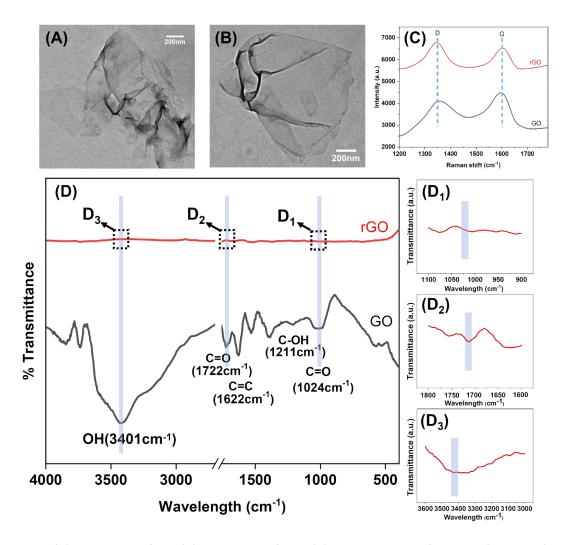
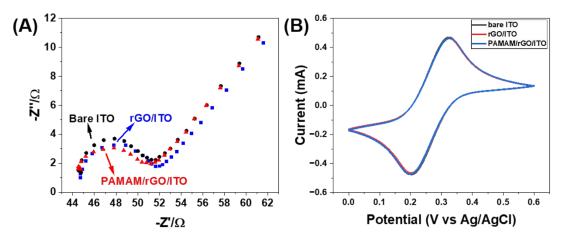
Supplementary Information (SI) for Sensors & Diagnostics. This journal is © The Royal Society of Chemistry 2024

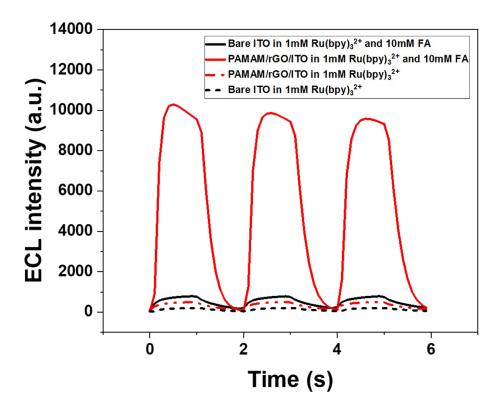

Supporting Information:

In-Situ Electrode Interface Reaction-Enabled Electrochemiluminescence Imaging for Single-Cell Formaldehyde Release

Juanhua Zhou, a Yang Liu*a


^a Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing, 100084, China

Characterization of GO and rGO


Figure S1 (A) TEM image of GO. (B) TEM image of rGO. (C) Raman spectra of bare GO (black line), rGO (red line). (D) FTIR spectra of GO (black line), rGO (red line), (D_1) - (D_3) are magnified images of the areas boxed in red line.

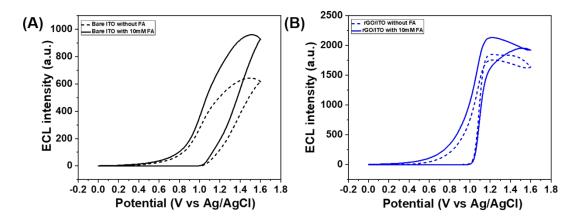
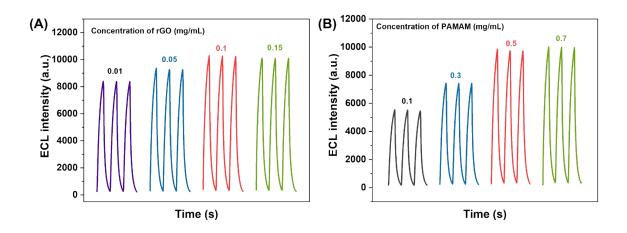
Electrochemical characterization of PAMAM/rGO/ITO

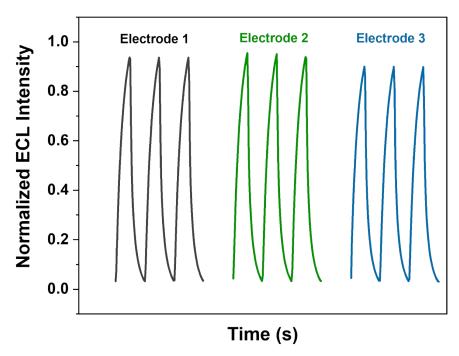
Figure S2 (A) EIS recorded using bare ITO (black line), rGO/ITO (red line) and PAMAM/rGO/ITO (blue line) in 5 mM of $[Fe(CN)_6]^{3-/4-}$ in 0.1 M KCl. (B) CV curves recorded using bare ITO (black line), rGO/ITO (red line) and PAMAM/rGO/ITO (blue line) in 5 mM of $[Fe(CN)_6]^{3-/4-}$ in 0.1 M KCl at the scan rate of 50 mV s⁻¹.

ECL curves during chronoamperometry

Figure S3 ECL curves at PAMAM/rGO/ITO (red line), and bare ITO (black line) in 1mM Ru(bpy) $_3^{2+}$ with or without 10mM FA respectively. The electrochemical method is the chronoamperometry (1.3V 1s, 0V 1s).

ECL curves of bare ITO and rGO/ITO


Figure S4 (A) ECL curves at bare ITO in 1mM Ru(bpy)₃²⁺ with or without 10mM FA respectively. (B) ECL curves at rGO/ITO (blue line) in 1mM Ru(bpy)₃²⁺ with or without 10mM FA respectively. The electrochemical method is CV.

Optimization of Modification Concentrations of rGO and PAMAM

Figure S5 (A) ECL signal of ITO modified with different concentration of rGO, while the concentration of PAMAM set as 0.5mg/mL. (B) ECL signal of ITO modified with different concentration of PAMAM, while the concentration of rGO set as 0.1mg/mL. The electrochemical method is the chronoamperometry (1.3V 1s, 0V 1s). The electrolyte is 1mM Ru(bpy)₃²⁺ and 10mM FA.

Reproducibility of modified electrode

Figure S6 ECL signal from three modified electrode in 1mM Ru(bpy) $_3^{2+}$ with 10mM FA. The electrochemical method is the chronoamperometry (1.3V 1s, 0V 1s).

Detection performance in diluted serum

Amount (mM)	Found (mM)	Recovery (%)	RSD (%)
0.05	0.047	94	3.42
0.1	0.095	95	4.27
0.5	0.508	101	4.49
0.5	0.508	101	4.49

Table S1 Average calculated concentrations and recoveries in 0.1% serum samples. (n=3)

Control experiment on the cells without TG stimulation

Figure S7 (A) BF image of HeLa cells on PAMAM-rGO/ITO. (B) ECL image of cells/ PAMAM-rGO/ITO in 1mM Ru(bpy)₃²⁺ before stimulation. (C) The result of ECL image collected at the 2nd after the stimulation of DMSO in 1mM Ru(bpy)₃²⁺ on cells/PAMAM-rGO/ITO subtract Figure B. (D) The result of ECL image collected at the 10th minute after the stimulation of DMSO in 1mM Ru(bpy)₃²⁺ on cells/PAMAM-rGO/ITO subtract Figure B. (E) The result of ECL image collected at the 20th minute after the stimulation of DMSO in 1mM Ru(bpy)₃²⁺ on cells/PAMAM-rGO/ITO subtract Figure B. (F) The result of ECL image collected at the 30th minute after the stimulation of DMSO in 1mM Ru(bpy)₃²⁺ on cells/PAMAM-rGO/ITO subtract Figure B. (G) The relative grayscale value across the white line in Figure C, D, E, F separately.