Supplementary Information for

Avoiding Commercial Kit-Based DNA Isolation and Purification Steps: A Rapid Method for *Cryptosporidium* Oocyst Detection

Rabbee G. Mahmudunnabi^{a,b}, Amandeep Singh Pannu^c, Nam-Trung Nguyen^{a,b}, Helen M. Stratton^{a,b*}, Muhammad J. A. Shiddiky^c *

^aSchool of Environment and Science, Griffith University, Nathan, QLD 4111, Australia

^bQueensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia

^c Rural Health Research Institute (RHRI), Charles Sturt University, Orange, NSW 2800, Australia

*Corresponding Authors: <u>mshiddiky@csu.edu.au</u> (MJAS), <u>h.stratton@griffith.edu.au</u> (HS)

Figure S1. LAMP primer orientation in multiple sequence alignment of S-adenosyl-lsynthetase (SAM) gene of Cryptosporidium parvum (AB119646.1 and AY161084.1), C. hominis (XM 662396.1) and C. meleagridis (AB119648.1).

Figure S2. Optimisation analytical parameters. (A) Optimisation of heat(95° C) lysis time (3, 5, 10, 15 min (B) the number of magnetic beads for immunomagnetic isolation (IMS). Each bar represents the mean Cq value, and the error bar denotes the standard deviation of four measurements.

Figure S3. Gel electrophoresis of colourimetric LAMP products of different concentrations of C. parvum genomic DNA $(1.05 \times 10^4 - 1.05 \times 10^{-1} \text{ Copies}/\mu L)$.

Figure S4. (A) qPCR of Cryptosporidium genomic DNA with a 10-fold serial dilution from 1.05×10^4 copies/ μ L to 1.05×10^{-1} copies/ μ L, and (C) the corresponding calibration curve. Each data point in the calibration curve represents the mean value of four measurements. The error bar on each data point represents the standard deviation.

Figure S5. cLAMP reactions of different oocysts (3 to 20 oocysts). Oocysts and mud spiked in 10 mL of tap water. Samples were subjected to IMS and heat lysis, followed by cLAMP.

Primer type	Sequence 5'> 3'	Primer length	Amplicon size (bp)	Target
F3	ATTTGAT <u>R</u> GACAAAGAAACTAG	22		S-adenosyl
В3	CGATTGACTTTGCAACAAG	19		methionine
FIP	TTGCGCCCTGTTAATCCAGCAT-	45		synthetase
(F1c–F2)	TAATTAATCCATCTGGCAG <u>R</u> TTT			(SAM) gene
BIP	TTGTAGATACATACGGAGGATGGG	46	216	of C. parvum,
(B1–B2c)	-TCTACTTTAGTTGCATCTTTCC			C. hominis
LF	CTGCTGGCCC <u>M</u> CCAATTG	18		and C.
LB	CATGG <u>R</u> GGTGGTGCATTTAG	20		meleagridis

 Table S1: Primer set for LAMP assay to amplify SAM gene of Cryptosporidium species.

*Degenerate nucleotides for LAMP primers are underlined.

	Table S2: LAMP primer mix	(1.0 mL)	preparation and final	concentration of each	primer.
--	---------------------------	-----------	-----------------------	-----------------------	---------

Primer type and components	Volume used to prepare 10X primer mix	Volume of 10X primer mix used per 12.5 µL LAMP reaction	Final concentration for each primer
FIP (100µM)	160 μL		1.6 µM
BIP (100µM)	160 μL		1.6 µM
F3(100µM)	20 µL	1.25 μL	0.2 μΜ
B3(100µM)	20 µL		0.2 μΜ
LF (100µM)	40 µL		0.4 μΜ
LB (100µM)	40 µL	-	0.4 µM
Nuclease-free H ₂ O	560 μL		

Components	Volume	Final concentration				
qPCR reaction(1	l0µL)					
SensiFAST SYBR® No-ROX Mix(2X)	5.0 µL	1X				
10 μM forward primer (F3)	0.4 µL	400 nM				
10 μM reverse primer (B3)	0.4 µL	400 nM				
Target	2.5 μL					
Nuclease-free H ₂ O	1.7 μL					
RT-qPCR reaction	(10 µL)					
Luna Universal One-Step Reaction Mix (2X)	5.0 µL	1X				
Luna WarmStart® RT Enzyme Mix (20X)	0.5 µL	1X				
10 μM forward primer (F3)	0.4 µL	400 nM				
10 μM reverse primer (B3)	0.4 µL	400 nM				
Target	2.5 μL					
Nuclease-free H ₂ O	1.2 µL					
Colorimetric LAMP read	ction (12.5 µL)					
WarmStart Colorimetric LAMP Master Mix (2X)	6.25 μL	1X				
LAMP Primer Mix (10X)	1.25 µL	1X				
Target	2.5 μL					
Nuclease-free H ₂ O	2.5 μL					
Fluorescent LAMP reaction (12.5 μL)						
WarmStart Fluorescent LAMP Master Mix (2X)	6.25 μL	1X				
Fluorescent dye (50X)	0.25	1X				
LAMP Primer Mix (10X)	1.25 μL	1X				
Target	2.5 μL					
Nuclease-free H ₂ O	2.5 μL					

Table S3: qPCR, RT-qPCR and LAMP reaction calculations

Cycle step	Temperature	Time	Cycles				
qPCR thermal cycling condition							
Polymerase activation	95 °C	2 min	1				
Denaturation	95 °C	5 sec					
Annealing	56°C	10 sec	40				
Extension	72°C	15 sec	40				
Latension	72 C	(+ reading)					
RT-qPCR thermal cycling condition							
Reverse Transcription	55°C	10 min	1				
Initial Denaturation	95°C	1 min	1				
Denaturation	95°C	10 sec					
Extension	60°C	30 sec	45				
Extension	00 C	(+ reading)					
LAMP thermal cycling condition							
Amplification	65°C	50 s*	50				
Enzyme inactivation	75°C	5 min	1				
*Fluorescence reading was taken if it colour change was observed at the end	was fLAMP, whe lpoint.	ereas, for cLAN	MP, a				

 Table S4: qPCR, RT-qPCR, and LAMP temperature cycling conditions

Nucleic Acid Extraction method	Number of oocysts						Matrices					
	1000	500	100	50	30	20	15	10	5	3	2	
DNeasy Blood & Tissue Kits	100%	100%	100%	100%	100%	75%	-	Neg	Neg	-	-	NA
FastDNA™ SPIN Kit for Soil	100%	100%	100%	100%	100%	25%	-	Neg	Neg	-	-	NA
This assay	100%	100%	100%	100%	-	-	-	100%	100%	-	Neg	Tap water
This assay	-	-	-	-	-	100%	100%	100%	50%	Neg	-	0.1 mL packed pellet per 10 mL of tap water

Table S5: Comparison of commercial kit-based nucleic acid extraction methods with direct lysis for cLAMP assay.

Assay	Sensor probes/target biomarkers	Signal recorded /Detection mode	LOD (Normalised LOD)	Comments and DNA/RNA extraction procedure	Ref
Electrochemical capitative biosensor	Interdigitated gold electrode modified with anti- <i>Cryptosporidium</i> monoclonal antibodies (IgG3)	Relative capacitance	40 oocysts/5 μL (10 oocyst/μL)	label-free biosensor	S1
Electrochemical ELISA-type screen-printed electrode	Antibody functionalized screen-printed electrode captures the oocysts. Detection is achieved due to the oxidation of OPD in the presence of H ₂ O ₂ by HRP-conjugated primary antibody.	Electrode potential	500 oocysts/mL (0.5 oocysts/ μL)	Potential increases linearly as the number of captured oocysts increases	S2
Electrochemical apta-sensor for oocyst detection	Aptamer attached to gold nanoparticle-modified carbon electrode captures oocyst to the electrode surface. Aptamer: 5'-/5ThioMC6- D/GGCTTCTGGACTAC CTATGC-3'	Square wave voltammetry (SWV) of ferri/ferrocyani de	100 oocysts/30μL (3.33 oocysts/ μL)	High specificity and selectivity, signal-on sensor	S3
Microfluidics with micromesh	SUS micromesh having 100(10x10) microcavities (diameter 2.7µm). After capturing the oocysts to	Fluorescent microscopy	10 oocysts/mL (0.01 oocysts/μL)	Comparatively rapid (60 minutes)	S4

	Table S5: Com	parison of different	t assavs for Cryptos	sporidium oocvst detection
--	---------------	----------------------	----------------------	----------------------------

	microcavities, stained with fluorescent antibody.				
Optical microfluidic biosensors	Immunoagglutinated microbeads with COWP protein	Mie scattering intensity	1–10 oocysts/mL (0.001-0.01/ μL)	Very Rapid (10 minutes analysis time)	S5
CRISPR/Cas12a- powered immunosensor	Antibody-DNA conjugates (Texas red labeled) with CRISPR/Cas12a recognition site. The signal amplification happened due to multi- streptavidin sites on antibodies which allow a lot of biotinylated DNA probes to be attached.	96 well plate fluorescent reading	1 oocyst per reaction	Robust and rapid	86
CRISPR/Cas12a- powered lateral flow strip (LFS)	RPA of the gp60 gene followed by CRISPR/Cas12a trans cleavage. Amplification through RPA before CRISPR/Cas12a cleavage activity has made this assay highly sensitive.	Fluorescence readout, naked eye observation under blue light	10 oocysts/mL (0.01oocysts/ μL)	DNA was extracted by boiling the sample with 10% N- lauroylsarcosine sodium salt (LSS) and purified with a homemade column.	S7
GP60 gene LAMP assay for <i>Cryptosporidium</i> detection.	gp60 gene	Gel electrophoresis	1 oocyst per reaction	First report on LAMP assay for <i>Cryptosporidium</i> oocyst detection	S8
Reverse transcription LAMP	18S rRNA	Fluorescent LAMP	6×10^{-3} oocysts per reaction	Highly sensitive due to the plenty of 18S rRNA transcripts	<u>S9</u>

			(calculated from the serial dilution of RNA)	Combination of Five freeze (- 80°C) and thaw (37°C) cycles, heating, and proteinase K treatment.	
Uracil DNA glycosylase- supplemented loop-mediated isothermal amplification (UDG-LAMP)	SAM gene	Fluorescence	10 oocysts	More resistant to contaminant Stool DNA Isolation Mini-Kit (YT9032, Yekta Tajhiz Co, Iran)	S10
Detection of <i>Cryptosporidium</i> spp. from environmental samples using LAMP	SAM gene	Fluorescence and colorimetric	9 Copies per reaction		S11
Comparison of three LAMP assays to analyse feacal samples	SAM gene, <i>hsp</i> 70 and <i>gp</i> 60 gene SAM LAMP assay was more sensitive than the other two.	Fluorescence		270 fecal samples were analyzed by nested PCR. Nested PCR-negative samples were found to be positive by LAMP.	S12
Accelerated LAMP assay with <i>Cryptosporidium</i> oocyst's lysate	SAM gene and transcript	Colorimetric and fluorescent LAMP	1 copy genomic DNA per reaction 5-10 oocyst per reaction	Simple heat lysis was used for DNA extraction	This work
S-adenosyl methior (hsp70).	nine-L synthetase (SAM), Squ	are wave voltamn	netry (SWV), glycop	rotein 60 (gp60), heat shock prote	in 70

All the LAMP assays mentioned here targeted the SAM gene used primers published by Bakheit et al.^{S12}

REFERENCES

- S1) G. Luka, E. Samiei, S. Dehghani, T. Johnson, H. Najjaran, M. Hoorfar, Label-Free Capacitive Biosensor for Detection of *Cryptosporidium*. *Sensors (Switzerland)*, 2019, 19, 258.
- S2) O. Laczka, L. Skillman, W. G. Ditcham, B. Hamdorf, D. K. Y. Wong, P. Bergquist, A. Sunna, Application of an ELISA-Type Screen Printed Electrode-Based Potentiometric Assay to the Detection of *Cryptosporidium* Parvum Oocysts. *J. Microbiol. Methods*, 2013, 95, 182–185.
- S3) A. Iqbal, M. Labib, D. Muharemagic, S. Sattar, B. R. Dixon and M. V. Berezovski, Detection of *Cryptosporidium parvum* oocysts on fresh produce using DNA aptamer, *PLoS One*, 2015, **10**, e0137455.
- S4) T. Taguchi, A. Arakaki, H. Takeyama, S. Haraguchi, M. Yoshino, M. Kaneko, Y. Ishimori, T. Matsunaga, Detection of *Cryptosporidium* Parvum Oocysts Using a Microfluidic Device Equipped with the SUS Micromesh and FITC-Labeled Antibody. *Biotechnol. Bioeng.*, 2007, 96, 272–280.
- S5) S. V. Angus, H. J. Kwon, J. Y. Yoon, Field-Deployable and near-Real-Time Optical Microfluidic Biosensors for Single-Oocyst-Level Detection of *Cryptosporidium* Parvum from Field Water Samples. J. Environ. Monit., 2012, 14, 3295–3304.
- S6) Y. Li, F. Deng, T. Hall, G. Vesey and E. M. Goldys, CRISPR/Cas12a-powered immunosensor suitable for ultra-sensitive whole *Cryptosporidium* oocyst detection from water samples using a plate reader, *Water Res.*, 2021, **203**, 117553.
- S7) F. Yu, K. Zhang, Y. Wang, D. Li, Z. Cui, J. Huang, S. Zhang, X. Li and L. Zhang, CRISPR/Cas12a-based on-site diagnostics of *Cryptosporidium parvum* IId-subtypefamily from human and cattle fecal samples, *Parasit. Vectors*, 2021, 14, 1–10.
- S8) P. Karanis, O. Thekisoe, K. Kiouptsi, J. Ongerth, I. Igarashi and N. Inoue, Development and preliminary evaluation of a loop-mediated isothermal amplification procedure for sensitive detection of *Cryptosporidium* oocysts in fecal and water samples, *Appl. Environ. Microbiol.*, 2007, 73, 5660–5662.
- S9) A. Inomata, N. Kishida, T. Momoda, M. Akiba, S. Izumiyama, K. Yagita and T. Endo, Development and evaluation of a reverse transcription-loop-mediated isothermal amplification assay for rapid and high-sensitive detection of *Cryptosporidium* in water samples, *Water Sci. Technol.*, 2009, **60**, 2167–2172.
- S10) S. Fallahi, S. F. Moosavi, A. Karimi, A. S. Chegeni, M. Saki, P. Namdari, M. M. Rashno, A. M. Varzi, M. J. Tarrahi, M. Almasian, An Advanced Uracil DNA Glycosylase-Supplemented Loop-Mediated Isothermal Amplification (UDG-LAMP) Technique Used in the Sensitive and Specific Detection of *Cryptosporidium* Parvum, *Cryptosporidium* Hominis, and *Cryptosporidium* Meleagridis in AIDS Patients. *Diagn. Microbiol. Infect. Dis*, 2018, **91**, 6–12.
- S11) N. P. Mthethwa, I. D. Amoah, P. Reddy, F. Bux and S. Kumari, Fluorescence and colorimetric LAMP-based real-time detection of human pathogenic *Cryptosporidium* spp. from environmental samples, *Acta Trop.*, 235, 106606.

S12) M. A. Bakheit, D. Torra, L. A. Palomino, O. M. M. Thekisoe, P. A. Mbati, J. Ongerth and P. Karanis, Sensitive and specific detection of *Cryptosporidium* species in PCRnegative samples by loop-mediated isothermal DNA amplification and confirmation of generated LAMP products by sequencing, *Vet. Parasitol.*, 2008, **158**, 11–22.