for charge
			fitting
ANTECHAMBER	Antechamber	Output information during running	
_BOND_TYPE.AC	intermediate file	Antechamber	
ANTECHAMBER	Antechamber	Output information during running	
_BOND_TYPE.AC	intermediate file	Antechamber	
0			
ATOMTYPE.INF	Antechamber	A log file showing how	
	intermediate file	Antechamber determines the atom	
		type for each atom in solute.	
sqm.in	Antechamber	Performing a minimization using	
	intermediate file	semi-empirical quantum mechanics	
		methods.	
sqm.out	Antechamber	Containing output messages	
	intermediate file	generated during the execution of	
		the sqm.in script.	
sqm.pdb	Protein data bank	Storing the optimized solute	
	(PDB) format	molecule, including elements,	
	structure file	coordinates, connectivity, and	

		residue name. It can be viewed by	
		many programs, such as Pymol and	
		Avogadro.	
leap add solventb	LEaP command	Containing commands to add a	
ox.cmd		solvent box around a solute.	
leap add solventb	LEaP log	Containing output messages	
ox.log	8	generated during the execution of	
0		the leap add solventbox.cmd script.	
leap.cmd	LEaP command	Containing commands to generate	
1		solute.lib and solute.pdb files based	
		on solute.mol2 and solute.frcmod	
		inputs.	
leap savelib.log	LEaP log	Containing output messages during	
	8	the execution of the leap.cmd script.	
leap add solventb	LEaP command	Containing commands to add a	
ox.cmd		solvent box around a solute.	
leap add solventb	LEaP log	Containing output messages	
ox.log	8	generated during the execution of	
8		the leap add solventbox.cmd script.	
leap.log	LEaP log	Containing output messages	
1 0	5	generated during the execution of	
		the leap.cmd script.	
	Step-2	generated files	
runMM.sh	Shell script	Amber commands to run each step	Dry run
	-	of MM	mode
			disabled
runQMMM.sh	Shell script	Amber commands to run each step	Dry run
		of QM/MM	disabled
mmmin.in	Amber format input	Input keywords for a classical	disabled
	file	mechanics minimization run.	
mmmin.out	Amber format	Containing output messages	Dry run
	output file	generated during the execution of	mode
	1	the mmmin.in script.	disabled
mmmin.info	Amber output file	Information about the energy profile	Dry run
		of the system during the MM energy	mode
		minimization.	
mmmin.netcdf	Network common	Containing trajectory file for the	Dry run
	data form (netcdf)	classical mechanics minimization	mode
			uisabieu

	format trajectory file	run. Trajectory write-out frequency: 1 frame per 100 MD steps.	
mmheat.in	Amber format input file	Input keywords for a classical mechanics NVT simulation to gradually heat up to a target temperature.	
mmheat.out	Amber format output file	Containing output messages generated during the execution of the mmheat.in script.	Dry run mode disabled
mmheat.info	Amber output file	Information about the energy profile of the system during the heating process.	Dry run mode disabled
solvated- heat.netcdf	Network common data form (netcdf) format trajectory file	Containing a trajectory file for the classical mechanics NVT simulation to gradually heat up to a target temperature. Trajectory write-out frequency: 1 frame per 100 MD steps.	Dry run mode disabled
mmnpt.in	Amber format input file	Input keywords for a classical mechanics NPT simulation to reach a target pressure.	
mmnpt.out	Amber format output file	Containing output messages generated during the execution of the mmnpt.in script.	Dry run mode disabled
mmnpt.info	Amber output file	Information about the energy profile of the system during the NPT simulation.	Dry run mode disabled
solvated- mmnpt.netcdf	Network common data form (netcdf) format trajectory file	Containing a trajectory file for the classical mechanics NPT simulation to reach a target pressure. Trajectory write-out frequency: 1 frame per 100 MD steps.	Dry run mode disabled
mmnve.in	Amber format input file	Input keywords for a classical mechanics NVE simulation.	
mmnve.out	Amber format output file	Containing output messages generated during the execution of the mmnve.in script.	Dry run mode disabled, NVE step > 0
mmnve.info	Amber output file	Information about the energy profile of the system during the NVE simulation.	Dry run mode disabled

			NVE step, > 0
solvated- mmnve.netcdf	Network common data form (netcdf) format trajectory file	Containing trajectory file for the classical mechanics NVE simulation. Trajectory write-out frequency: 1 frame per 100 MD steps.	Dry run mode disabled, NVE step > 0
qmmmmin.in	Amber format input file	Input keywords for a QM/MM energy minimization using the Amber/TeraChem interface.	
qmmmmin.out	Amber format output file	Containing output messages generated during the execution of the qmmmmin.in script.	Dry run mode disabled
qmmmmin.info	Amber output file	Information about the energy profile of the system during the MM energy minimization.	Dry run mode disabled
solvated- qmmmmin.netcdf	Network common data form (netcdf) format trajectory file	Containing trajectory file for the QM/MM energy minimization. Trajectory write-out frequency: 1 frame per MD step.	Dry run mode disabled
qmmmheat.in	Amber format input file	Input keywords for a QM/MM NVT simulation to gradually heat up to a target temperature using the Amber/TeraChem interface	
qmmmheat.out	Amber format output file	Containing output messages generated during the execution of the qmmmheat.in script.	Dry run mode disabled
qmmmheat.info	Amber output file	Information about the energy profile of the system during the QM/MM heating process.	Dry run mode disabled
solvated- qmmmheat.netcdf	Network common data form (netcdf) format trajectory file	Containing a trajectory file for the QM/MM NVT simulation to gradually heat up to a target temperature. Trajectory write-out frequency: 1 frame per MD step	Dry run mode disabled
qmmmnvt.in	Amber format input file	Input keywords for a QM/MM NVT simulation at a constant temperature using the Amber/TeraChem interface.	

qmmmnvt.out	Amber format	Containing output messages	Dry run
	output file	generated during the execution of	mode
		the qmmmnvt.in script.	disabled
qmmmnvt.info	Amber output file	Information about the energy profile	Dry run
		of the system during the QM/MM	mode
		NVT simulation.	disabled
solvated-	Network common	Containing trajectory file for the	Dry run
qmmmnvt.netcdf	data form (netcdf)	QM/MM NVT simulation at a	mode
	format trajectory	constant temperature. Trajectory	disabled
	file	write-out frequency: 1 frame per	
ammmnye.in	Amber format input	Input keywords for a OM/MM NVE	Dry run
4	file	simulation using the	mode
		Amber/TeraChem interface	disabled,
		Amber/Terachem merrace.	NVE step
			> 0
qmmmnve.out	Amber format	Containing output messages	Dry run
	output file	generated during the execution of	mode
		the qmmmnve.in script.	disabled,
			> 0
gmmmnve.info	Amber output file	Information about the energy profile	Dry run
1	1	of the system during the OM/MM	mode
		NVE simulation.	disabled,
			NVE step
1 (1			>0
solvated-	Network common	Containing trajectory file for the	Dry run
qmmmve.netcal	data form (netcdf)	QM/MM NVE simulation.	disabled
	format trajectory	frame per MD step	NVE sten
	file	nume per wild step	> 0
mm.ncrst	Amber format file	Storing coordinates of the atoms in a	Dry run
		molecular system for initialize or	mode
		restart MM simulations	disabled
qmmm.ncrst	Amber format file	Storing coordinates of the atoms in a	Dry run
		restart OM/MM simulations	disabled
ammm region ndb	Protein data bank	PDB structure file of the OM region	Dry run
Turnin_region.pub	(PDB) format	used in the QM/MM simulation	mode
	structure file		disabled
old.tc job.dat	TeraChem output	A temporary output file of the	Dry run
		gradient evaluation performed by	mode
			disabled

		TeraChem during the QM/MM		
		simulation.		
old.tc_job.inp	TearChem input	A temporary input file of the	Dry run	
		gradient evaluation performed by	mode	
		TeraChem during the QM/MM	disabled	
		simulation.		
inpfile.xyz	Xyz molecular	The input structure for TeraChem	Dry run	
	structure file	gradient calculations performed for	mode	
		QM/MM.	disabled	
ptchrg.xyz	Xyz molecular	Point charges of the MM region	Dry run	
	structure file	used for TeraChem gradient	mode	
		calculations performed for QM/MM.	disabled	
tc_job.tpl	TeraChem input	Containing structure-independent	Dry run	
	file template	input parameters for running	mode	
		TeraChem by the Amber/TeraChem	disabled	
		interface in QM/MM simulations.		
	Step-3	generated files		
solvated-cutoutn-	XYZ molecular	The structure files of the extracted	Can have	
<frame/> .xyz	structure file	microclusters. <frame/> indicates the	multiple	
		frame number in the MM or the	files with	
		QM/MM trajectory. Only elements	different	
		and coordinates are included.	frames,	
			determined	
			by the user	
			input.	

solute	solvent	charge method	solute charge	spin multiplicity	box size (Å)	heavy atoms	Step-1 time (s)
	water	bcc	0	1			17.1
	chloroform	bcc	0	1			15.6
	nma	bcc	0	1	24.94		15.7
	acetonitrile	bcc	0	1			19.9
2-	methanol	bcc	0	1			15.6
Hydroxybenzoic	chloroform	resp	1	2		10	95.2
acid	nma	resp	1	2	32.94		97.0
	methanol	resp	1	2			96.8
	water	resp	0	1	24.94		50.2
	water	resp	1	2	22.04		97.2
	acetonitrile	resp	1	2	32.94		99.7
	water	bcc	0	1	10.62		2.8
	water	resp	0	1	19.63		18.6
	water	resp	1	2	27.63		19.1
	chloroform	bcc	0	1			2.8
	nma	bcc	0	1	10.02		2.8
Ammonia	acetonitrile	bcc	0	1	19.63	1	91.7
	methanol	bcc	0	1			2.9
	chloroform	resp	1	2			18.7
	nma	resp	1	2	27.62		19.0
	acetonitrile	resp	1	2	27.63		24.5
	methanol	resp	1	2			19.2
	water	bcc	0	1			7.8
	chloroform	bcc	0	1			7.9
	nma	bcc	0	1	24.60		7.9
	acetonitrile	bcc	0	1	24.60		12.4
	methanol	bcc	0	1			8.0
Butanoic acid	water	resp	0	1		6	25.4
	water	resp	1	2			33.0
	chloroform	resp	1	2			31.4
	nma	resp	1	2	32.60		32.4
	acetonitrile	resp	1	2			35.6
	methanol	resp	1	2			32.9
	water	bcc	0	1	25.42		10.9
	water	resp	0	1	23.43		112.4
	water	resp	1	2	33.43	1 4	246.9
Caffeine	chloroform	bcc	0	1		14	10.9
	nma	bcc	0	1	25.43		10.9
	acetonitrile	bcc	0	1		16.0	

Table S4. Sample Runtimes for selected solutes and solvents.

		-					
	methanol	bcc	0	1			11.0
	chloroform	resp	1	2	-		244.2
	nma	resp	1	2	33.43		246.1
	acetonitrile	resp	1	2	55.45		248.1
	methanol	resp	1	2			247.3
	water	bcc	0	1	20.02		34.5
	water	resp	0	1	29.95		252.8
	water	resp	1	2	37.93		633.5
	chloroform	bcc	0	1			34.9
	nma	bcc	0	1	20.02		35.3
Catechin	acetonitrile	bcc	0	1	29.95	21	38.1
	methanol	bcc	0	1			36.1
	chloroform	resp	1	2			627.7
	nma	resp	1	2	27.02		631.2
	acetonitrile	resp	1	2	57.95		632.3
	methanol	resp	1	2			633.8
	water	bcc	0	1	20.02		2.8
	water	resp	0	1	20.92		19.5
	water	resp	1	2	28.92		20.5
	chloroform	bcc	0	1		3	2.9
	nma	bcc	0	1	20.02		2.9
Dichloromethane	acetonitrile	bcc	0	1	20.92		60.8
	methanol	bcc	0	1			2.9
	chloroform	resp	1	2		19.9	
	nma	resp	1	2	28.02		20.5
	acetonitrile	resp	1	2	28.92		24.8
	methanol	resp	1	2			21.0
	water	bcc	0	1	20.19		78.9
	water	resp	0	1	30.18		776.2
	water	resp	1	2	38.18		1841.1
	chloroform	bcc	0	1			78.7
	nma	bcc	0	1	20.19		84.0
Epigallocatechin	acetonitrile	bcc	0	1	30.18	33	80.4
ganate	methanol	bcc	0	1			83.1
	chloroform	resp	1	2			1839.2
	nma	resp	1	2	20.10		1842.2
	acetonitrile	resp	1	2	38.18		1840.0
	methanol	resp	1	2			1852.3
	water	bcc	0	1	22.52		2.8
	water	resp	0	1	22.32		19.7
Ethanethiol	water	resp	1	2	30.52	3	21.6
	chloroform	bcc	0	1	22.52		2.9
	nma	bcc	0	1	22.32		2.9

	acetonitrile	bcc	0	1			13.2
	methanol	bcc	0	1			2.9
	chloroform	resp	1	2			20.4
	nma	resp	1	2	20.52		21.2
	acetonitrile	resp	1	2	30.52		25.6
	methanol	resp	1	2			21.9
	water	bcc	0	1	29.45		18.6
	water	resp	0	1	28.43		447.9
	water	resp	1	2	36.45		922.3
	chloroform	bcc	0	1			20.6
	nma	bcc	0	1	20 15		20.6
Porphyrin	acetonitrile	bcc	0	1	28.43	24	22.9
	methanol	bcc	0	1			21.0
	chloroform	resp	1	2			917.7
	nma	resp	1	2	26.45		920.0
	acetonitrile	resp	1	2	30.45		923.2
	methanol	resp	1	2			922.3
	water	bcc	0	1			5.3
	chloroform	bcc	0	1			5.4
	nma	bcc	0	1	26.15		5.6
	acetonitrile	bcc	0	1	20.15		11.1
Taistiant	methanol	bcc	0	1			5.7
l riethyl phosphite	water	resp	0	1		10	54.6
phospinic	water	resp	1	2			79.3
	chloroform	resp	1	2			76.7
	nma	resp	1	2	34.15		78.0
	acetonitrile	resp	1	2			80.3
	methanol	resp	1	2			79.4

_
Description
Initial GET request to access the website. The website's
HTML, javascript and CSS files are downloaded.
API call to initiate handshake with vritual agent
Send 'Download from Pubchem' as user response option to
agent
Send 'Naphthalene' as solute name
Confirm 'Naphthalene' as solute name
Confirm auto-sugggested parameters
Select the solvent
Select the charge mehtod
Confirm all parameters for Step 1 and submit the job.

Table S5. List of labels measured as part of load testing

Table S6. Performance results of each Load Testing

Labal	User		response	time (ms)		Eman 0/
Laber	Count	Avg.	Min.	Max	Std.	EIFOF 70
IntialPing	120	340	273	833	71	0
InitialGreeting	120	269	151	480	66	0
Pubchem	120	242	132	376	46	0
Naphthalene	120	244	131	427	55	0
soluteConfirmation	120	822	380	1853	412	0
confirmParameters	120	230	148	399	42	0
Solvent	120	761	173	1109	212	0
ChargeMethod	120	676	139	1087	240	0
Step1Confirm	120	221	134	335	41	0

Labol	User		response time (ms)				
Laber	Count	Avg.	Min.	Max	Std.	EIIOI 70	
confirmParameters	50	192	126	303	36.74668	0	
confirmParameters	120	194	128	288	37.76709	0	
confirmParameters	150	234	131	491	69.72391	0	
confirmParameters	200	249	97	544	94.63126	0.14	

Table S7. Performance results of each Load Testing – the maximum number of users for the label 'confirmParameters'

Table S8. Performance results of each Load Testing – maximum number of concurrent users that can load the web interface.

Labol	User	response time (ms)				Empor 0/
Laber	Count	Avg.	Min.	Max	Std.	EIIOI 70
IntialPing	1000	910	374	1684	280.1682	0
IntialPing	9956	7509	648	21075	4186.465	0
IntialPing	25000	10096	5	35004	7581.764	0.4

Page Name	Form Parameters	Routes
Start Page	None	• SoluteStep.
SoluteStep	None	 Intent-based route to 'UploadFile'. Intent-based route to 'GetSoluteName'.
UploadFile	None	 Intent based route to 'Step-1' if uploaded successfully. Intent based route to 'SoluteStep' if upload fails.
GetSoluteName	 Solute Name Confirmation (for Solute Name: Boolean 'Yes' or 'No') 	 Condition-based route to 'Use Suggested Params', if the 'Confirmation' parameter is 'Yes'. Condition-based route to 'GetSoluteName', if the 'Confirmation' parameter is 'No'.
GetSoluteCharge	1) Solute Charge	• Condition-based route to fill solute parameters from the uploaded file.
Use Suggested Params	Input Parameters for Step – 1 (e.g., solvent name, solute charge)	• Condition-based route to reset all parameters for Step-1.
Step-1	Input Parameters for Step – 1 (e.g., solvent name, solute charge)	 Condition based route to 'Step-1 End' if webhook call validates the input parameters as valid. Condition based route to 'Error End' if webhook call validates the input parameters as invalid.
Step-1 End	None	• Condition based route to 'Proceed to Step 2'. Routed from webhook call.
Proceed to Step 2	1) Confirmation (to continue the conversation)	 Condition-based route to 'Step-2'. Condition-based route to 'NormalEnd'.

Table S9. List of all pages and form parameters filled in during the conversation of Autosolvate

 Chatbot

table continued....

Step-2	 Temperature (Kelvin) Pressure (Bar) Dry Run Mode 	 Condition-based route 'Step-2 Dry Run' if Dry Run Mode is True. Condition-based route 'Step-2 No Dry Run' if Dry Run Mode is False. 		
Step-2 Dry Run	 Input Parameters for classical MM Step Boolean parameter for QM/MM 	 Condition-based route to 'Step-2 QM/MM', if the Boolean parameter for 'QM/MM' is true. Condition-based route to 'Step-2 End', if the Boolean parameter for 'QM/MM' is false. 		
Step-2 No Dry Run	1) Boolean parameter for QM/MM	 Condition-based route to 'Step-2 QM/MM', if the Boolean parameter for 'QM/MM' is true. Condition-based route to 'Step-2 End' if the Boolean parameter for 'QM/MM' is false. 		
Step-2 QM/MM	 Input Parameters for QM/MM Step (User will be prompted only in dry run mode.) Confirmation for all parameters 	• Condition-based route based on user confirmation of all parameters.		
Step-2 End	None	• Condition-based route to 'Proceed to Step 3' or 'ErrorEnd'. Routed from the webhook call.		
Proceed to Step 3	1) Confirmation (to continue the conversation)	 Condition-based route to 'Step-3'. Condition-based route to 'NormalEnd'. 		
Step-3	 Input Parameters for Cluster Extraction Step. Confirmation for all parameters 	 Condition-based route to 'Step-3 End', if all parameters are valid and the user confirms. Condition-based route. 		
Step-3 End	None	 Condition based route to 'NormalEnd' or 'ErrorEnd'. Routed from webhook call. 		
NormalEnd	None	To conversation 'END'.		
ErrorEnd	None	To conversation 'END'.		
END	None	None.		

REFERENCES

- Google LLC, DIalogFlow Documentation, Intents, <u>https://cloud.google.com/dialogflow/cx/docs/concept/intent</u>, (accessed 12/22, 2024).
 Coogle LLC, DialogFlow Documentation, State Handland
- 2. Google LLC, DialogFlow Documentation, State Handlers, <u>https://cloud.google.com/dialogflow/cx/docs/concept/handler</u>, (accessed 12/22, 2024).
- 3. C. I. Bayly, P. Cieplak, W. Cornell and P. A. Kollman, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, *J. Phys. Chem.*, 1993, **97**, 10269-10280.
- F. Zahariev, P. Xu, B. M. Westheimer, S. Webb, J. Galvez Vallejo, A. Tiwari, V. Sundriyal, M. Sosonkina, J. Shen, G. Schoendorff, M. Schlinsog, T. Sattasathuchana, K. Ruedenberg, L. B. Roskop, A. P. Rendell, D. Poole, P. Piecuch, B. Q. Pham, V. Mironov, J. Mato, S. Leonard, S. S. Leang, J. Ivanic, J. Hayes, T. Harville, K. Gururangan, E. Guidez, I. S. Gerasimov, C. Friedl, K. N. Ferreras, G. Elliott, D. Datta, D. D. A. Cruz, L. Carrington, C. Bertoni, G. M. J. Barca, M. Alkan and M. S. Gordon, The General Atomic and Molecular Electronic Structure System (GAMESS): Novel Methods on Novel Architectures, *Journal of Chemical Theory and Computation*, 2023, **19**, 7031-7055.
- 5. R. Cammi and B. Mennucci, Linear response theory for the polarizable continuum model, *The Journal of Chemical Physics*, 1999, **110**, 9877-9886.
- 6. R. Improta, V. Barone, G. Scalmani and M. J. Frisch, A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution, *The Journal of Chemical Physics*, 2006, **125**, 054103.
- 7. S. Hirata and M. Head-Gordon, Time-dependent density functional theory within the Tamm–Dancoff approximation, *Chemical Physics Letters*, 1999, **314**, 291-299.
- 8. A. Solem, Celery Distributed Task Queue.*Journal*.
- 9. S. Sanfilippo, Redis The Real-time Data Platform. Journal.
- W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, Comparison of simple potential functions for simulating liquid water, *J. Chem. Phys.*, 1983, **79**, 926-935.
- 11. P. Cieplak, J. Caldwell and P. Kollman, Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform, *J. Comput. Chem.*, 2001, **22**, 1048-1057.
- 12. X. Grabuleda, C. Jaime and P. A. Kollman, Molecular dynamics simulation studies of liquid acetonitrile: New six-site model, *J. Comput. Chem.*, 2000, **21**, 901-908.