A sensitive paper-based sensor for fluoride detection in water using Tb³⁺ photoluminescence

Pankaj Kumar Chaturvedi and Uday Maitra*

Department of Organic Chemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India

*Email: maitra@iisc.ac.in

Content

- S1. Optimization of assay conditions (temperature, time, solvents, pH)
- S2. Reactivity of fluoride ions towards *pro*-sensitizers 4 versus 2
- S3. Comparison of PL intensity and HPLC peak area with incubation time
- S4. Calculation of LOD and comparison table with reported literature
- S5. Fluoride detection from real-life samples and calculations
- S6. %Recovery calculations from spike and recovery test
- S7. ¹H NMR, ¹³C NMR and HRMS spectra of 2, 3 and 4
- **S8.** References

S1. Optimization of assay conditions:

Incubation temperature. For the optimization of incubation temperature, three identical samples (450 μ L) of fluoride-treated (333 μ M) **2**-doped (333 μ M) NaCh (20 mM) solution along with a control (without fluoride) were incubated at various temperatures (30, 35, and 40 °C) for 1 h. Then, these solutions were mixed with 150 μ L of aqueous terbium nitrate (20 mM) and converted to gels as described earlier. The Tb³⁺ luminescence of these samples was recorded at 545 nm (λ_{ex} 336 nm). The luminescence enhancement for the sample incubated at 35 °C compared to the control was the highest, suggesting the complete release of sensitizer (1). The luminescence enhancement at 40 °C was similar to that at 35 °C; the control also showed some luminescence enhancement, suggesting the decomposition of **2** at the higher temperature (**Fig. S1**). Therefore, the incubation temperature for the fluoride detection assay for all subsequent measurements was kept at 35 °C.

Figure S1. PL intensity at 545 nm (λ_{ex} 336 nm) of TbCh gels prepared from the preincubated samples of undoped, **2**-doped, and fluoride-treated **2**-doped 20 mM NaCh solution (33% organic solvent/water, v/v).

Incubation time. To optimize the incubation time, solutions (1 mL) of **1** (333 μ M)-doped NaCh (20 mM), **2** (333 μ M)-doped NaCh (20 mM), and fluoride (333 μ M)-treated **2** (333 μ M)-doped NaCh (20 mM) were incubated at 35 °C. At 30 and 60 minutes, 450 μ L aliquots of each sample were taken out and mixed with 150 μ L of aqueous terbium nitrate (20 mM) and converted to gels as described earlier. The time-delayed Tb³⁺ luminescence of these gels was recorded at 545 nm as before. As shown in **Fig. S2**, a similar PL intensity for fluoride (333 μ M)-treated, **2** (333 μ M)-doped TbCh gel compared to **1** (333 μ M)-doped TbCh gel, suggesting that the incubation of 30 min was sufficient to convert all the *pro*-sensitizer **2** to sensitizer **1** in the presence of fluoride.

Figure S2. PL intensity at 545 nm (λ_{ex} 336 nm) of TbCh gels prepared from the preincubated samples of **2**-doped, fluoride-treated **2**-doped, and **1**-doped 20 mM NaCh solution (33% organic solvent/water, v/v).

Organic solvent in assay media. For the optimization of organic solvent in the assay media, stock solutions (1 mM) of *pro*-sensitizer **2** were prepared in three different dipolar aprotic organic solvents (DMF, ACN, DMSO) and further diluted in 30 mM NaCh solution. These solutions (450 μ L) were incubated at 35 °C with and without fluoride for 30 min, mixed with aqueous terbium nitrate solution (150 μ L), and sonicated to make TbCh (5/15 mM) gel. The Tb³⁺ luminescence of these samples was measured at 545 nm as usual (**Fig. S3**). These data suggested 33% DMSO/water (*v*/*v*) to be a better solvent system for the fluoride detection assay.

Figure S3. PL intensity at 545 nm (λ_{ex} 336 nm) of TbCh gels prepared from the preincubated **2**-doped and fluoride-treated **2**-doped NaCh solutions (33% organic solvent/water, v/v).

Percentage of DMSO in aqueous media. Next, sets of **2**-doped (control) and fluoride-treated **2**-doped NaCh solutions with varying %DMSO/water (v/v) were incubated at 35 °C for 30 min and converted to TbCh gels, followed by PL intensity measurements at 545 nm (λ_{ex} 336 nm) as described earlier. These data suggested that 20% DMSO/water (v/v) was a better solvent system for the working concentrations of *pro*-sensitizer **2** for the fluoride detection assay (**Fig. S4a and S4b**).

Figure S4. PL intensity at 545 nm of TbCh gels prepared from the preincubated **2**-doped and fluoride-treated **2**-doped NaCh solutions varying **a**) %DMSO/water 667 μM of **2** and **b**) %DMSO/water for 267 and 400 μM of **2**.

Optimization of pH of the assay solvent. The introduction of the buffer (pH ~ 7) was necessary to avoid any pH variation of the assay conditions by adding analytes/interferents because the *pro*-sensitizer **2** was hydrolyzed to **1** at pH > 7.0 (**Fig. S5**). In contrast, at lower pH (< 6.0), cholic acid precipitates out from NaCh solution (pK_a ~ 5).² Therefore, buffer (30 mM NaCh + 20 mM HEPES, pH 6.9) was used instead of 30 mM NaCh solution to dilute the stock solutions of **1** and **2** prepared in DMSO.

Figure S5. PL intensity at 545 nm (λ_{ex} 336 nm) of **2**-doped TbCh gels prepared from the preincubated **2**-doped buffer (20 mM NaCh + 10 mM HEPES, 20% DMSO) solutions of various pH.

Other organic solvents as assay media. Further, the stock solutions of **2** in dioxane, ethanol, and DMSO were prepared and diluted in the buffer solution (pH 6.9, 20% organic solvent, v/v). In the optimized assay conditions, fluoride detection assay was performed using these solutions of *pro*-sensitizer **2**. Similar Tb³⁺ luminescence enhancement for fluoride-treated **2**-doped TbCh gel to control (**2**-doped TbCh) compared to 20% DMSO/water was also observed for 20% dioxane/water and 20% ethanol/water (**Fig. S6**).

Figure S6. PL intensity at 545 nm (λ_{ex} 336 nm) of TbCh gels prepared from the preincubated **2**-doped and fluoride-treated **2**-doped buffer (20 mM NaCh + 10 mM HEPES, 20% organic solvent, pH 6.9) solutions.

S2. Reactivity of fluoride ions towards pro-sensitizers 2 versus 4:

The fluoride detection assay was performed by incubating 2-doped, fluoride-treated 2-doped, 4-doped and fluoride-treated 4-doped buffer solutions at 35 °C for 2 h. There was no luminescence enhancement for fluoride-treated 4-doped TbCh gel compared to the control (**Fig. S7a**). Then, a similar assay was performed by incubation at 45 °C for 2 h, where *pro*-sensitizer 4 showed only 2-*fold* luminescence enhancement compared to the control, whereas that of *pro*-sensitizer 2 was 5-*fold* (**Fig. S7b**).

Figure S7. PL intensity at 545 nm (λ_{ex} 336 nm) of TbCh gels prepared from preincubated **2**-doped, fluoride-treated **3**-doped, fluoride

S3. Comparison of PL intensity and HPLC peak area with incubation time:

Figure S8. PL intensity at 545 nm (λ_{ex} 336 nm) of TbCh gels prepared and HPLC peak area of released **1** from the preincubated fluoride-treated **2**-doped buffer (20 mM NaCh + 10 mM HEPES, 20% DMSO, pH 6.9) solutions.

S4. Calculation of limit of detection (LOD) value:

Data recorded in the Varian Cary Eclipse instrument (gels in cuvette):

LOD was calculated using the following equation,

$$LOD = \frac{3 \times s}{b}$$

Where s is the intercept error for the PL intensity of gel, and b is the slope of the plot (Fig. 6b). The equation of linear fit is $y = 4.8 \times x + 3.7$ ($R^2 = 0.97953$).

Where y is the PL intensity of the gel samples at 545 nm, and x is the fluoride concentration. So,

$$LOD = \frac{3 \times 3.7}{4.8} \,\mu M = 2.35 \,\mu M$$

Similarly, the LOD calculated from the other two identical experiments were 2.65 μ M and 2.58 μ M.

Therefore, LOD = $(2.5 \pm 0.2) \mu M$

Data recorded in the Plate Reader instrument (gel-coated paper discs):

LOD was calculated using the following equation,

$$LOD = \frac{3 \times \sigma}{b}$$

Where σ is the standard deviation for the PL intensities of gel-coated paper discs without fluoride, and b is the slope of the plot (**Fig. 7b**). The equation of linear fit is $y = 607 \times x + 16454$ ($R^2 = 0.99963$). Where y is the PL intensity of the gel samples at 545 nm, and x is the fluoride concentration. So,

$$LOD = \frac{3 \times 292}{607} \, \mu M = 1.4 \, \mu M$$

 $LOD = 1.4 \times 19 \text{ ppb} = 27 \text{ ppb}$

S. No.	Probe	Solvent	Assay time	Method	LOD	Reference
1.	Meo H	DMSO	7 min	Fluorescence (turn-on)	19.6 ppb	<i>Chem. Commun.</i> 2014, 50 , 5510– 5513.
2.	SIR Probe I, R = CH ₃ R Probe II, R = Ph	DMSO:water (3:1, v/v)	2 min	Ratiometric Fluorescence	2.6 ppb	ACS Omega 2019, 4 , 4918–4926.
3.		EtOH:HEPES buffer (50 mM, pH 7.4, 1:1, v/v)	4 h	Fluorescence (turn-on)	1.3 ppb	Dyes and Pigm. 2021, 188 , 109166.
4.	Calcein + Eu ³⁺ in ZnCdSe/ZnS QDs	Water	2 h	Fluorescence (turn-on)	215 ppb	Anal. Bioanal. Chem. 2022, 414 , 3999–4009.
5.		EtOH:HEPES buffer (50 mM, pH 7.4, 8:2, v/v)	1 h	Fluorescence (<i>turn-on</i>)	0.1 ppb	Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 285 , 121816.
6.		Citrate buffer aq. (0.1 M, pH 4.1)	1 h	Fluorescence (turn-on)	11.4 ppb	Chem. Sci. 2023, 14, 291–297.
7.	PENG with fillers Mn-Doped BaTiO ₃ Nanostruc tures and CNTs	Piezoelectric nanogenerator (PENG)	NA	Output voltage	22.4 ppb	ACS Appl. Nano Mater. 2023, 6 , 6637–6652.
8.	С С С С С С С С С С С С С С С С С С С	DMSO:HEPES buffer (20 mM, pH 6.5, 1:4, v/v)	30 min	Tb ³⁺ luminescence (<i>turn-on</i>)	27 ppb	This work

 Table S1. Comparison table of LOD value with recently reported literature.

Here, most of the methods have used organic solvents as a medium or compromised with low LOD.

S5. Fluoride detection from real-life samples and calculations:

Figure S9. PL intensity at 545 nm (λ_{ex} 336 nm) of TbCh gels prepared from the preincubated analyte-treated **2**-doped buffer solutions; analyte: **a**) toothpaste solution; water samples from **b**) Bankura, West Bengal, **c**) Ajmer, Rajasthan, and **d**) Baran, Rajasthan.

Calculations of fluoride content in the real-life samples (data from Fig. S9):

Calculation for Fig. S8a: The equation is as follows:

 $47495 = 607 \times [F^-]/\mu M + 26812$ [F⁻] = 34.1 μM

40 µL of toothpaste solution was added to 260 µL of probe solution during incubation. Therefore,

 $[F^-]_{TP} = (34.1 \ \mu M \times 300 \ \mu L)/40 \ \mu L = 256 \ \mu M$

The fluoride content in the stock solution was 10 times that of the toothpaste solution as per dilution.

 $[F^-]_{Stock} = 256 \ \mu M \times 10 = 2560 \ \mu M$

 $[F^-]_{Stock} = (2560 \ \mu mol/L) \times 19 \ \mu g/\mu mol$

 $[F^{-}]_{Stock} = 48.64 \ \mu g/mL$

Since the above stock solution was prepared by dissolving 476 mg in a 7.74 mL buffer solution, the fluoride content in the toothpaste pack:

[F⁻]_{pack} = [(48.64 µg/mL × 7.74 mL)/476 mg] × 1000 ppm [F⁻]_{pack} = **791 ppm** Calculation for Fig. S8b: The equation is as follows:

 $19458 = 607 \times [F^-]/\mu M + 16011$ [F⁻] = 5.68 μM

40 µL of toothpaste solution was added to 260 µL of probe solution during incubation. Therefore,

 $[F^{-}]_{Pond} = (5.68 \ \mu M \times 300 \ \mu L)/40 \ \mu L = 42.6 \ \mu M$ $[F^{-}]_{Pond} = (42.6 \ \mu mol/L \times 19 \ \mu g/\mu mol)/1000 \ ppm$ $[F^{-}]_{Pond} = 0.81 \ ppm$

Calculation for Fig. S8c: The equation is as follows:

PL Intensity = $607 \times [F^{-}]/\mu M + 26812$

For tap water sample,

 $28625 = 607 \times [F^-]/\mu M + 26812$

 $[F^-] = 2.99 \ \mu M$

40 µL of toothpaste solution was added to 260 µL of probe solution during incubation. Therefore,

 $[F^{-}]_{Tap} = (2.99 \ \mu M \times 300 \ \mu L)/40 \ \mu L = 22.4 \ \mu M$ $[F^{-}]_{Tap} = (22.4 \ \mu mol/L \times 19 \ \mu g/\mu mol)/1000 \ ppm$ $[F^{-}]_{Tap} = 0.43 \ ppm$

Similarly, for other samples,

[F⁻]_{Tubewell} = 2.44 ppm
 [F⁻]_{Well#1} = 2.49 ppm
 [F⁻]_{Well#2} = 2.41 ppm

Calculation for Fig. S8d: The equation is as follows:

PL Intensity = $607 \times [F^{-}]/\mu M + 17256$

For the river water sample,

$$29460 = 607 \times [F^-]/\mu M + 17256$$

 $[F^-] = 20.1 \ \mu M$

80 µL of toothpaste solution was added to 220 µL of probe solution during incubation. Therefore,

 $[F^-]_{River} = (20.1 \ \mu M \times 300 \ \mu L)/80 \ \mu L = 75.3 \ \mu M$

 $[F^-]_{River} = (75.3 \ \mu mol/L \times 19 \ \mu g/\mu mol)/1000 \ ppm$

[F⁻]_{River} = 1.43 ppm

Similarly, for other samples,

[F⁻]_{Stepwell} = 1.24 ppm [F⁻]_{Handpump} = 1.42 ppm [F⁻]_{Borewell} = 1.00 ppm

S6. %Recovery calculations from spike and recovery test:

Figure S10. PL intensity at 545 nm (λ_{ex} 336 nm) of TbCh gels prepared from the preincubated samples of fluoride-containing sample-treated **2**-doped buffer solutions.

Calculation of %recovery from spike & recovery experiment:

The equation of the calibration plot (linear fit) obtained from gel-coated paper discs is,

$$y = 607 * x + 25933$$

Where y is the PL intensity of the gel samples at 545 nm (λ_{ex} 336 nm), and x is the concentration of fluoride ions. The sample A (2-doped TbCh gel) was the control.

The fluoride concentrations were calculated using the spike & recovery data (**Fig. S10**) of unspiked samples (**B**, **C**, **D**) and spiked (**E**, **F**, **G**) utilizing the above equation:

For sample **B**, 28391 = 607 * [F⁻] + 25933 $[F⁻] = 4.1 \ \mu M = 4.1 \times 19 \ \text{ppb} = 77.9 \ \text{ppb}$ For sample **C**, 31866 = 607 * [F⁻] + 25933 $[F⁻] = 9.8 \ \mu M = 9.8 \times 19 \ \text{ppb} = 186.2 \ \text{ppb}$ For sample **D**, 70548 = 607 * [F⁻] + 25933 $[F⁻] = 73.5 \ \mu M = 73.5 \times 19 \ \text{ppb} = 1396.5 \ \text{ppb}$ For sample **E**, 35139 = 607 * [F⁻] + 25933 $[F⁻] = 15.2 \ \mu M = 15.2 \times 19 \ \text{ppb} = 288.8 \ \text{ppb}$ For sample **F**,

$$38289 = 607 * [F^-] + 16554$$

[F^-] = 20.3 μM = 20.3 \times 19 ppb = 385.7 ppb

For sample **G**,

77499 = 607 * [F⁻] + 16554
[F⁻] = 85.0
$$\mu$$
M = 85.0 × 19 ppb = 1615.0 ppb

Now, the calculation of %recovery was done using the following equation:

 $\% Recovery = \frac{Fluoride\ conc.(spiked) - Fluoride\ conc.\ (unspiked)}{Fluoride\ conc.\ (spiked)} \times 100\%$

For sample River Water (Baran Rajasthan):

$$\% Recovery = \frac{15.2 \ \mu M - 4.1 \ \mu M}{10 \ \mu M} \times 100\% = 111\%$$

For sample 10 μ M NaF aqueous solution:

$$\% Recovery = \frac{20.3 \ \mu M - 9.8 \ \mu M}{10 \ \mu M} \times \ 100\% = \ 105\%$$

For sample toothpaste solution:

 $\% Recovery = \frac{85.0 \ \mu M - 73.5 \ \mu M}{10 \ \mu M} \times \ 100\% = \ 115\%$

S7. ¹H NMR, ¹³C NMR and HRMS spectra of 2, 3 and 4:

Figure S12. ¹³C NMR spectrum of **2** in CDCl₃ solvent (100 MHz).

Figure S13. ESI-Mass spectrum of 2 in positive mode.

Figure S15. ¹³C NMR spectrum of **3** in CDCl₃ solvent (100 MHz).

Figure S16. ESI-Mass spectrum of 3 in positive mode.

Page 16 of 17

Figure S19. ESI-Mass spectrum of 4 in positive mode.

S8. References:

1. Serjeant, E.P.; Dempsey, B. Ionisation constants of organic acids in aqueous solution. *IUPAC Chem. Data Ser. No. 23. NY, NY: Pergamon* 1979, **989**.