Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

This version published 18/12/2024 replaces the previous version published 23/09/2024. Figure S16 and S17 are replaced with a corrected version.

Electronic supplementary information (ESI)

Enhanced catalytic activity of solubilised species obtained by countercation exchange of K{Co^{II}_{1.5}[Fe^{II}(CN)₆]} for water oxidation

Yusuke Seki,^a Takashi Nakazono,^b Hiroyasu Tabe,^c and Yusuke Yamada*^{ab}

^aDepartment of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.

^bResearch Center for Artificial Photosynthesis, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan.

^cInstitute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.

*E-mail: ymd@omu.ac.jp

Supporting table

Table S1. Chemical compositions of $(Me_4N){Co^{II}_{1.5}[Fe^{II}(CN)_6]}$ { $(Me_4N)Co-Fe$ } and K{Co^{II}_{1.5}[Fe^{II}(CN)_6]} {(K)Co-Fe} determined by X-ray fluorescence (XRF) measurements.

Cyano-bridged coordination	Observed Molar Ratio		
polymer	K/Fe	Co/Fe	CI/Fe
(Me ₄ N)Co–Fe	0.05	1.4	0.07
(K) Co–Fe	0.98	1.4	-

Supporting figures

Fig. S1 X-ray photoelectron spectra of (a) $(Me_4N){Co^{II}_{1.5}[Fe^{II}(CN)_6]}$ { $(Me_4N)Co-Fe$ } and (b) K{Co^{II}_{1.5}[Fe^{II}(CN)_6]} {(K)Co-Fe} in Co 2p, Fe 2p, and N 1s regions. *Attributed to Me₄N⁺ ion.

Fig. S2 Diffused reflectance UV-vis spectra of (a) $(Me_4N){Co^{II}_{1.5}[Fe^{II}(CN)_6]} {(Me_4N)Co-Fe}$ and (b) K{Co^{II}_{1.5}[Fe^{II}(CN)_6]} {(K)Co-Fe}. The numbers indicate the wavelengths of absorption maxima.

Fig. S3 Nitrogen adsorption (black circles)-desorption (red squares) isotherms of (a) $(Me_4N){Co^{II}_{1.5}[Fe^{II}(CN)_6]} {(Me_4N)Co-Fe} and (b) K{Co^{II}_{1.5}[Fe^{II}(CN)_6]} {(K)Co-Fe} at -196^{\circ}C.$

Fig. S4 Infrared (IR) spectra of (a) $(Me_4N){Co^{II}_{1.5}[Fe^{II}(CN)_6]} {(Me_4N)Co-Fe}$, (b) $K{Co^{II}_{1.5}[Fe^{II}(CN)_6]} {(K)Co-Fe}$, and (c) Me_4NCI . The spectra were obtained by the IR spectrometer with a diamond ATR attachment.

Fig. S5 (a) Transmission electron microscope (TEM) images of (a) (Me₄N){Co^{II}_{1.5}[Fe^{II}(CN)₆]} {(Me₄N)Co-Fe} and (b) K{Co^{II}_{1.5}[Fe^{II}(CN)₆]} {(K)Co-Fe}. (c) Size distribution of (Me₄N)Co-Fe (solid line) and (K)Co-Fe (dotted line) determined by dynamic light scattering (DLS).

(b)

Fig. S6 Cyclic voltammetry of (i) (Me_4N) {Co^{II}_{1.5}[Fe^{II}(CN)₆]} { (Me_4N) Co–Fe, 1.0 mM_{Fe}} and (ii) blank in a phosphate buffer (pH 7.0, 50 mM, 3.0 mL) recorded at the sweep rate of 100 mV s⁻¹. The working, counter, and reference electrodes were a glassy carbon, a Pt wire, and SCE, respectively.

Fig. S7 (a) Powder X-ray diffraction (PXRD) patterns of (i) $K{Col_{1.5}[Fe^{II}(CN)_6]} {(K)Co-Fe}$ and (ii) water-dispersible (K)Co-Fe (modified with $[Fe^{II}(CN)_6]^{4-}$). (b) TEM image of waterdispersible (K)Co-Fe. (c) water-dispersible (K)Co-Fe (modified with $[Fe^{II}(CN)_6]^{4-}$) in water.

Fig. S8 Repetitive experiments of photocatalytic water oxidation under photoirradiation of a phosphate buffer (pH 8.0, 50 mM, 2.0 mL) containing Na₂S₂O₈ (5.0 mM, 10 µmol), [Ru(bpy)₃]SO₄ (0.30 mM, 0.6 µmol) and (Me₄N){Co^{II}_{1.5}[Fe^{II}(CN)₆]} {(Me₄N)**Co–Fe**}, 80 µM_{Fe}} with an LED light. A small aliquot (100 µL) of (a) Na₂S₂O₈ (10 µmol) and [Ru(bpy)₃]SO₄ (0.6 µmol) and (b) Na₂S₂O₈ (10 µmol) was added to the reaction solution after each run.

Fig. S9 Time courses of O₂ evolution under visible-light irradiation of a phosphate buffer (pH 8.0, 50 mM, 2 mL) containing Na₂S₂O₈ (5.0 mM), [Ru(bpy)₃]SO₄ (0.30 mM) and a catalyst (80 μ M_{Fe}): (a) (Me₄N){Co^{II}_{1.5}[Fe^{II}(CN)₆]} {(Me₄N)**Co–Fe**, closed square}, (b) Co^{II}(NO₃)₂ (open square), or (c) K₄[Fe^{II}(CN)₆] (open triangle) with LED light.

Fig. S10 Thermal water oxidation using (Me_4N) {Co^{II}_{1.5}[Fe^{II}(CN)₆]} {(Me_4N)**Co-Fe**, 120 μ M_{Fe}} and [Ru^{III}(bpy)₃]³⁺ (4 μ mol) in a phosphate buffer (pH 8.0, 50 mM) and H₂SO₄ aq. (50 mM) (19:1 (v/v), 2.0 mL).

Fig. S11 Time course of O₂ evolution under visible-light irradiation (λ = 450 nm) of a phosphate buffer (pH 8.0, 50 mM, 2 mL) containing Na₂S₂O₈ (5.0 mM), [Ru(bpy)₃]SO₄ (0.30 mM) and (Me₄N){Co^{II}_{1.5}[Fe^{II}(CN)₆]} {(Me₄N)**Co–Fe**, 80 µM_{Fe}} in a quartz cuvette (light path length: 1.0 cm).

Fig. S12 (a) Time courses of O₂ evolution under visible-light irradiation of a phosphate buffer (pH 8.0, 50 mM, 2.0 mL) containing Na₂S₂O₈ (5.0 mM), [Ru(bpy)₃]SO₄ (0.30 mM) and (Me₄N){Co^{II}_{1.5}[Fe^{II}(CN)₆]} {(Me₄N)**Co–Fe**} (80 μ M_{Fe}; closed diamond, 70 μ M_{Fe}; closed circle, 40 μ M_{Fe}; closed square, 30 μ M_{Fe}; closed triangle, 20 μ M_{Fe}; closed diamond, 10 μ M_{Fe}; open circle, 5 μ M_{Fe}; open square, no catalyst; open triangle) with LED light. (b) Plots of initial O₂-evolution rates at various concentrations of (Me₄N)**Co–Fe**. The initial rates were calculated by the slopes of the plots from 1 to 3.5 min.

Fig. S13 (a) Time courses of O₂ evolution under visible-light irradiation of a phosphate buffer (pH 8.0, 50 mM, 2.0 mL) containing Na₂S₂O₈ (5.0 mM), [Ru(bpy)₃]SO₄ (0.30 mM) and K{Co^{II}_{1.5}[Fe^{II}(CN)₆]} {(K)**Co–Fe**: 80 μ M_{Fe}, closed circle; 120 μ M_{Fe}, closed square; 160 μ M_{Fe}, closed triangle; 240 μ M_{Fe}, open circle} with LED light. (b) Initial O₂-evolution rates depending on the concentrations of (K)**Co–Fe**. The initial rates were calculated from the slopes of the plots in (a) from 1 to 3.5 min.

Fig. S14 Absorbance at 615 nm as a function of the concentrations of $(Me_4N)Co-Fe$ in the mixed solution of water and acetonitrile [1:39 (v/v)].

Fig. S15 Electrospray ionization mass spectrum (ESI-MS) measured for a mixed solution of water and acetonitrile [1:39 (v/v)] without solute (background).

Fig. S16 Isotope patterns (black solid lines) of ESI-MS peaks (negative mode) appeared around (a) 1228.58, (b) 1310.53, and (c) 1363.60 at the measurements of a mixed solution of water and acetonitrile [1:39 (v/v)] containing (Me₄N){Co^{II}_{1.5}[Fe^{II}(CN)₆]} {(Me₄N)**Co–Fe**}. The simulated patterns (red dotted lines) were calculated under the assumption that a couple of species containing decanuclear metal complex, Me₄N⁺, and extra-ligands such as H₂O, OH⁻, CN⁻, and Cl⁻ ions were concomitantly generated.

Fig. S17 Isotope patterns (black solid lines) of ESI-MS peaks (negative mode) appeared around (a) 1193.46, (b) 1178.53, and (c) 1093.37 at the measurements of a mixed solution of water and acetonitrile [1:39 (v/v)] containing (Me₄N){Co^{II}_{1.5}[Fe^{II}(CN)₆]} {(Me₄N)**Co–Fe**}. The simulated patterns (red dotted lines) were calculated under the assumption that a couple of species containing {Co₅[Fe(CN)₆]₄}^{n–} or {Co₅[Fe(CN)₆]₃}^{n–} derived from {Co₆[Fe(CN)₆]₄}^{n–}, Me₄N⁺, and extra-ligands such as H₂O and OH[–], were concomitantly generated.

Fig. S18 Pair distribution function (PDF) of (a) (Me_4N) {Co^{II}_{1.5}[Fe^{II}(CN)₆]} {(Me_4N)Co-Fe} and (b) (Me_4N)Co-Fe in water. *Attributed to water.^[S1]

References

S1 A. H. Narten and W. E. Thiessen, L. Blum, *Science* 1982, **217**, 1033.