Supplementary Information

Magneto-plasmonic bionanocomposites for on site SERS detection of water contaminants

Sofia F. Soares¹, Nuno M. A. S. Silva¹, João Brenheiro¹, Sara Fateixa¹, Ana L. Daniel-da-Silva¹ and Tito Trindade^{1*}

¹CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

A. Calibration curves

Fig. S1. Calibration

curves for methylene blue, rose bengal and salicylic acid in ultra-pure water, obtained by UV-VIS spectroscopy.

B. Materials characterization

Fig. S2. UV-VIS absorption spectrum of colloidal Au nanoparticles. Inset: photograph of the Au colloid and TEM image of gold nanoparticles.

Fig. S3. EDS spectra of a) $Fe_3O_4@SiO_2/SiTMC/Au_{ex situ}$ and b) $Fe_3O_4@SiO_2/SiTMC/Au_{in situ}$ nanocomposites.

Fig. S4. XRD diffraction patterns of the synthesized materials: Fe_3O_4 , $Fe_3O_4@SiO_2/SiTMC$, $Fe_3O_4@SiO_2/SiTMC/Au_{ex situ}$ and $Fe_3O_4@SiO_2/SiTMC/Au_{in situ}$ nanocomposites. For comparison purposes, reported diffractograms for crystalline gold with face centered structure (JCPDS Card No. 04-0784) and Fe_3O_4 (JCPDS Card No. 19-0629) were also included.

C. Dyes adsorption

Fig. S5. Removal percentage of methylene blue, rose bengal and salicylic acid using $Fe_3O_4@SiO_2/SiTMC$, $Fe_3O_4@SiO_2/SiTMC/Au_{ex}$ and $Fe_3O_4@SiO_2/SiTMC/Au_{in}$ situ particles (Conditions: adsorbent dose of 0.5 mg/mL, 4 h of contact time, initial concentration of $1x10^{-5}$ M, $5x10^{-5}$ M and $1x10^{-3}$ M for methylene blue, rose bengal and salicylic acid respectively).

Fig. S6. Conventional Raman spectra of $Fe_3O_4@SiO_2/SiTMC/Au_{ex situ}$ and $Fe_3O_4@SiO_2/SiTMC/Au_{in situ}$ nanocomposites, under 633 nm laser excitation.

МВ	
1621	$v(CC) + \delta_{in-plane}(CH)$ (ring), $v(CN) + v(CC)$
1430	$\delta_{out-plane}(CH), \delta(CH_3), v(CC), v_{sym}(CN)$
1396	$v_{sym}(CN)$ (lateral and centre) + $\delta_{in-plane}(CH)$ (ring) + $\delta_{out-plane}$ (CH), $\delta(CH_3)$, v(CN) +
	v(CC), v _{asym} (CN)
1181	$\delta_{in-plane}(CH)$ (ring) + $\delta_{out-plane}(CH)$, $\delta(CH_3)$, $\delta_{in-plane}(CH)$
480	δ _{in-plane} thiazine (ring)
448	Skeletal deformation (CN, CS and CH_3), CN skeletal deformation
RB	
1619	v _{sym} (C=C) (ring)
1488	v _{asym} (C=C) (ring)
1297	$\delta(CCC)$ (ring) + $\delta(C-H)$
614	ν(C-I) +δ(CCO)
SA	
1625	v(C=O)
1583	v _{asym} (OCO)

Wayonumber (cm ⁻¹)	Vibrational modes
bengal (RB) 3,4 and sal	icylic acid (SA) ^{5,6} with the corresponding vibrational mode assignments.
Table S1: Experimenta	al Raman band positions (wavenumber, cm ⁻¹) for methylene blue (MB) ^{1,2} , rose

1390	v _{sym} (OCO)
1353	$\delta(C_{ring}\text{-}OH)$
1255	v(C _{ring} -OH)

Fig. S7. Plot of the Raman intensities of selected vibrational bands of MB and RB, for comparing the SERS performance of the $Fe_3O_4@SiO_2/SiTMC/_{Auex}$ and $Fe_3O_4@SiO_2/SiTMC/Au_{in}$ situ bionanocomposites (data from 5 random Raman spectra).

References

- 1 S. Fateixa, M. Wilhelm, H. I. S. Nogueira and T. Trindade, *Journal of Raman Spectroscopy*, 2016, **47**, 1239–1246.
- 2 G.-N. Xiao and S.-Q. Man, *Chem Phys Lett*, 2007, **447**, 305–309.
- 3 Y. Xia, P. Padmanabhan, S. Sarangapani, B. Gulyás and M. Vadakke Matham, *Sci Rep*, 2019, **9**, 8497.
- 4 A. M. Gabudean, M. Focsan and S. Astilean, *The Journal of Physical Chemistry C*, 2012, **116**, 12240–12249.
- 5 J. L. Castro, J. F. Arenas, M. R. López-Ramírez, D. Peláez and J. C. Otero, *J Colloid Interface Sci*, 2009, **332**, 130–135.

6 S. Adomavičiūtė-Grabusovė, S. Ramanavičius, A. Popov, V. Šablinskas, O. Gogotsi and A. Ramanavičius, *Chemosensors*, 2021, **9**, 223.