Supporting Information

Self-Powered Triboelectric Nanogenerator with Enhanced Surface Charge Density for Dynamic Multidirectional Pressure Sensing

Jiaqi Wu^{a,b}, Yu Zhang^c, and Xin Ting Zheng^{a,} *

^{a.} Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore

^{b.} NUS High School of Mathematics and Science, 20 Clementi Avenue 1, Singapore 129957, Republic of Singapore

^{c.} Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore

Supporting Figures

Figure S1. COMSOL Multiphysics interface for simulation of von Mises Stress within cuboid sensing structure during triboelectrification.

Settings							Graphics Convergence Plot 1 ×	
Property Group							Q Q Q + + H V + = + = + = + = + = + = + = + = + = +	a)
Label: Mooney-Rivli	n					,	9 mm	
 Output Propertie 	es							
Property	Variable	Expression	Unit	Size	Info		8	
Model parameters	C10	0.27[MPa]	Pa	1x1			7	
Model parameters	C01	0.0108[MPa]	Pa	1x1				
Model parameters	C11	19	Pa	1x1				
Model parameters	C20		Pa	1x1			6	
Model parameters	C02		Pa	1x1				1
Model parameters	C21		Pa	1x1			5	1
Model parameters	C12		Pa	1x1				1
Model parameters	C30		Pa	1x1			4	
	600		•					
🛯 (i) 📫 🔹							2	
Expression:							5	
Model Inputs							2	
Physical quantity			Variable					
							0	
						-	-1	
↑ ↓ 🗮 +								
 Local Properties 							-2	
cocarrioperties								
Name Ext	pression	Unit	Description					
		onic	2					
						-		n
							-2 0 2 4 6 8	10

Figure S2. COMSOL Multiphysics interface for simulation of von Mises Stress within

cone sensing structure during triboelectrification.

Figure S3. Quantitative comparison for sensitivity of C_2P_0 , C_0P_6 and C_2P_6 (n=3). Each data point represents mean \pm SD. Two-sample t-test: *p < 0.05, **p < 0.01, ***p < 0.001.

Figure S4. Linear regression for V_{oc} responses of 2 wt% CB and 4 wt% PVP dopedSTEPs (C2P4) with cone sensing structure from 0 to 70 mmHg (n = 5). Each data pointrepresentsmean \pm SD.

Figure S5. V_{oc} responses from 0 to 100 mmHg for cone structure STEPs (n = 5) with (a) 2 wt% CB doped, (b) 6 wt% PVP doped and (c) 2 wt% CB and 4 wt% PVP codoped. Each data point represents mean \pm SD.

Supporting Tables

Sensor	Sensitivity / mV mmHg ⁻¹
	1.22 + 0.04
C ₀ P ₀ -cone	1.33 ± 0.04
C ₂ P ₀ -cube	2.15 ± 0.03
C ₂ P ₀ -cone	2.49 ± 0.02
C ₄ P ₀ -cone	1.91 ± 0.05
C ₆ P ₀ -cone	1.58 ± 0.02
C ₈ P ₀ -cone	1.43 ± 0.01
C ₀ P ₂ -cone	1.62 ± 0.05
C ₀ P ₄ -cone	2.16 ± 0.02
C ₀ P ₆ -cone	2.36 ± 0.03
C ₀ P ₈ -cone	1.91 ± 0.01
C ₂ P ₂ -cone	2.49 ± 0.04
C ₂ P ₄ -cone	2.61 ± 0.02
C ₂ P ₆ -cone	2.27 ± 0.02
C ₂ P ₈ -cone	1.77 ± 0.02
C ₂ P ₁₀ -cone	1.56 ± 0.04
$4 C_2 P_0$ -cones	3.14 ± 0.02

Table S1. Summary of the pressure-sensing results of the STEPs

Table S2. Comparison of pressure-sensing sensitivity with other reported sensors following a simple fabrication process with not more than 4 layers and covering the clinically relevant pressure range of $0 - 70 \text{ mmHg}^{1-7}$

	Papers	Layers	Sensing Range / mmHg	Sensitivity / mV mmHg ⁻¹
1	This work	3	0.0 - 70.0	2.61
2	ACS Appl. Mater. Interfaces 2022, 14 , 17, 20122– 20131 ⁸	3	37.5 - 562.5	0.391
3	<i>Adv. Funct. Mater.</i> 2020, 30 , 2002868 ⁹	2	11.3 – 225.0	0.306
4	Small Methods, 2022, 6 , 2101051 ¹⁰	4	0.0 - 750.1	0.203
5	19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017, pp. 1025-1028 ¹¹	3	0.0 - 37.5	0.134

References:

- 1. T. Chen, Q. Shi, Z. Yang, J. Liu, H. Liu, L. Sun and C. Lee, *Nanomaterials*, 2018, 8, 503.
- 2. X. Fu, H. Dong, Y. Zhen and W. Hu, *Small*, 2015, **11**, 3351-3356.
- 3. L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen and Z. L. Wang, ACS Nano, 2013, 7, 8266-8274.
- 4. K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu, Z. Wu, Q. Jia, P. Li, Y. Fu, H. Chang and W. Yuan, *Advanced Science*, 2022, **9**, 2104168.
- 5. Z. Wang, T. Bu, Y. Li, D. Wei, B. Tao, Z. Yin, C. Zhang and H. Wu, ACS Applied Materials \& Interfaces, 2021, 13, 56320-56328.
- 6. X. Yaoxu, S. Youkang, T. Lan, H. Yougen, Z. Pengli, S. Rong and W. Ching-Ping, *Nano Energy*, 2020, **70**, 104436.
- 7. F. Zhang, Y. Zang, D. Huang, C.-a. Di and D. Zhu, *Nature Communications*, 2015, 6, 8356.
- 8. W. Zhang, Y. Xi, E. Wang, X. Qu, Y. Yang, Y. Fan, B. Shi and Z. Li, ACS Applied Materials \& Interfaces, 2022, 14, 20122-20131.
- 9. J. Li, Y. Long, F. Yang, H. Wei, Z. Zhang, Y. Wang, J. Wang, C. Li, C. Carlos, Y. Dong, Y. Wu, W. Cai and X. Wang, *Advanced Functional Materials*, 2020, **30**, 2002868.
- 10. Q. Wei, G. Chen, H. Pan, Z. Ye, C. Au, C. Chen, X. Zhao, Y. Zhou, X. Xiao, H. Tai, Y. Jiang, G. Xie, Y. Su and J. Chen, *Small Methods*, 2022, **6**, 2101051.
- 11. Z. Wu and C. H. Ahn, presented in part at the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017.

Supporting Videos

Video S1. Simulation of von Mises Stress within cuboid and cone sensing structure during triboelectrification at varying pressure.

Video S2. Pressure measurement with STEPs at the inner aspect of the elbow during arm flexion at constant pressure.

Video S3. Pressure measurement with STEPs between the finger and beaker during grip-based scenario at constant pressure.

Video S4. Pressure measurement with STEPs at the finger during bending at increasing pressure.

Video S5. Multidirectional pressure measurement with STEPs