Synthesis and Characterization of La QDs: Sensor for Anions and $$\rm H_2O_2$$

Supplementary information:

Daylight

UV light

S1: The visual of the La QDs in ethanol under UV irradiation.

XRD Study:

To find the d-spacing(d) of the XRD peaks Bragg's equation (Equation E1) solution is used at the λ =0.15406nm ³⁸.

$$n\lambda = 2d \sin(\theta) \tag{E1}$$

The lattice constants (a=b=c for cubic, a=b \neq c for hexagonal) were calculated by the user of equations E2, and E3 and matched with the standard lattice constants values of the PDF.

Hexagonal crystal lattice constants were calculated by using equationE2.

$$\frac{1}{(d-spacing)^2} = \frac{4(h^2 + k^2 + hk)}{3a^2} + \frac{l^2}{c^2}$$
(E2)

Cubic crystal lattice constants were calculated by using equation E3.

$$\frac{1}{(d-spacing)^2} = \frac{h^2 + k^2 + l^2}{a^2}$$
(E3)

By using the Scherrer equation (Equation E4)the crystal grain size (L) was calculated, i.e.

$$L = \frac{k\lambda}{B COS(\theta)}$$
(E4)

where k is a dimensionless shape factor with a typical value of roughly 0.9, is the Bragg angle, λ is the X-ray wavelength (0.15406 nm), θ is the wavelength of the X-ray, B is the line whose intensity is halved at maximum intensity (FWHM).

Bandgap energy observation:

The optical band gap energy of the La QDs was calculated through the Tauc plot method (Equation E5).

$$(ahv)^{1/y} = B(hv - E_g)$$
(E5)

where, v = Photon's frequency,

B = Constant,

h = Planck constant,

 $Y = \frac{1}{2}$ or, 2 for direct and indirect transition band gaps, respectively,

Eg = Band gap energy.

S2:Emission Spectra of the optical La QDs sensor at 315 and 440.5 nm wavelength on excitation at 265nm under different (a) $[C_2O_4^{2-}]$, (b) $[Br^-]$, (c) $[BrO_3^-]$, (d) $[Cl^-]$.

S3: (a) Calibration curves of $C_2O_4^2$ -sensors peak at 315nm and 440.5 nm wavelengths, (b) Calibration curves of Br⁻ sensors peak at 315nm and 440.5 nm wavelengths, (c) Calibration curves of BrO₃⁻ sensors peak at 315nm and 440.5 nm wavelengths, (d) Calibration curves of Cl⁻ sensors peak at 315nm and 440.5 nm wavelengths.

T1: Calibration curves of F⁻ sensors peak at 315nm and 440.5 nm wavelengths.

a) At 315nm Peak

Model	Linear
Equation	$\mathbf{y} = \mathbf{A} + \mathbf{B}\mathbf{x}$
A	2840.97214 ± 30.97025
В	3.38669 ± 0.30065
Residual Sum of Squares	10329.37444
R-Square (COD)	0.96209
Adj. R-Square	0.95451

Model	Linear
Equation	y = A + Bx
А	2992.715 ± 57.01654
В	11.15023 ± 0.5535
Residual Sum of Squares	35009.54296
R-Square (COD)	0.98783
Adj. R-Square	0.98539

T2: Calibration curves of $(C_2O_4)^{2-}$ sensors peak at 315nm and 440.5 nm wavelengths.

a) At 315nm Peak

Model	Asymptotic
Equation	$y = A - BC^x$
A	3594.77404 ± 36.5841
В	710.10037 ± 51.27378
С	0.97179 ± 0.00535
Reduced Chi-Sqr	1732.88744
R-Square (COD)	0.9858
Adj. R-Square	0.97633

Model	Asymptotic
Equation	$y = A - BC^x$
А	4603.18656 ± 49.756
В	1668.47565 ± 71.26134
С	0.97094 ± 0.00325
Reduced Chi-Sqr	3399.17413
R-Square (COD)	0.99494
Adj. R-Square	0.99156

T3: Calibration curves of (CO₃)²⁻ sensors peak at 315nm and 440.5 nm wavelengths.

a) At 315nm Peak

Model	Asymptotic
Equation	$y = A - BC^x$
А	3899.83032 ± 123.54159
В	922.03908 ± 143.80652
С	0.98606 ± 0.00593
Reduced Chi-Sqr	15668.78394
R-Square (COD)	0.88463
Adj. R-Square	0.84618

Model	Asymptotic
Equation	$y = A - BC^x$
А	5594.24238 ± 172.02548
В	2516.96958 ± 259.29451
С	0.98167 ± 0.0048
Reduced Chi-Sqr	58873.90828
R-Square (COD)	0.94069
Adj. R-Square	0.92092

T4: Calibration curves of (HPO₄)²⁻ sensors peak at 315nm and 440.5 nm wavelengths.

a) At 315nm Peak

Model	Asymptotic
Equation	$y = A - BC^x$
A	3418.62035 ± 18.94071
В	528.05859 ± 32.80627
С	0.02206 ± 4.31023E19
Reduced Chi-Sqr	717.50078
R-Square (COD)	0.99661
Adj. R-Square	0.98983

Model	Asymptotic
Equation	$y = A - BC^x$
A	4669.40318 ± 276.35329
В	1699.14744 ± 361.76002
С	0.94707 ± 0.02518
Reduced Chi-Sqr	65391.77839
R-Square (COD)	0.96045
Adj. R-Square	0.88135

T5: Calibration curves of Br⁻ sensors peak at 315nm and 440.5 nm wavelengths.

a) At 315nm Peak

Model	Asymptotic
Equation	$y = A - BC^x$
A	3494.59573 ± 27.06847
В	599.59334 ± 57.36622
С	0.95339 ± 0.01227
Reduced Chi-Sqr	2661.52435
R-Square (COD)	0.96482
Adj. R-Square	0.94723

Model	Asymptotic
Equation	$y = A - BC^x$
A	4850.60968 ± 49.41066
В	1897.31456 ± 80.6551
С	0.97193 ± 0.00303
Reduced Chi-Sqr	5028.61457
R-Square (COD)	0.99295
Adj. R-Square	0.98942

T6: Calibration curves of (BrO₃)⁻sensors peak at 315nm and 440.5nm wavelengths.

a) At 315nm Peak

Model	Asymptotic
Equation	$y = A - BC^x$
A	3356.18635 ± 18.56898
В	465.7295 ± 33.23463
С	0.97365 ± 0.00463
Reduced Chi-Sqr	927.16815
R-Square (COD)	0.97521
Adj. R-Square	0.9653

Model	Asymptotic
Equation	$y = A - BC^x$
А	4684.84755 ± 36.3126
В	1742.30106 ± 55.61913
С	0.97836 ± 0.00175
Reduced Chi-Sqr	2529.38459
R-Square (COD)	0.99501
Adj. R-Square	0.99301

T7: Calibration curves of (OH)⁻ sensors peak at 315nm and 440.5nm wavelengths.

a) At 315nm Peak

Model	Asymptotic
Equation	$y = A - BC^x$
A	3231.05743 ± 15.2501
В	340.74005 ± 18.67889
С	0.98316 ± 0.00247
Reduced Chi-Sqr	252.43998
R-Square (COD)	0.98656
Adj. R-Square	0.98119

Model	Asymptotic
Equation	$y = A - BC^x$
А	4374.58031 ± 11.91895
В	1440.90078 ± 15.1365
С	0.98246 ± 4.9002E-4
Reduced Chi-Sqr	170.99122
R-Square (COD)	0.99949
Adj. R-Square	0.99928

T8: Calibration curves of (Cl)⁻ sensors peak at 315nm and 440.5nm wavelengths.

a) At 315nm Peak

Model	Asymptotic
Equation	$y = A - BC^x$
A	2905.41207 ± 24.71386
В	269.22243 ± 35.1174
С	0.97652 ± 0.00795
Reduced Chi-Sqr	902.02732
R-Square (COD)	0.93914
Adj. R-Square	0.9087

Model	Asymptotic
Equation	$y = A - BC^x$
A	4245.41798 ± 117.89879
В	1409.41201 ± 115.62499
С	0.98613 ± 0.00297
Reduced Chi-Sqr	4960.76216
R-Square (COD)	0.98484
Adj. R-Square	0.97727

T9: Stern-Volmer plots of F⁻ sensors peak at 315 and 440.5 nm wavelengths.

a) At 315nm Peak

Model	Stern-Volmer (at 315 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-8.9897E-4 ± 5.19318E-5
Residual Sum of Squares	0.0012
Pearson's r	0.79629
R-Square (COD)	0.9998
Adj. R-Square	0.99977

Model	Stern-Volmer (at 440.5 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-0.0026 ± 1.49089E-4
Residual Sum of	0.00991
Squares	
Pearson's r	0.72763
R-Square (COD)	0.99765
Adj. R-Square	0.99726

T10: Stern-Volmer plots of $(C_2O_4)^{2-}$ sensors peak at 315 and 440.5 nm wavelengths.

a) At 315nm Peak

Model	Stern-Volmer (at 315 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-0.00172 ± 2.4926E-4
Residual Sum of Squares	0.01395
Pearson's r	0.78499
R-Square (COD)	0.99687
Adj. R-Square	0.99624

Model	Stern-Volmer (at 440.5 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-0.00326 ± 5.03245E-4
Residual Sum of	0.05685
Squares	
Pearson's r	0.73404
R-Square (COD)	0.98275
Adj. R-Square	0.9793

T11: Stern-Volmer plots of (CO₃)²⁻ sensors peak at 315 and 440.5 nm wavelengths.

a) At 315nm Peak

Model	Stern-Volmer (at 315 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-0.00143 ± 1.63949E-4
Residual Sum of Squares	0.03581
Pearson's r	0.79327
R-Square (COD)	0.99398
Adj. R-Square	0.99323

Model	Stern-Volmer (at 440.5 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-0.00279 ± 3.73076E-4
Residual Sum of	0.18542
Squares	
Pearson's r	0.72381
R-Square (COD)	0.94902
Adj. R-Square	0.94265

T12: Stern-Volmer plots of (HPO₄)²⁻ sensors peak at 315 and 440.5 nm wavelengths.

a) At 315nm Peak

Model	Stern-Volmer (at 315 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-0.00241 ± 9.71804E-4
Residual Sum of Squares	0.0237
Pearson's r	0.66877
R-Square (COD)	0.99246
Adj. R-Square	0.98994

Model	Stern-Volmer (at 440.5 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-0.00532 ± 0.00161
Residual Sum of	0.0648
Squares	
Pearson's r	0.59079
R-Square (COD)	0.9732
Adj. R-Square	0.96427

T13: Stern-Volmer plots of Br⁻ sensors peak at 315nm and 440.5 nm wavelengths.

a) At 315nm Peak

Model	Stern-Volmer (at 315 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-0.00138 ± 2.20617E-4
Residual Sum of Squares	0.02169
Pearson's r	0.80087
R-Square (COD)	0.99582
Adj. R-Square	0.99512

Model	Stern-Volmer (at 440.5 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K_{sv}	-0.00306 ± 4.59177E-4
Residual Sum of Squares	0.09397
Pearson's r	0.73481
R-Square (COD)	0.97288
Adj. R-Square	0.96836

T14: Stern-Volmer plots of (BrO₃)-sensors peak at 315nm and 440.5nm wavelengths.

a) At 315nm Peak

Model	Stern-Volmer (at 315 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-9.23223E-4 ± 1.21749E-4
Residual Sum of Squares	0.01186
Pearson's r	0.81298
R-Square (COD)	0.99814
Adj. R-Square	0.99788

Model	Stern-Volmer (at 440.5 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-0.00247 ± 3.28232E-4
Residual Sum of	0.08618
Squares	
Pearson's r	0.75181
R-Square (COD)	0.97927
Adj. R-Square	0.97631

T15: Stern-Volmer plots of (OH)⁻ sensors peak at 315nm and 440.5nm wavelengths.

a) At 315nm Peak

Model	Stern-Volmer (at 315 nm)
Equation	$IO/I = 1 \pm K_{sv} [Q]$
K _{sv}	-6.48044E-4 ± 6.84704E-5
Residual Sum of Squares	0.00375
Pearson's r	0.81858
R-Square (COD)	0.99946
Adj. R-Square	0.99938

Model	Stern-Volmer (at 440.5 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-0.0021 ± 2.47209E-4
Residual Sum of	0.04889
Squares	
Pearson's r	0.76502
R-Square (COD)	0.98958
Adj. R-Square	0.98809

T16: Stern-Volmer plots of (Cl)⁻ sensors peak at 315nm and 440.5nm wavelengths.

a) At 315nm Peak

Model	Stern-Volmer (at 315 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-6.75802E-4 ± 8.85997E-5
Residual Sum of Squares	0.0035
Pearson's r	0.81585
R-Square (COD)	0.99943
Adj. R-Square	0.99933

Model	Stern-Volmer (at 440.5 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	-0.00224 ± 2.34541E-4
Residual Sum of Squares	0.02452
Pearson's r	0.75888
R-Square (COD)	0.99442
Adj. R-Square	0.99349

T17: Calibration curves of H_2O_2 sensors peak at 315nm and 440.5nm wavelengths.

a) At 315nm Peak

Model	Asymptotic
Equation	$y = A - BC^x$
A	185.96064 ± 43.05289
В	-3145.85261 ± 45.21972
С	0.89318 ± 0.00407
Reduced Chi-Sqr	1469.89793
R-Square (COD)	0.99882
Adj. R-Square	0.99849

• At 40°C

Model	Asymptotic
Equation	$y = A - BC^x$
Α	94.17931 ± 22.1738
В	-1134.2164 ± 20.32908
С	0.91745 ± 0.00376
Reduced Chi-Sqr	163.63192
R-Square (COD)	0.99887
Adj. R-Square	0.99855

Model	Asymptotic
Equation	$y = A - BC^x$
А	-218.38365 ± 360.5794

В	-4188.00826 ± 327.34836
С	0.94507 ± 0.00863
Reduced Chi-Sqr	9490.90283
R-Square (COD)	0.99355
Adj. R-Square	0.9917

• At 40°C

Model	Asymptotic
Equation	$y = A - BC^x$
А	-52.73118 ± 64.28093
В	-1695.08405 ± 59.06837
С	0.95089 ± 0.00321
Reduced Chi-Sqr	195.30985
R-Square (COD)	0.99909
Adj. R-Square	0.99883

T18: Stern-Volmer plots of H_2O_2 sensors peak at 315nm and 440.5nm wavelengths.

a) At 315nm Peak

Model	Stern-Volmer (at 315 nm)				
Equation	$I0/I = 1 \pm K_{sv} [Q]$				
K _{sv}	0.27089 ± 0.01654				
Residual Sum of Squares	5.50411				
Pearson's r	0.99303				
R-Square (COD)	0.97732				
Adj. R-Square	0.9748				

• At 40°C

Model	Stern-Volmer (at 315 nm)
Equation	$I0/I = 1 \pm K_{sv} [Q]$
K _{sv}	0.15939 ± 0.00748
Residual Sum of Squares	1.12542
Pearson's r	0.99185
R-Square (COD)	0.98936
Adj. R-Square	0.98818

b) At 440.5nm Peak

Model	Stern-Volmer (at 440.5 nm)				
Equation	$I0/I = 1 \pm K_{sv} [Q]$				
K _{sv}	0.12064 ± 0.00696				
Residual Sum of	0.97306				
Squares					
Pearson's r	0.98876				
R-Square (COD)	0.98642				
Adj. R-Square	0.98491				

• At 40°C

Model	Stern-Volmer (at 315 nm)			
E di				
Equation	$10/1 = 1 \pm K_{sv} [Q]$			
K _{sv}	0.09614 ± 0.00486			
Residual Sum of Squares	0.47401			
Pearson's r	0.9822			
R-Square (COD)	0.9912			
Adj. R-Square	0.99023			

T19: Langmuir binding constants of La QDs for F⁻, $C_2O_4^{2^-}$, $CO_3^{2^-}$, $HPO_4^{2^-}$, Br⁻, BrO₃⁻, OH⁻, Cl⁻ ions at the 315nm and 440.5nm wavelengths.

Anions	1/I ₀ (315n m wavel ength)	Slope from Langmuir descriptio n fitting (315nm wavelengt h)	Interce pt	Binding constant(B) (315nm waveleng th)	1/I ₀ (440.5nm waveleng th)	Slope from Langmui r descripti on fitting (440.5nm waveleng th)	Interce pt	Binding constant(B) (440.5nm waveleng th)
F-	3.4595 6×10 ⁻⁴	2.90815× 10 ⁻⁴ ± 7.01925× 10 ⁻⁶	$\begin{array}{c} 0.00143 \\ \pm \\ 7.23057 \\ \times 10^{-4} \end{array}$	0.20337 (± 0.97 × 10 ⁻²)	3.40842× 10 ⁻⁴	2.03226× 10 ⁻⁴ ± 1.096×10 -5	0.0024 ± 0.00113	0.08468 (± 0.96 × 10 ⁻²)
C ₂ O ₄ ²⁻	3.4595 6×10 ⁻⁴	2.7806×1 0 ⁻⁴ ± 3.37839× 10 ⁻⁶	$\begin{array}{c} 3.84804 \\ \times 10^{-4} \pm \\ 2.92231 \\ \times 10^{-4} \end{array}$	0.7226 (± 1.15 × 10 ⁻ ²)	3.40842× 10 ⁻⁴	2.16028× 10 ⁻⁴ ± 4.54463× 10 ⁻⁶	$\begin{array}{c} 6.08957 \\ \times 10^{-4} \pm \\ 3.9311 \\ \times 10^{-4} \end{array}$	0.35475 (± 1.15 × 10 ⁻²)
CO ₃ ²⁻	3.4595 6×10 ⁻⁴	2.52658× 10 ⁻⁴ ± 5.43355× 10 ⁻⁶	$0.00148 \pm 7.39093 \times 10^{-4}$	0.17071 (± 0.73 × 10 ⁻²)	3.40842× 10 ⁻⁴	$1.71523 \times 10^{-4} \pm 5.2722 \times 10^{-6}$	$0.00173 \pm 7.17146 \times 10^{-4}$	0.09915 (± 0.73 × 10 ⁻²)
HPO ₄ ²⁻	3.4595 6×10 ⁻⁴	2.90869× 10 ⁻⁴ ± 7.99597× 10 ⁻⁷	$\begin{array}{c} 2.94383 \\ \times 10^{-5} \pm \\ 3.65687 \\ \times 10^{-5} \end{array}$	9.88063 (± 2.18 × 10 ⁻²)	3.40842× 10 ⁻⁴	$2.09423 \times 10^{-4} \pm 7.6377 \times 10^{-6}$	$\begin{array}{c} 4.29545 \\ \times 10^{-4} \pm \\ 3.49302 \\ \times 10^{-4} \end{array}$	0.48755 (± 2.18 × 10 ⁻²)
Br⁻	3.4595 6×10 ⁻⁴	2.8243×1 $0^{-4} \pm$ $2.58782 \times$ 10^{-6}	$\begin{array}{c} 3.66365 \\ \times 10^{-4} \pm \\ 2.66573 \\ \times 10^{-4} \end{array}$	0.7709 (± 0.97 × 10 ⁻ ²)	3.40842× 10 ⁻⁴	2.01963× 10 ⁻⁴ ± 3.67487× 10 ⁻⁶	$\begin{array}{c} 8.42041 \\ \times 10^{-4} \pm \\ 3.78551 \\ \times 10^{-4} \end{array}$	0.23985 (± 0.97 × 10 ⁻²)
BrO ₃ -	3.4595 6×10 ⁻⁴	2.95989× 10 ⁻⁴ ± 1.91713× 10 ⁻⁶	$\begin{array}{c} 4.33998 \\ \times 10^{-4} \pm \\ 2.29134 \\ \times 10^{-4} \end{array}$	0.68201 (± 0.83 × 10 ⁻²)	3.40842× 10 ⁻⁴	2.10252× 10 ⁻⁴ ± 3.48048× 10 ⁻⁶	$\begin{array}{c} 0.00105 \\ \pm \\ 4.15984 \\ \times 10^{-4} \end{array}$	0.20024 (± 0.83 × 10 ⁻²)
OH-	3.4595 6×10 ⁻⁴	$3.09443 \times 10^{-4} \pm 1.74903 \times 10^{-6}$	$\begin{array}{c} 4.48558 \\ \times 10^{-4} \pm \\ 2.09043 \\ \times 10^{-4} \end{array}$	0.68986 (± 0.83 × 10 ⁻²)	3.40842× 10 ⁻⁴	2.26718× 10 ⁻⁴ ± 3.55396× 10 ⁻⁶	$0.0012 \pm 4.24766 \times 10^{-4}$	0.18893 (± 0.83 × 10 ⁻²)
Cŀ	3.7900 3×10 ⁻⁴	$3.43745 \times 10^{-4} \pm 2.93487 \times 10^{-6}$	$\begin{array}{c} 3.04169 \\ \times 10^{-4} \pm \\ 3.02323 \\ \times 10^{-4} \end{array}$	0.20337 (± 0.97 × 10 ⁻²)	3.52149× 10 ⁻⁴	2.39308× 10 ⁻⁴ ± 5.9718×1 0 ⁻⁶	$0.00131 \pm 6.15159 \times 10^{-4}$	0.08468 (± 0.97 × 10 ⁻²)