Supporting Information

Ultra-Sensitive Detection of PFASs using Surface Enhanced Raman

Scattering: A Promising Approach for Environmental Analysis

Joshua C. Rothstein,^a Jiaheng Cui,^b Yanjun Yang,^b Xianyan Chen,^c and Yiping Zhao^a ^a Department of Physics and Astronomy, Franklin College of Arts and Sciences ^b School of Electrical and Computer Engineering, College of Engineering ^c Department of Epidemiology & Biostatistics, College of Public Health The University of Georgia, Athens, GA, USA 30602

S1. SEM image of an AgNR substrate

Fig. S1 A typical SEM image of the AgNR substrate.

S2. Optimization of MCH functionalization

To determine the optimal concentration of MCH, the MCH solution was diluted to the following 8 concentrations: 6, 15, 30, 60, 150, 240, 300, and 360 μ M, respectively. 20 μ L of each solution was pipetted to an AgNR well and incubated for an hour. Then, each well was rinsed with DI water and air-dried. 20 SERS spectra were taken from each well at each concentration with a laser power of 14.5 mW, a 20× objective lens, and 10 s acquisition time. The average spectra of these concentrations are shown in **Figure S2a**. The average peak intensities, along with their corresponding standard deviations at $\Delta v = 698$, 869, and 1087 cm⁻¹ were analyzed, as shown in **Figures S2b-d**.

Fig. S2 (a) Baseline removed average spectra of MCH on AgNR at 8 concentrations. The following graphs track peak intensities of each concentration at (b) $\Delta v = 698 \text{ cm}^{-1}$, (c) $\Delta v = 869 \text{ cm}^{-1}$, and (d) $\Delta v = 1087 \text{ cm}^{-1}$.

S3. The comparison of the experimental and DFT Raman spectra of selected PFAS

Fig. S3 Comparison of experimental obtained SERS spectra and those calculated using DFT. The DFT results are adapted from Chen et al.¹

S4. List of peaks of PFAS SERS spectra

Table S1. A list of peaks of SER	S spectra from five	e 10 ³ ppt PFAS co	mpounds	in methanol a	is well as
from	an AgNR substrate	, as shown in Figu	ure 3.		

HFPO-DA	PFDA	PFNA	PFOS	PFOA	AgNR
745	745	745	745	745	
805	805	805	805	805	805
927	927	927	927	927	927
999	999	999	999	999	999
1136	1136	1136	1136	1136	1136
1271	1271	1271	1271	1271	

1404	1404	1404	1404	1404	1404
1603	1603	1603	1603	1603	1603

S5. Cosine similarity matrix of PFAS SERS spectra

Table S2. Cosine similarity matrix between the spectra of the AgNR background and the PFASsamples (PFOA, PFOS, PFNA, PFDA, and HFPO-DA) shown in Figure 3a.

•	AgNR	PFOA	PFOS	PFNA	PFDA	HFPO-DA
AgNR	1.000	0.643	0.618	0.618	0.659	0.619
PFOA	0.643	1.000	0.988	0.985	0.966	0.947
PFOS	0.618	0.988	1.000	0.993	0.982	0.967
PFNA	0.618	0.985	0.993	1.000	0.992	0.979
PFDA	0.659	0.966	0.982	0.992	1.000	0.990
HFPO-DA	0.619	0.947	0.967	0.979	0.990	1.000

S6. List of peaks of PFOA SERS spectra

Table S3. A list of peaks of SERS spectra for PFOA that appears throughout the paper. **Figure 2** presents the experimental Raman spectra of PFOA powder. **Figure 3a** shows the first experimental set of SERS spectra of PFOA with methanol, fixed at 10³ ppt. **Figure 4a** displays the second experimental set of SERS spectra of PFOA with methanol, containing the concentrations 10⁰, 10¹, 10³, 10⁶, 10⁷, and 10⁸ ppt. The highlighted cells represent the characteristic peaks shown in **Figure 4b**. The last column indicates the characteristic peaks of the reference, i.e., methanol, in **Figure 4b**.

PFOA								
Fig. 2	Fig. 3a	Fig. 4a	Reference (methanol)					
		333						
			435					
		485						
600		604						
630								
660								
675		682	682					
715								
763	754	760	764					
788								
	805							
		814	816					
873		878	881					
	927	934	934					
	999	1005	1005					
		1053	1053					
	1136	1136						
	1271							
1296								
1370								
	1404	1403	1403					
		1544						

1603		
	1642	1642

S7. Cosine similarity matrix of PFOA SERS spectra

Table S4. Cosine similarity matrix between the reference spectrum and the spectra of differentconcentrations of PFOA shown in Figure 4a.

	Reference	10 ⁰ ppt	10 ¹ ppt	10 ³ ppt	10 ⁶ ppt	10 ⁷ ppt	10 ⁸ ppt
Reference	1.000	0.778	0.717	0.775	0.713	0.734	0.774
10º ppt	0.778	1.000	0.970	0.996	0.961	0.977	0.969
10 ¹ ppt	0.717	0.970	1.000	0.978	0.998	0.998	0.932
10 ³ ppt	0.775	0.996	0.978	1.000	0.970	0.983	0.961
10 ⁶ ppt	0.713	0.961	0.998	0.970	1.000	0.996	0.919
10 ⁷ ppt	0.734	0.977	0.998	0.983	0.996	1.000	0.947
10 ⁸ ppt	0.774	0.969	0.932	0.961	0.919	0.947	1.000

S8. Peak locations and confusion matrix of PFAS on cysteine-modified AgNR

substrates

 Table S5. Center positions of the distinct peaks identified in the SERS spectra of PFOS and PFOA, and their presence in each spectrum shown in Figure 5.

Wavenumbe r (cm ⁻¹)	РГОА				Wate r		
-	10 ⁸ ppt	10 ⁴ ppt	10 ⁻² ppt	10 ⁸ ppt	10 ⁴ ppt	10 ⁻² ppt	-
502	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
672	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
724	\checkmark	\checkmark	\checkmark				
750	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
840	\checkmark						
857		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
904	\checkmark						
915				\checkmark			\checkmark
1050	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1164	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1230	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1304	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1354	\checkmark						
1399	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
1520				\checkmark	\checkmark		

1576	\checkmark	\checkmark	\checkmark			
1622			\checkmark	 \checkmark	\checkmark	V

Fig. S4 The confusion matrix from an SVM model to process all spectra in **Figure 5**. Labels A, B, and C represent 10⁸, 10⁴, and 10⁻² ppt PFOA; D, E, and F refer to 10⁸, 10⁴, and 10⁻² ppt PFOS; and G is water on cysteine-modified AgNR substrates.

S9. Peak intensities of concentration-dependent baseline removed spectra

Fig. S5 The semi-log plot of the peak intensities at $\Delta v = 703$, 872, and 1089 cm⁻¹ versus concentration under these conditions: (a) PFOA with global baseline removal, (b) PFOS with global baseline removal; (a') PFOA with local baseline removal, (b') PFOS with local baseline removal.

References

1. Y. Chen, Y. Yang, J. Cui, H. Zhang and Y. Zhao, *Journal of Hazardous Materials*, 2024, **465**, 133260.