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Table S1. Summary of different literature studies on machine learning for electrochemical 
sensors.

Sensors Analyte Electrochemical 
Method

Sample ML method Ref

CuNPs/PED
OT-C4-
COOH/3-
electrodes-C 
WE

Maleic 
hydrazide

CV/oxidation Spiked 
samples of 
onion, rice, 
potato, and 
cotton leaf

ANN / different 
traditional 
regression 
methods.

1

Disposable 
laser-induced 
porous 
graphene 
(LIPG)

Maleic 
hydrazide

DPV PBS/ Potatoes 
and peanuts

Regression, 
Back-
propagation 
ANN (BP-
ANN), random 
forest (RF), and 
least squares 
support vector 
machine (LS-
SVM)

2

Second-
generation 
glucose-
oxidase 
biosensor 

Glucose Amperometric - Regression, 
Partial Least 
Squares (PLS), 
Support Vector 
Machine for 

3
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(GOB). Regression 
(SVMR-Lin) 
(SVMR-RBF) 
Artificial Neural 
Networks 
(ANN)

nitrate 
reductase 
(NR)/3-
electrodes-C 
WE

Nitrate CV/reduction Spiked lake 
water, 
vegetable 
juice, and fruit 
juice

Regression, 
Support Vector 
Machine (SVM)

4

CMC-
MWCNTs/
MoS2

Carbendazim DPV/oxidation Tea and rice ANN model and 
traditional 
regression 
models

5

Pt/Ir working 
electrodes, 
Ag/ AgCl 
reference 
electrodes 
and platinum 
auxiliary 
electrodes 
with nano-
platinum 
deposited.

Acetone EIS Water Support vector 
machine (SVM) 
classification 
(0,1) (absence or 
presence of 
acetone)
Training (Data 
set 80%, 
accuracy 98 %)
Testing (Data 
set 20%, 
accuracy 97%)

6

Silver 
electrodes

Bacterias EIS Water Classification, 
linear maximum 
likelihood 
estimation 
(MLE), linear 
discrimination 
analysis (LDA), 
and non-linear 
back 
propagation 
neural network 
(BPNN) 
methods. In the 

7



last case, 84 
vectors (70% 
data) were used 
as training, 
while the 
remaining 36 
vectors (30%) 
were divided 
equally between 
the testing and 
validation data 
sets. The 
accuracy was 
100 % in all 
cases.

laser-induced 
porous 
graphene WE

Salicylic acid CV and LSV 
tests/oxidation

PBS/ lettuce 
and 
watermelon 
extracting 
solution.

Regression, 
ANN, and least 
squares support 
vector machine 
(LSSVM)

8

24 
potentiometri
c sensors

Multiple 
analytes/blad
der cancer

Potentiometric urine Logistic 
regression (LR), 
random forest 
(RF), extreme 
gradient 
boosting 
classifier 
(XGBC), 
support vector 
machine 
classifier 
(SVM), and 
voting classifier 
(VC).
Classification 
yes/no bladder 
cancer. Training 
accuracy near 
100 %, and the 
testing highest 

9



accuracy 80 %. 
Carbon, 
Prussian 
blue, Cobalt 
(II) 
phthalocyani
ne, Copper 
(II) oxide, 
Polypyrrole, 
and 
Palladium 
nanoparticles 
ink-modified 
carbon 
electrodes.

Heroin, 
morphine, 
codeine, 
paracetamol 
and caffeine

SWV Water PCA and 
Silhouette 
parameter 
calculation, K-
nearest neighbor 
classifier. The 
accuracy 
presented is 
100%.

10

Black 
phosphorene 
(BP) 
modified 
electrode

5-
hydroxytrypt
amine

SWV PBS Regression, 
ANN algorithm

11

Reduced 
graphene and 
gold 
nanoparticles 
modifying 
glassy 
Carbon 
electrode 
(AuNPs/rGO/
GCE)

Detection of 
Dopamine in 
the presence 
of 
epinephrine

DPV Goat serum 
samples and 
artificial urine

POS-ANN 
model

12

Table S2. Summary of different papers about machine learning for the detection of THC.

Technique Sample ML method LOD Accuracies Ref
Color-based lateral 
flow+immunoassay

16 drugs and 
ethanol
THC/saliva

Multilayer 
perceptron 
artificial neural 
network (MLP-
ANN) 

THC-
50 
ng/mL

Overall 
were 
Training 
100 %, 
Validation 

13



classification “very 
positive”, 
“positive”, 
“doubtful”, 
“negative”, “very 
negative” or 
“undetermined” 
(VP, P, D, N, VN, 
U)

92 %, and 
Testing 
89.7 %

FTIR THC/ cannabis 
inflorescence

The Savitzky-
Golay 2nd 
derivative 
(polynomial order: 
2, window size: 3) 
and standard 
normal variate 
(SNV) were the 
preprocessing. 
Two types of 
regressors were 
trained using the 
preprocessed
datasets: Genetic 
Algorithm and 
Ensemble 
regression models.

-   N/A 14

EIS/anti-THC 
(incubation 15 min)

THC-
BSA/saliva
THC/saliva

Binary 
classification of 
THC+/− Two 
Logistic 
Regression models 
– one without and 
one with K-folds 
cross-validation 
and two Support 
Vector machines  
(SVM) – one with 
a linear kernel and 
one with a radial 
bias kernel.

100 
pg/mL

N/A 15



s-SWCNTs 
chemiresistor

THC/ breath Random forest 
(RF), k-nearest 
neighbor (kNN), 
and support
vector machine 
classifier (SVC) 
were used to 
classify the 
recovery traces as 
containing THC or 
not. 

0.163 
ng

N/A 16

Table S3. Examples of filters, swabs, and collectors used to collect and filtrate the saliva samples.

Filters-diameter-pore size Swabs/collectors

PTFE-25 mm-0.2 µm PureSal/Filtration(Swab + squeeze)

PES-25 mm-0.2 µm NeoSal (Swab + buffer) 1:4

PVDF-25 mm-0.2 µm SalivaBio swab (Swab + squeeze)

Nylon-25 mm-0.2 µm SalivaBio swab + Pure Sal filter

Nylon-25 mm-0.45 µm POREX OFCD-100 (No filter)

Nylon-13 mm 0.45 um* POREX OFCD-201-SRF (with filter)

wwPTFE NanoSEP-0.2 µm* POREX OFCD-100 +glass wool

wwPTFE NanoSEP-0.45 µm* POREX OFCD-100 swab +glass wool

wwPTFE-13mm-0.45 µm* N/A

wwPTFE-13mm-0.2 µm* N/A

wwPTFE-25mm-0.2 um* N/A

Glass wool (Pyrex 3950) *Pall company

PTFE-Polytetrafluoroethylene, PES-Polyethersulfone, PVDF- Polyvinylidene, wwPTFE-water 
wettable polytetrafluoroethylene



Table S4. Interference experiments detail.

S2.2 Machine Learning algorithms.

Random Forest (RF) was used to classify the concentration of THC present in saliva for the 

purposes of this study. Random Forest is an ensemble machine learning method that combines a 

group of different Decision Trees, where each tree trains a subset of the training set with randomly 

selected predictors among all features. The training dataset will be divided repeatedly into 

THC based- Sensor 
(m-Z-THC)

CBD based-Sensor (m-
Z-CBD)

Experiments
Total electrodes

P-Z/m-Z
(1 Saliva)

Experiments
Total electrodes

P-Z/m-Z
(1 Saliva)

[THC]= 0 ng/mL
[CBD]= 0 ng/mL

8 (1/7m-Z-THC) [CBD]= 0 ng/mL
[THC]= 0 ng/mL

8 (1/7m-Z-CBD)

[THC]= 0 ng/mL
[CBD]= 10 ng/mL

4 (1/3m-Z-CBD) [CBD]= 0 ng/mL
[THC]= 10 ng/mL

4 (1/3 m-Z-CBD)

[THC]= 0 ng/mL
[CBD]= 50 ng/mL

4 [CBD]= 0 ng/mL
[THC]= 50 ng/mL

4

[THC]= 2 ng/mL
[CBD]= 0 ng/mL

8 [CBD]= 2 ng/mL
[THC]= 0 ng/mL

8

[THC]= 2 ng/mL
[CBD]= 10 ng/mL

4 [CBD]= 2 ng/mL
[THC]= 10 ng/mL

4

[THC]= 2 ng/mL
[CBD]= 50 ng/mL

4 [CBD]= 2 ng/mL
[THC]= 50 ng/mL

4

[THC]= 5 ng/mL
[CBD]= 0 ng/mL

8 [CBD]= 5 ng/mL
[THC]= 0 ng/mL

8

[THC]= 5 ng/mL
[CBD]= 10 ng/mL

4 [CBD]= 5 ng/mL
[THC]= 10 ng/mL

4

[THC]= 5 ng/mL
[CBD]= 50 ng/mL

4 [CBD]= 5 ng/mL
[THC]= 50 ng/mL

4

Total of electrodes 
(1 Saliva)

48 N/A 48

Total of electrodes 
(6 Salivas)

576



subspaces based on an attribute that offers maximum information gain. This splitting process is 

robust to outliers and multicollinearity. As a result, Decision Tree and Random Forest algorithms 

perform well when features have different scales and do not require feature scaling. A Decision 

Tree method is prone to overfitting since its structure can mimic the data closely. This problem is 

mainly resolved by introducing the concept of randomness in Random Forest methods. In this 

study, the optimal number of random trees was 200.

Artificial Neural Network (ANN) is another powerful ML technique used in this paper for 

classification. A neuron (perceptron) is the essential component of a Dense Neural Network 

structure, with weighted inputs and a bias. A neuron introduces non-linearity to the system through 

a proper activation function. The model often initiates by choosing minimal random weights and 

biases. Later, it adjusts these values based on a gradient descent algorithm to minimize a loss 

function. Vanishing and exploding gradients are the main problems of Neural Networks. This issue 

can be addressed by an appropriate activation function, batch normalization, and implementing 

gradient clipping. Overfitting is a common issue for Neural Networks, especially with a limited 

amount of data. Strategies like early stopping, regularization techniques, and dropout can be 

possible solutions. Finding a suitable architecture for an ANN is a trial and error process and 

depends on datasets. The dense network structure used in this study consists of three hidden layers 

with 32,64 and 128 nodes, respectively. Rectified Linear Unit function used for hidden layers' 

activation function and softmax for the output layer. Additionally, regularization techniques, as 

well as dropout, are implemented. 

This study used support Vector Machine (SVM) as another alternative for classification 

and regression. SVM technique finds a hyperplane to separate different classes by maximizing an 

acceptable margin between the hyperplane and the nearest points of a class. Support vectors are 

the outliers and the closest data points in each category to the hyperplane. These vectors play a 

critical role in the positioning of the hyperplane. In many datasets, finding the hyperplane in low-

dimension space to separate the classes is impossible. In other words, the hyperplane exists in 

higher-dimension, and datasets must be transformed into high-dimension space. As a result, the 

kernel trick is often used to map the datasets to the new dimension based on only the similarity 

and distances between two points in the original dimension. The concept of SVM techniques for 

regression is the same, finding a hyperplane that fits the maximum number of points. Contrary to 

regular regression models, the objective is not to minimize the sum of squared errors, but instead 



to find a maximum acceptable margin of error to fit the training set along the hyperplane. The 

distances between data points play a crucial role in Machine learning algorithms like SVM; hence 

feature scaling, and dimensionality reduction are highly recommended for SVM methods. The 

SVM approaches can be costly in memory requirements and time computational power. Moreover, 

SVM techniques are susceptible to noises that can lead to overfitting. This study used a radial basis 

function kernel for classification and a moderate regularization parameter for regression.

This study used a Logistic Regression classifier for binary classification of interaction 

between THC and CBD. Logistic Regression predicts the probability of a point belonging to a 

binary class. It uses a sigmoid function and a threshold criterion to calculate the probability. It is 

an easy model to understand and implement; nonetheless, it is prone to overfitting when the 

number of predictors is higher than the number of instances.

Finally, this work used Principal Component Analysis (PCA) for dimensionality reduction 

and different preprocessing techniques, including Standard Scaler and non-linear Power 

Transformer for feature scaling. Small to medium size datasets with a large number of features are 

at high risk of overfitting. Dimensionality reduction techniques intend to preserve datasets' 

information in lower space and reduce the complexity of the model and possible multicollinearity 

in the system. Consequently,  the computational time, memory requirement, and noise and 

redundancy decrease while accuracy improves. PCA  techniques find a subspace (hyperplane) to 

transfer data while maintaining the original variances. Among feature scaling methods, a  standard 

scaler algorithm modifies the mean and variance of each feature. On the other hand, A Power 

Transformer is a non-linear transformer that changes the correlation and distances between data 

points.



Figure S1. FTIR spectra of pristine and modified electrodes.

Figure S2. a), b) C1s and c), d) O1s high-resolution spectra before and after Zensor working 

electrode modification.



Table S5. XPS survey data (atomic percentage) for the most concentrated elements present in 

the materials.

Elements (At. %)

Samples
C 1s O 1s N 1s Cl 2p S 2p P 2p Si 2p

P-Z 82.2 8.7 0.4 7.6 0.3 0.1 0.8

m-Z THC0 82.7 9.3 0.3 7.1 0.4 - 0.1

m-Z THC 84.1 9.1 0.3 6.0 0.3 0.1 0.2

m-Z CBD0 82.4 9.9 0.2 6.8 0.4 0.1 0.2

m-Z CBD 83.9 9.4 0.4 5.8 0.2 0.1 0.1



Table S6. The peak-fitting results of high-resolution C 1s signal of materials.

Samples Assignment EB (eV) FWHM (eV) At. %

C1s C=C aromatic 284.4 0.6 16.2

C1s C-C, C-H 285.0 1.3 57.6

C1s COH, C-O-C, C-Cl 286.5 1.3 22.0
Pristine

C1s O-C=O 289.0 1.3 4.2

C1s C=C aromatic 284.3 0.6 14.4

C1s C-C, C-H 285.0 1.3 58.9

C1s COH, C-O-C, C-Cl 286.5 1.3 22.5
m-Z THC0

C1s O-C=O 289.0 1.1 4.3

C1s C=C aromatic 284.4 0.7 17.0

C1s C-C, C-H 285.0 1.3 58.5

C1s COH, C-O-C, C-Cl 286.5 1.3 21.3
m-Z THC

C1s O-C=O 289.0 1.1 3.2

C1s C=C aromatic 284.3 0.6 12.9

C1s C-C, C-H 285.0 1.3 60.5

C1s COH, C-O-C, C-Cl 286.5 1.3 22.4
m-Z CBD0

C1s O-C=O 289.0 1.1 4.2

C1s C=C aromatic 284.4 0.6 14.7

C1s C-C, C-H 285.0 1.3 61

C1s COH, C-O-C, C-Cl 286.5 1.3 20.6
m-Z CBD

C1s O-C=O 289.1 1.1 3.7



Table S7. The peak-fitting results of high-resolution O 1s signal of materials.

Samples Assignment EB (eV) FWHM (eV) At. %

O1s C=O 532.5 1.5 68.3
Pristine

O1s O*-(C=O)-C, C-O aromatic 533.5 1.6 31.7

O1s C=O 532.1 1.6 59.8
m-Z THC0

O1s O*-(C=O)-C, C-O aromatic 533.5 1.6 40.2

O1s C=O 532.3 1.8 63.1
m-Z THC

O1s O*-(C=O)-C, C-Oaromatic 533.5 1.8 36.9

O1s C=O 532.1 1.6 59.8
m-Z CBD0

O1s O*-(C=O)-C, C-Oaromatic 533.5 1.6 40.2

O1s C=O 532.2 1.7 54.4
m-Z CBD

O1s O*-(C=O)-C, C-Oaromatic 533.4 1.7 45.6
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