Supporting Information

Detection of SARS-CoV-2 and noroviruses in cold-chain food samples using aptamer-functionalized graphene field-effect transistors

Qingliu Wu^a, Songjia Luo^a, Lu Wang^a, Baolei Dong^a, Hao Qu^{a, b,*}, Lei Zheng^{a, c}

^a School of Food and Biological Engineering, Hefei University of Technology, Hefei

230009, China

- ^b Engineering Research Center of Bioprocess, Ministry of Education, Hefei University
- of Technology, Hefei, 230009, China
- ^c Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University
- of Technology, Hefei 230009, China

* Corresponding author.

E-mail: quhao@hfut.edu.cn (H. Qu)

Figure S1. I_{DS} vs. V_{GS} curves and I_G vs. V_{GS} curves obtained by scanning V_{GS} in the range of -0.2 to 0.6 V, with a fixed V_{DS} of 0.05 V and a scanning rate of 0.01 V/s.

Figure S2. (a) Transfer characteristic curves of the SARS-CoV-2 GFET sensor when incubated with SARS-CoV-2 spike proteins for 3-10 min; (b) Transfer characteristic curves of norovirus GFET sensor when incubated with norovirus-like particles for 3-10 min.

Figure S3. (a) Zoomed-in view of the transfer characteristic curves of the SARS-CoV-2 GFET at various concentrations of SARS-CoV-2 spiking proteins (diluted with $0.1 \times$ PBS). (b) Zoomed-in view of the transfer characteristic curves of the norovirus GFET at different concentrations of norovirus-like particles.

Comparison of the proposed SARS-CoV-2 GFET sensor with other sensitive sensors in the same field								
Methods	Target	LOD	Linear range	Assay time	Refs.			
DNA aptamer- conjugated GFET	spike proteins	33 fg/mL	1 pg/mL- 100 ng/mL	5 min	this work			
Electrochemical aptamer-based	spike proteins	35.4±11.7 pM	760 pg/mL- 76 ng/mL	5 min	S 1			
DNA aptamer- conjugated GFET	spike proteins	1.28 (PFU) /mL	100 fM-100 nM	<20 min	S2			
GO/Gr FET	spike proteins	8 fg/mL	10 fg/mL- 100 pg/mL	20 min	S 3			
(BN-GO gel) FET	nucleocapsid protein	10 ag/mL	10 ag/mL-1 μg/mL	4 min	S4			
Eptamer FET	RNA	0.01 copy/μL	0.025-0.05 copy/μL	5 min	S5			
DNA probes PGFET	RNA	1 fM	1fM-100 pM	20 min	S 6			
TDN LC EET	DNA	1-2 copies	0.5-500	14 min	87			

 $/100 \ \mu L$

TDN-LG FETs

RNA

 $copy\!/\mu L$

14 min

S7

Table 1. Comparison of SARS-CoV-2 analytical performance of the SARS-CoV-2 GFET sensor with other sensitive sensors in the same field.

same field.								
Methods	Target	LOD	Linear range	Assay time	Refs.			
Aptamer-	NoV	6 17 ng/mI	10 pg/mL-100	5 min	this work			
conjugated GFET	VLP	0.17 pg/mL	ng/mL					
3D electrochemical	NoV	0.28 ng/mI	1 ng/mL-	30 min	S 8			
Aptasensor	VLP	0.28 lig/lilL	10 µg/mL					
Electrochemical	NoV	60 ag/mI	1 fg/mL-	5 min	S9			
biosensor	VLP	00 ag/IIIL	1 ng/mL					
Aptasensor	NoV	100 pM	100 pM-3.5	35 min	S10			
	VLP		nM					
Aptasensor	NoV	80 ng/ml	0.16-10	30 min	S 11			
	VLP		μg/mL		511			
Electrochemical	UnNoV	0.003	$0.01 - 10^5$	2 h	S12			
biosensor	TIUNOV	copies/mL	copies/mL					
Electrochemical	UnNoV	0.84	$2.5 - 2.5 \times 10^5$	1.5 h	S12			
biosensor	HUINO V	copy/mL	copies/mL		515			
Electrochemical	$\mathbf{U}_{\mathbf{v}}\mathbf{N}_{\mathbf{o}}\mathbf{V}$	2.37	$10-10^4$	1 h	S 14			
biosensor	TUINO V	copies/mL	copies/mL		514			

Table 2 Comparison of norovirus analysis performance of the Norovirus GFET sensor with other sensitive sensors in the same field.

Comparison of the proposed norovirus GFET sensor with other sensitive sensors in the

Supporting References

S1 A. Ldili, C. Parolo, R. Alvarez-Diduk, A. Merkoçi, Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based Sensor, ACS Sens., 2021, 6, 8, 3093–3101.

S2 D.K. Ban, T. Bodily, A.G. Karkisaval, R. Lal, Rapid self-test of unprocessed viruses of SARS-CoV-2 and its variants in saliva by portable wireless graphene biosensor, PNAS, 2022, 119, 2206521119.

S3

J. Gao, C. Wang, Y. Chu, Y. Han, Y. Gao, Y. Wang, C. Wang, H. Liu, L. Han, Y. Zhan, Graphene oxide-graphene Van der Waals heterostructure transistor biosensor for SARS-CoV-2 protein detection, Talanta, 2022, 240,123197.

S4

I. Novodchuk, M. Kayaharman, I. Prassas, A. Soosaipillai, R. Karimi, I.A. Goldthorpe, E. Abdel-Rahman, J. Sanderson, E.P. Diamandis, M. Bajcsy, M. Yavuz, Electronic field effect detection of SARS-CoV-2 N-protein before the onset of symptoms, Biosens. Bioelectron., 2022, 210, 114331.

S5 Y. Wu, D. Ji, C. Dai, D. Kong, Y. Chen, L. Wang, M. Guo, Y. Liu, D. Wei, Triple-Probe DNA Framework-Based Transistor for SARS-CoV-2 10-in-1 Pooled Testing, Nano Lett., 2022, 22, 3307–3316.

S6 J. Gao, C. Wang, C. Wang, Y. Chu, S. Wang, M. Sun, H. Ji, Y. Gao, Y. Wang, Y. Han, F. Song, H. Liu, Y. Zhang, L. Han, Poly-l-Lysine-Modified Graphene Field-Effect Transistor Biosensors for Ultrasensitive Breast Cancer miRNAs and SARS-CoV-2 RNA Detection, Anal. Chem., 2022, 94, 1626–1636.

S7 X. Wang, D. Kong, M. Guo, L. Wang, C. Gu, C. Dai, Y. Wang, Q. Jiang, Z. Ai, C. Zhang, D. Qu, Y. Xie, Z. Zhu, Y. Liu, D. Wei, Rapid SARS-CoV-2 Nucleic Acid Testing and Pooled Assay by Tetrahedral DNA Nanostructure Transistor, Nano Lett. 2021, 21, 9450–9457.

S8 H. Jiang, Z. Sun, C. Zhang, X. Weng, 3D-architectured aptasensor for ultrasensitive electrochemical detection of norovirus based on phosphorene-gold nanocomposites, Sensor. Actuat. B-Chem, 2022, 354, 131232.

S9H. Zhao, W. Xie, R.-L. Zhang, X.-D. Wang, H.-F. Liu, J. Li, Tao Sha, X.-

S. Guo, J. Li, Q.-M. Sun, Y.-P. Zhang, C.-P. Li, Electrochemical sensor for human norovirus based on covalent organic framework/pillararene heterosupramolecular nanocomposites, Talanta, 2022, 237, 122896.

S10 R. Chand, S. Neethirajan, Microfluidic platform integrated with graphene-gold nano-composite aptasensor for one-step detection of norovirus, Biosens. Bioelectron., 2017, 98, 47-53.

S11 B. Kim, K.W. Chung, J.H. Lee, Non-stop aptasensor capable of rapidly monitoring norovirus in a sample, J. Pharmaceut. Biomed., 2018, 152, 315-321. S12

H. Liu, S. Ma, G. Ning, R. Zhang, H. Liang, F. Liu, L. Xiao, L. Guo, Y. Zhang, C.-

S12 Li, H. Zhao, A "peptide-target-aptamer" electrochemical biosensor for norovirus detection using a black phosphorous nanosheet@Ti3C2-Mxene nanohybrid and magnetic covalent organic framework, Talanta, 2023, 258,124433.

S13 F. Nasrin, I.M. Khoris, A.D. Chowdhury, J. Boonyakida, E.Y. Park, Impedimetric biosensor of Norovirus with low variance using simple bioconjugation on conductive polymer-Au nanocomposite, Sensor. Actuat. B-Chem, 2022, 369, 132390.

S14 S.H. Baeka, C.Y. Parka, T.P. Nguyenb, M.W. Kima, J.P. Parkc, C. Choid, S.Y. Kime, S.K. Kailasaf, T.J. Park, Novel peptides functionalized gold nanoparticles decorated tungsten disulfide nanoflowers as the electrochemical sensing platforms for the norovirus in an oyster, 2020, 114, 107225.