Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synthesis of graphitic carbon nitride (g-C3N4)

Urea and thiourea were used as precursors for the synthesis $g - C_3N_4$ *via* solid-state thermal polymerization process. A 1:1 mixture of urea and thiourea was thoroughly mixed in a covered silica crucible and heated at 550° C for one hour in a muffle furnace. Pale yellow graphitic carbon nitride samples were collected and milled into fine powder after cooling to room temperature [24].

Fig S1. XRD diffraction pattern of Bi_2S_3 and ZnS

Fig S2. EDS spectra of g-C₃N₄/Bi₂S₃/ZnS composite

Fig S3. TEM image of g-C₃N₄/Bi₂S₃/ZnS

Fig. S4. Tauc plot of **(a)** g-C3N⁴ **(b)** g-C3N4/Bi2S³ and **(c)** g-C3N4/Bi2S3/ZnS

Fig. S5: (a) UV-DRS plot of Bi_2S_3 (b) Tauc plot of Bi_2S_3 (c) UV-DRS plot of ZnS (d) Tauc plot of ZnS

Using the Nernst equation, the measured applied potential vs Ag/AgCl was transformed into a reversible hydrogen electrode (RHE):

$$
E_{RHE} = E_{Ag/AgCl} + E^{o}_{Ag/AgCl} + 0.059 \text{ pH}
$$
 (1)

 $E^{\circ}_{Ag/AgCl}$ - standard electrode potential of Ag/AgCl (0.197 V)

The following equation was used to determine the photoelectrodes' solar to hydrogen conversion efficiency (η) for the PEC hydrogen evolution reaction:

$$
\eta = J (1.23 - V) / P_{light} \tag{2}
$$

where, P_{light} , J and V are the illumination intensity (100 mW cm⁻²), photocurrent density at the measured bias and applied potential versus RHE, respectively.

System	Photocurrent Density (mA.cm ²)	Potential	Electrolyte	Ref
$Ag/g-C_3N_4 (1:10)$	0.00640	V_{SCE}	0.05 M Na ₂ SO ₄	1
WO_3 / g-C ₃ N ₄	0.82	1.23 V_{RHE}	0.5 M Na ₂ SO ₄	$\overline{2}$
$g - C_3N_4 - S/B1$	0.70	$V_{Ag/AgCl}$	0.1 M Na ₂ SO ₄	3
0.5 $g - C_3N_4/T$ i-	2.55	$V_{Ag/AgCl}$	1 M NaOH	$\overline{4}$
Fe ₂ O ₃				
$g - C_3 N_4/BiVO_4$	0.42	V_{RHE}	0.5 M Na ₂ SO ₄	5
$TiO2(Q2Co-C3N4)$	1.79	1.23 V_{RHE}	0.1 M Na ₂ SO ₄	6
$Pd(\omega)g-C_3N_4$	0.0788	1.23 V_{RHE}	0.1 M Na ₂ SO ₄	$\overline{7}$
$g - C_3N_4/Bi_2S_3/ZnS$	0.99	1.23 V_{RHE}	0.1 M Na ₂ SO ₄	This work

Table S1: Comparison with previously reported literature

Table S2: Parameters of Nyquist Plots

Sample	$R_S(\Omega)$	R_{CT} (kΩ)	CPE
			$(\mu \Omega^{-1})$
$g - C_3N_4$	93.1	187	0.998
$g - C_3N_4/Bi_2S_3$	71.8	52.6	0.999
$g - C_3N_4/Bi_2S_3/ZnS$	48.6	50	0.998

In order to quantify the Faradaic efficiency, the volume of gas collected per area of electrode was recorded every 30 min.

$$
\frac{n H_2\left(\text{Exp}\right)}{n H_2\left(\text{Act}\right)} \times 100
$$
\nFaradaic Efficiency (%) =

\n
$$
\frac{n H_2\left(\text{Exp}\right)}{n H_2\left(\text{Act}\right)} \tag{1}
$$

$$
n H_{2 (Th)} = \frac{Q}{2 F}
$$

$$
Q = I \times t
$$

$I = J \times A$

where $n H_2$ is the amount of hydrogen generated, Q is the total amount of charge passed through the cell (C), F is the Faraday constant (96485 C mol⁻¹), J is the photocurrent density (A m⁻²), I is the photocurrent (A), t is the time (s) and A is the area of the electrode (m^2) [8].

The number of moles of hydrogen directly measured from photocurrent density (I-t curve) $n H_2(\text{Exp})$ and the number of moles of hydrogen calculated from the GC responses $n H_2$ (*Act*) and the Faradaic efficiencies are depicted in **Table S3** and **Table S4.**

Table S3: Faradaic efficiencies of the g-C3N4/Bi2S³

Time (min)	$n\, H_{\,2\, (Exp)}$ (mol)	$n H_{2}\left(Act\right) \left(\text{mol}\right)$	Faradaic Efficiency (%)
30	0.042×10^{-3}	6.915×10^{-5}	61.5
60	0.035×10^{-3}	5.652×10^{-5}	62.3

Table S4: Faradaic efficiencies of the g-C3N4/Bi2S3/ZnS

Cyclic voltammograms (CV):

Figure S1 depicts the CV of g-C₃N₄, Bi₂S₃ and ZnS. Pt and Ag/AgCl/KCl served as the counter electrode and reference electrode, respectively, $g-C_3N_4$, Bi_2S_3 and ZnS films (as working electrodes) were recorded in an aqueous KCl solution.

Fig S6. CV plots of $g - C_3N_4$, Bi_2S_3 and ZnS

The following approach was used to compute the locations of the valence band (VB) and conduction band (CB) for $g-C_3N_4$

 $E_{red} = -0.75$ V versus Ag/AgCl/KCl

Electrode potential of reference electrode = $+0.197$ V

E**red** versus NHE (normal hydrogen electrode)

$$
E_{\text{red}} = -0.75 \text{ V} + 0.197 \text{ V} = -0.55 \text{ V} \text{ (NHE)}
$$

We converted V (volts) into eV (electron volts),

Therefore
$$
E_{red} = -4.5 \text{ eV} (0 \text{ V vs NHE}) - (-0.55 \text{ V}) = -3.95 \text{ eV} (\text{CB})
$$

The optical bandgap energy value was then added to the CB energy to determine the VB location of $g-C_3N_4$.

$$
E_{\text{red}} = -3.95 \text{ eV} + (-2.82 \text{ eV}) = -6.77 \text{ eV (VB)}
$$

For $Bi₂S₃$:

$$
E_{red} = -0.80 V + 0.197 V = -0.60 V (NHE)
$$

\n
$$
E_{red} = -4.5 eV (0 V vs NHE) - (-0.60 V) = -3.90 eV (CB)
$$

\n
$$
E_{red} = -3.90 eV + (-1.41 eV) = -5.31 eV (VB)
$$

For ZnS:

$$
E_{red} = -0.82 V + 0.197 V = -0.62 V (NHE)
$$

\n
$$
E_{red} = -4.5 eV (0 V vs NHE) - (-0.62 V) = -3.88 eV (CB)
$$

\n
$$
E_{red} = -3.88 eV + (-3.07 eV) = -6.95 eV (VB)
$$

References

- 1. F. Qi, Y. Li, Y. Wang, Y. Wang, S. Liu and X. Zhao, *RSC Adv.*, 2016, **6**, 81378–81385.
- 2. C.-H. Wang, D.-D. Qin, D.-L. Shan, J. Gu, Y. Yan, J. Chen, Q.-H. Wang, C.-H. He, Y. Li, J.-J. Quan and X.-Q. Lu, *Phys. Chem. Chem. Phys.*, 2017, **19**, 4507–4515.
- 3. K. M. Alam, P. Kumar, P. Kar, U. K. Thakur, S. Zeng, K. Cui and K. Shankar, *Nanoscale Adv.*, 2019, **1**, 1460–1471.
- 4. Y. Liu, F.-Y. Su, Y.-X. Yu and W.-D. Zhang, *International Journal of Hydrogen Energy*, 2016, **41**, 7270–7279.
- 5. Y. Li, M. Yang, Z. Tian, N. Luo, Y. Li, H. Zhang, A. Zhou and S. Xiong, *Front. Chem.*, 2019, **7**, 334.
- 6. J. Safaei, H. Ullah, N. A. Mohamed, M. F. Mohamad Noh, M. F. Soh, A. A. Tahir, N. Ahmad Ludin, M. A. Ibrahim, W. N. R. Wan Isahak and M. A. Mat Teridi, *Applied Catalysis B: Environmental*, 2018, **234**, 296–310.
- 7. M. Karimi-Nazarabad, E. K. Goharshadi and S. J. Mahdizadeh, *J. Phys. Chem. C*, 2019, **123**, 26106–26115.
- 8. H. Qi, J. Wolfe, D. Fichou and Z. Chen, *Sci Rep*, 2016, **6**, 30882.