Supporting Information for

A Highly Selective Chromo-fluorogenic Probe for Specific Detection of Sarin Gas

Simulant, Diethylchlorophosphate (DCP) in Liquid and Vapor Phase

Tuhina Sultana^I, Manas Mahato^I, Sabbir Ahamed, Najmin Tohora, Jyoti Chourasia, Shreya

Ali and Sudhir Kumar Das*

Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling,

West Bengal-734013, India

Corresponding author: (Dr. S. K. Das; E-mail: sudhirkumardas@nbu.ac.in)

Equally contributed to this work

S1: Materials and instrumentations

All reagents used in the synthetic procedure are purchased from Sigma-Aldrich, India, and TCI, India, respectively. All organophosphates used in the present study are purchased from Sigma-Aldrich, India, and TCI, India. HPLC-grade solvents are used for synthesis and spectroscopic studies purpose. For nuclear magnetic resonance (NMR) spectral analysis, deuterated chloroform (CDCl₃) is used and obtained from Sigma Aldrich-India. ¹H NMR and ¹³C NMR spectra are recorded on a Bruker 400 MHz instrument at ambient conditions using tetramethylsilane (TMS) as a standard reference with chemical shifts (δ) in ppm unit. On an Agilent 6545XT AdvanceBio LC/Q-TOF spectrometer, high-resolution mass spectra (HRMS) have been performed. The UV-visible absorption spectrum study and photoluminescence experiments have been carried out on a HITACHI U-2910 and HITACHI F-7100 fluorimeter with 2.5 nm excitation and emission slit, respectively, under ambient environments. Excitation and emission wavelengths during the photoluminescence experiment are kept at 320 nm and 340-600 nm, respectively

S2: Synthetic pathway of 2-(4-aminophenyl) benzoxazole (L)

2-(4-aminophenyl) benzoxazole is prepared by following the literature procedure. A mixture of 2-aminophenol (1 g, 9.17 mmol) and polyphosphoric acid (PPA) (20 g) is refluxed

for 30 min at 120 °C, then added 4-aminobenzoic acid (1.3 g, 9.17 mmol) and again refluxed 4 hours at 120 °C temperature, then poured the reaction mixture into an ice-cold water bath. The purified product was collected by column chromatography, and finally, the brownish solid of L was isolated (**Scheme S1**). Yield 85% ¹H NMR (400 MHz, DMSO-d₆, 25 °C) δ (ppm): 6.01(s, 2H), 6.68 (d, 2H), 7.35 (d, 2H), 7.66 (d, 2H), and 7.85 (d, 2H).

Scheme S1 Synthetic route for preparing 2-(4-aminophenyl) benzoxazole.

Fig. S1 ¹H NMR spectra of our synthesized sensor TSB in DMSO- d_6 .

Fig. S2 IR spectra of our synthesized TSB.

Fig. S4 (a) UV-visible spectrophotometric spectra of **TSB** $(5.97 \times 10^{-6} \text{ M})$ upon steady addition of DCP (0- 77.9 mM) in water-DMSO (50% v/v) medium and (b) the change of absorption behavior with increasing concentration of DCP at wavelengths 330 nm and 400 nm, respectively. (c) The ratiometric [DCP] vs. $\log(A_{330}/A_{400})$ calibration curve for quantifying the unknown concentration of DCP with minimal experimental error.

Fig. S5 (a) Selectivity spectrum profile of sensor TSB with various target analytes in 50% (v/v) water-DMSO mixture (b) corresponding selectivity bar diagram at 330 nm wavelength.

Scheme S2 Suppression of ICT and ESIPT processes due to the formation of phosphorylated TSB-DCP product.

Fig. S6 (a) Emission titration of probe TSB solution by gradual addition of toxic analyte DCP (0 to 78 μ M) in 50 % (v/v) water-DMSO medium. (b) Corresponding CIE diagram demonstrating its fluorogenic color.

Fig. S7 (a) Selectivity emission spectra of our developed sensor TSB with various toxic analytes in 50 % (v/v) water-DMSO medium. (b) Corresponding selectivity bar diagram at 390 nm.

Fig. S8 High-resolution mass spectra of the TSB-DCP phosphorylated product.

Fig. S9 ³¹P NMR spectra of DCP and PB-DCP in pure DMSO-*d*₆.

Fig. S10 Pseudo first-order rate constant plot of TSB in the presence of DCP in DMSO (left) and 50 % (v/v) water mixture (right).

Table S1: Comparison table of various chemosensors that have been introduced for the detection of DCP in the last few decades with our **TSB**.

Fluorophore used	Type of response	Respon se Time (min or Sec)	Test kit	Detection limit	Detection in gaseous phase	Ref.
No fluorophore Benzoxazole- chromone based	Colorimetric (ratiometric), fluorometric (turn on)	Within few minute s	vapor test Paper test	0.64 μM (DMSO) & 0.36 μM (Water mixture)	Yes	Our work
No fluorophore	Fluorometric (turn-off)	Almost 2 minutes	Yes (Spot Testing Device)	0.023 and 0.092 mM	Yes	1
fluorescein- hydroxamate aldehyde	Chromogenic	Few minutes	Not mentioned	3 mM	Not mentioned	2
pyridine acceptor moiety	Colorimetric	Not mention ed	Polyurethan e film vapor test	0.9 mM	Yes	3

DASA-Derived Polymeric Probe	Colorimetric (on-off)	Within 2 minutes	vapor test	1 mM	Yes	4
Benzothiazole	Fluorometric (ratiometric)	Few minutes	vapor test	1.6 µM	Yes	5
bis-indolyl-based chromogenic probe	Colorimetric	Few minutes	vapor test Paper test	10.8 µM	Yes	6
pyrene-based turn-on fluorescent polymeric probe	ON/OFF reversible fluorescence	Few minutes	Quartz Plate vapour test	0.1 mM	Yes	7
Xanthene	Colorimetric, fluorometric (turn on)	Not mention ed	Not mentioned	1.36 μM and 26 μM	NA	8
thiourea-based rhodamine	Colorimetric fluorometric	Not availabl e	No	2 μM	No	9
Polymer (BPAm-co- DMA-co-MPDEA)	colorimetric	Within few mins	polymeric film	18.4 µM	Yes	10

Reference

- N. Singh, K. Kumar, N. Srivastav, R. Singh, V. Kaur, J. P. Jasinski and R. J. Butcher, New J. Chem., 2018, 42, 8756–8764.
- 2 D. R. Goud, D. Pardasani, V. Tak and D. K. Dubey, *RSC Adv.*, 2014, 4, 24645–24648.
- 3 S. Royo, A. M. Costero, M. Parra, S. Gil, R. Martínez-Máñez and F. Sancenőn, *Chemistry*, 2011, 17, 6931–6934.
- 4 A. Balamurugan and H. Il Lee, *Macromolecules*, 2016, **49**, 2568–2574.
- A. Manna, K. Jana, N. Guchhait and S. Goswami, *New J. Chem.*, 2017, 41, 6661–66666.

- 6 N. Dey, S. Jha and S. Bhattacharya, *Analyst*, 2018, **143**, 528–535.
- 7 M. Gupta and H. Il Lee, *Macromolecules*, 2017, **50**, 6888–6895.
- 8 K. C. Behera and B. Bag, *Chem. Commun.*, 2020, **56**, 9308–9311.
- S. Li, Y. Zheng, W. Chen, M. Zheng, H. Zheng, Z. Zhang, Y. Cui, J. Zhong and C.
 Zhao, *Mol. 2019, Vol. 24, Page 827*, 2019, 24, 827.
- T. N. Annisa, S. H. Jung, M. Gupta, J. Y. Bae, J. M. Park and H. Il Lee, ACS Appl.
 Mater. Interfaces, 2020, 12, 11055–11062.