Supplementary Information of "Challenges in Aptamer-Based Sensor Development Using Carbon Nanotube Networks"

Laura Ferrer Pascual,^a Eero Gustafsson^a, Juha Siitonen^b, Vasuki Durairaj^c and Tomi Laurila^{*a,b}

Figure SI1. Scheme of the two possible aptamer structures obtained with M-fold.

EDC/NHS ratio and concentration optimization

Table SI1. Peak shift at 160Hz of three electrodes activated with different ratios and concentrations of EDC/NHS.

Ratio	[EDC]	[NHS] (M)	Peak shift (mV) at 160Hz						
	(M)		BG-VA	BGA-VA	BG-BGA				
1:1	0.005	0.005	-3.1	-9.1	6.0				
1:2	0.1	0.2	-6.0	-6.0	0.0				
4:1	0.2	0.05	-3.1	-9.1	6.0				

Optimal frequency study

Figure SI3. Comparison of the signal change at different frequencies for the four studied EAB sensors.

	160 Hz							40 Hz						
	Sensor	Forward peak current (µA)			Signal	Signal	Forwa	rd peak curre	Signal	Signal				
	#	BG	VA	BGA	change	loss	BG	VA	BGA	change	loss			
ц.	1	26.78	19.27	22.80	28%	15%	0.523	0.495	0.462	5%	12%			
ect valen	2	32.01	24.15	28.48	25%	11%	0.846	0.697	0.721	18%	15%			
Dire	3	22.89	18.19	18.79	21%	18%	0.473	0.443	0.429	6%	9%			
Ĕ	Mean	27.2±3.7	20.5±2.6	23.0±4.1	25±3%	15±3%	0.61±0.17	0.55±0.11	0.54±0.13	10±6%	12±2%			
	1	27.26	20.28	23.62	26%	13%	0.485	0.467	0.418	4%	14%			
ect lent	2	27.98	23.20	26.12	17%	7%	0.742	0.607	0.634	18%	14%			
Dire	3	22.22	16.05	18.75	28%	16%	0.555	0.447	0.450	19%	19%			
	Mean	25.8±2.6	19.8±2.9	22.8±3.1	24±5%	12±4%	0.59±0.11	0.51±0.07	0.50±0.10	14±7%	16±2%			
	1	27.17	18.78	22.74	31%	16%	0.434	0.395	0.374	9%	14%			
er er	2	37.90	31.11	33.73	18%	11%	0.927	0.672	0.763	28%	18%			
E E	3	25.03	19.37	22.63	23%	10%	0.647	0.570	0.574	12%	11%			
	Mean	30.0±5.6	23.1±5.7	26.4±5.2	24±5%	12±3%	0.67±0.20	0.55±0.11	0.57±0.16	16±8%	14±3%			
	1	30.52	23.70	27.47	22%	10%	0.570	0.469	0.474	18%	17%			
er nix	2	31.96	25.37	29.01	21%	9%	0.969	0.736	0.820	24%	15%			
Prei	3	19.28	15.60	17.80	19%	8%	0.582	0.497	0.524	15%	10%			
	Mean	27.3±5.7	21.6±4.3	24.8±5.0	21±1%	9±1%	0.71±0.19	0.57±0.12	0.61±0.15	19±4%	14±3%			

Table SI2. Forward peak current, signal change, and signal loss values extracted from the potentialcorrected SWVs **at 40 and 160Hz**. (VA=vancomycin, BG=PBS before VA measurement, BGA=PBS after VA measurement).

Figure SI4. Peak shifts of the forward partial currents at 40 and 160Hz of the four aptamer immobilization approaches. Three sensors were measured for each aptamer immobilization approach. (VA=vancomycin, BG=PBS before VA measurement, BGA=PBS after VA measurement).

Stability and repeatability study

Table SI3. Signal loss after each measurement of saturating concentration of vancomycin for Direct non-covalent and Linker LbL sensors prepared with different cleaning methods. The total signal loss after the three vancomycin measurements is also presented.

	Signal loss %										
	Dir	ect non-co	valent sens	ors	Linker LbL sensors						
	No cleaning		GuHCl o	leaning	VA bath	cleaning	GuHCl cleaning				
	40 Hz	2000 Hz	40 Hz	2000 Hz	40 Hz	2000 Hz	40 Hz	2000 Hz			
After 1 st VA measurement	24.5±5.6	14.8±3.6	11.8±2.9	10.1±1.9	6.3±13.8	8.2±2.2	15.7±3.2	8.2±1.9			
After 2 nd VA measurement	6.5±1.5	5.2±1.1	2.9±0.3	2.7±1.0	15.5±6.8	11.2±5.6	1.4±2.7	3.5±2.2			
After 3 rd VA measurement	8.0±5.9	7.1±5.0	4.1±1.0	2.6±1.2	10.3±6.4	7.2±5.7	6.0±3.9	2.8±3.2			
Total loss	34.7±9.5	24.8±7.3	19.2±4.1	27.3±1.9	29.5±9.5	24.1±10.0	21.7±6.9	13.8±5.9			

Basic electrochemistry of plain SWCNT

Figure SI5. Cyclic Voltammetry of a plain electrode in PBS before (BG) and after (BGafter) the measurement of 500uM VA.

Figure SI6. SWV of a plain electrode in PBS before (BG) and after (BGafter) the measurement of 500uM VA.

Figure SI7. CV at 1V/s of a plain electrode in A) 500uM ATTO-MB2 and B) 1M KCl before and after the ATTO-MB2 measurement.

Concentration series

Figure SI8. Potential-corrected forward SWVs at 160Hz of 1, 10, 25, 50, 100, and 250uM VA solutions of A) Direct non-covalent, B) Direct EDC/NHS, C) Linker step-by-step, and D) Linker premixed electrodes.

Table SI4. Shift in the position of the oxidation peak due to vancomycin of the four different sensors.

PEAK SHIFT (mV)													
	Direct non-covalent			Direct EDC/NHS				Linker Step-by-step			Linker Pre-mixed		
Sample #	1	2	3	1	2	3	4	1	2	3	1	2	3
BG-BGafter	2.9	3	2.7	6	2.9	2.8	2.7	2.9	4.5	-0.2	0.1	1.5	1.7
BG-1uM	-0.2	0	3.1	3.1	0	0	-0.2	0	3	-2.1	0	-1.5	0
BG-10uM	3.2	-0.2	3.1	3	0	-0.1	-0.3	3.2	3	-0.1	0	-1.6	-0.2
BG-25uM	-0.3	-0.2	3	3	-0.1	-0.1	2.9	-0.1	2.9	-0.2	0	-1.7	-0.1
BG-50uM	-0.3	3.1	2.9	3	-0.1	-0.1	2.8	-0.1	2.8	-0.2	-0.2	-0.9	1.7
BG-100uM	1.3	-0.3	-0.7	2.9	-0.1	-0.2	2.8	-0.1	2.8	-0.2	-0.2	-1.8	1.7
BG-250uM	2.9	-0.3	2.6	2.9	-0.3	-0.2	-0.5	3.1	1.2	-3.3	-0.1	-1.8	-0.2