Electronic Supplementary Information

Improving the photoelectrocatalytic efficiency of CuWO₄ through molybdenum for tungsten substitution and coupling with BiVO₄

Annalisa Polo,^a Maria Vittoria Dozzi,*^a Gianluigi Marra,^b Kevin Sivula^c and Elena Selli^a

^aDipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy. E-mail: mariavittoria.dozzi@unimi.it

^bEni S.p.A Novara Laboratories (NOLAB), Renewable, New Energies and Material Science Research Center (DE-R&D), via G. Fauser 4, I-28100 Novara, Italy

^cLaboratory for Molecular Engineering of Optoelectronic Nanomaterials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Fig. S1 Detailed view, in the $29.5^{\circ} - 33.5^{\circ} 2\theta$ range, of the XRD patterns of CuW_{1-x}Mo_xO₄ electrodes (x = 0 - 0.8). The asterisks mark the wolframite structure peaks. Wolframite peaks undergo a progressive shift with increasing *x* value, starting from pure CuWO₄ (black dashed lines) to CuW_{1-x}Mo_xO₄ with x = 0.8 (red dashed lines).

Fig. S2 Absorption spectra of the $CuW_{1-x}Mo_xO_4$ films with different Mo^{6+} for W^{6+} percent substitution.

Fig. S3 η_{sep} of CuW_{1-x}Mo_xO₄ films with different Mo⁶⁺ for W⁶⁺ substitution degrees, under back-side irradiation (see Section S2 below).

S1 Absorption coefficient (α) and absorption depth (δ) calculation

From the absorbance at 420 nm and the thickness of multilayer $CuW_{0.5}Mo_{0.5}O_4$ electrodes, the absorption coefficient (α) of the material at this wavelength was calculated from the Lambert Beer law according to Eq. S1:

$$\alpha = \frac{1}{h} 2.303 A \tag{S1}$$

where *h* is the thickness of the film and *A* is the absorbance at the specific wavelength. We obtained $\alpha = 7 \times 10^3 \text{ nm}^{-1}$ at 420 nm.¹ The absorption depth (δ) of the investigated materials, *i.e.*, the CuW_{0.5}Mo_{0.5}O₄ film thickness ensuring 96%, 83% or 63% absorption of 420 nm incident light, calculated as $\delta = 3 \alpha^{-1}$, $\delta = 2 \alpha^{-1}$ and $\delta = \alpha^{-1}$, respectively,² are reported in Table S1.

Table S1 Calculated penetration depths δ of the CuW_{0.5}Mo_{0.5}O₄ 1L material ensuring 96%, 83% or 63% absorption of the incident light at 420 nm.

Percentage of 420 nm light absorbed	δ / nm
$63\% (1 \ge \alpha^{-1})$	144
$83\% (2 \text{ x } \alpha^{-1})$	289
96% (3 x α^{-1})	433

Fig. S4 Absorption spectra of $CuWMo_{0.5}O_4$ 1L, $CuW_{0.5}Mo_{0.5}O_4$ 2L and $CuW_{0.5}Mo_{0.5}O_4$ 3L.

Fig. S5 (A) Linear sweep voltammetry (LSV) scans and (B) incident photon to current efficiency (IPCE) plots recorded at 1.23 V_{RHE} with differently thick CuW_{0.5}Mo_{0.5}O₄ electrodes (blue 1L, green 2L and violet 3L) under back-side irradiation.

Fig. S6 (A,B) Top view and (C,D) side view SEM images at 50kx magnification of (A,C) CuW and (B,D) CuWMo, with a 500 nm scale bar. (E) Absorption spectra of CuW (orange), CuWMo (blue), BV (magenta) and CuWMo/BV (green).

S2 η_{sep} and η_{inj} calculation from LSV measurements in the presence of NaNO₂ as hole scavenger

We evaluated the charge separation efficiency in the bulk (η_{sep}), that is the fraction of photogenerated holes that successfully reach the electrode/electrolyte interface without recombining with electrons in the bulk, and the charge injection efficiency at the film/electrolyte interface (η_{inj}), *i.e.*, the fraction of photogenerated holes that, upon reaching the electrode/electrolyte interface, are successfully injected into the electrolyte. NaNO₂ was employed as hole scavenger for copper tungstate materials,³ and LSV measurements performed in contact with either a K₃BO₃ buffered solution ($J_{K_{3}BO_3}$), or the buffered solution also containing NaNO₂ (J_{NaNO_2}), under the assumption that no charge accumulation occurs at the semiconductor-liquid junction.⁴ The injection efficiency was determined as $\eta_{inj} = J_{K_{3}BO_3}/J_{NaNO_2}$ and the separation efficiency was calculated as $\eta_{sep} = J_{NaNO_2}/J_{abs}$, J_{abs} being the theoretical maximum photocurrent density of the material, corresponding to 100% conversion of the absorbed photons into photocurrent, which can be calculated from the integration of the absorption spectrum of the photoactive material over the AM 1.5 G solar spectrum. The calculated η_{inj} and η_{sep} are usually plotted as a function of the applied potential.

S3 Intensity modulated photocurrent spectroscopy (IMPS) measurements

The IMPS response in Fig. S6 was fit to a proper phenomenological model,^{5,6} according to the following equation:⁷

$$J(\omega) = \frac{J_h}{1 + (i\omega\tau_h)^{\alpha_1}} - \frac{J_r}{1 + (i\omega\tau_r)^{\alpha_2}}$$
(S2)

From the fit model, the following parameters can be calculated: J_h , the flux of holes arriving to the SCLJ and available for water oxidation; J_r , the flux of holes that are lost due to recombination at the film surface; and the two time constants τ_h , for bulk hole current, and τ_r , for surface recombination. α_1 and α_2 are the non-ideality factors used to describe the deformation of the semicircles due to the frequency dependence of the dielectric constant.

In this way, an accurate evaluation of the η_{sep} and η_{inj} parameters *in operando* can be obtained as $\eta_{sep} = J_h/J_{abs}$ (where J_{abs} is the maximum photocurrent expected for each examined photoanode based on its absorption spectrum) and $\eta_{inj} = (J_h - J_r)/J_h$.

Fig. S7 (A) XRD patterns in the 28° to 40° 2θ region of CuW, CuWMo and CuWMo/BV films. The CuW_{0.5}Mo_{0.5}O₄ wolframite reflections are marked with an asterisk. FTO and BiVO₄ (BV) reflections are also indicated.

CuW_{0.5}Mo_{0.5}O₄/BiVO₄

Fig. S8 (A) Top and (B) side view SEM images at 50kx magnification of CuWMo/BV heterojunction electrode. The scale bar is 500 nm.

References

- 1 W. Q. Hong, J. Phys. D. Appl. Phys., 1989, 22, 1384–1385.
- 2 S. Murcia-López, C. Fàbrega, D. Monllor-Satoca, M. D. Hernández-Alonso, G. Penelas-Pérez, A. Morata, J. R. Morante and T. Andreu, *ACS Appl. Mater. Interfaces*, 2016, 8, 4076–4085.
- 3 A. Polo, C. Nomellini, I. Grigioni, M. V. Dozzi and E. Selli, *ACS Appl. Energy Mater.*, 2020, **3**, 6956–6964.
- 4 H. Dotan, K. Sivula, M. Grätzel, A. Rothschild and S. C. Warren, *Energy Environ. Sci.*, 2011, **4**, 958–964.
- 5 D. Klotz, D. S. Ellis, H. Dotan and A. Rothschild, Phys. Chem. Chem. Phys., 2016, 18, 23438–23457.
- 6 D. Klotz, D. A. Grave and A. Rothschild, Phys. Chem. Chem. Phys., 2017, 19, 20383–20392.
- 7 F. Boudoire, Y. Liu, F. Le Formal, N. Guijarro, C. R. Lhermitte and K. Sivula, J. Phys. Chem. C, 2021, 125, 10883–10890.