Modulation and engineering of MOF-derived transition metal selenides/NiFe LDH for the application in electrocatalytic hydrogen evolution

Jin Liang^{a,b,#,*}, Hang Luo^{a,b,#}, Tian Lei^{a,b}, Guang Yang^{a,b}

^aHunan Province Key Laboratory of Materials Surface & Interface Science and Technology, ^bCollege of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China.

*These authors contributed equally to this work.*Corresponding author: <u>ljcfstu@163.com.</u>

Fig. S1 The photograph of (a) NF, (b) ZIF-67/NF, (c) NiCo LDH/NF, (d) Ni-Co-Se/NF, (e) Ni-Co-Se@NiFe LDH/NF.

Fig. S2 SEM images of (a-c) ZIF-67/NF.

Fig. S3 SEM images of (a-c) NiCo LDH/NF, (d-f) Ni-Co-Se/NF.

Fig. S4 Nitrogen adsorption-desorption isotherms and corresponding pore size distributions (inside) of (a) Ni-Co-Se@NiFe LDH/NF, (b) NF.

Fig. S5 SEM images of (a-c) NF, (d-f) Ni-Co-Se@NiFe LDH/NF.

Fig. S6 CV curves of (a-e) Ni-Co-Se@NiFe LDH/NF, NiFe LDH/NF, NI-Co-Se/NF, RuO₂/NF and NF at increasing scan rates.

ECSA can be calculated from the C_{dl} by using the specific capacitance value for a flat standard with 1 cm² of real surface area. For the estimates of surface area, general specific capacitances of $C_s = 0.040 \text{ mF} \cdot \text{cm}^{-2}$ based on typical reported values were used. ECSA was calculated as following:

Fig. S7 OER performance of Ni-Co-Se@NiFe LDH/NF, NiFe LDH/NF, Ni-Co-Se/NF, RuO₂/NF and NF: (a) LSV curves, (b) ECSA-corrected LSV curves

Fig. S8 (a) Gas collection of H_2 and O_2 . (b) Gas volume versus time.

Fig. S9 LSV curves of Ni-Co-Se@NiFe LDH/NF before and after 50 h OER stability test.

Fig. S10 X-ray diffraction pattern depicting the Ni-Co-Se@NiFe LDH/NF before and after activity test

Fig. S11 CV curves of (a) Ni-Co-Se@NiFe LDH/NF, (b) Ni-Co-Se/NF at different scan rates.

Fig. S12 LSV curves of Ni-Co-Se@NiFe LDH/NF before and after 50 h HER stability test.

Element	At. %
Ni	50.2
Se	34.4
О	11.0
Co	4.2
Fe	0.2

Table S1 Map Sum Spectrum

Catalysts	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$
Ni-Co-Se@NiFe LDH/NF	0.95	0.19
NiFe-LDH/NF	1.57	0.56
Ni-Co-Se/NF	1.29	1.56
RuO ₂ /NF	1.43	8.83
NF	1.12	58.88

Table S2 Summary of EIS fitting results for OER

			5	
Catalysts	Overpotential (mV)	Electrolyte	Tafel slope (mV·dec ⁻¹)	Reference
This work	209@10 mA ⋅ cm ⁻² 234@50 mA ⋅ cm ⁻²	1.0 M KOH	38.6	/
Co ₃ O ₄ @NiFe-LDH/NF	215@10 mA·cm ⁻²	1.0 M KOH	40.4	1
s-EPS@FeNi LDH	220@10 mA·cm ⁻²	1.0 M KOH	34.34	2
NiFe LDH@SnO ₂ /NF	234@10 mA·cm ⁻²	1.0 M KOH	37	3
Cr-FeNi LDH/MXene	232@10 mA·cm ⁻²	1.0 M KOH	54.4	4
NiFe-LDH/Ni ₃ S ₄	223@10 mA·cm ⁻²	1.0 M KOH	49	5
FeCo ₂ O ₄ @NiMn LDH	232@10 mA·cm ⁻²	1.0 M KOH	31.85	6
NiFe-LDH@γ- MnOOH/NF	226@10 mA·cm ⁻²	1.0 M KOH	88	7
NiCu-LDH@CoS/g-C ₃ N ₄	290@10 mA·cm ⁻²	1.0 M KOH	75	8
SSFF@NiFe LDH	180@10 mA·cm ⁻²	1.0 M KOH	31.6	9

Table S3 Summary of LDH-based non-noble metal electrocatalysts for OER

Table S4 Summary of EIS fitting results for HER

Catalysts	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$
Ni-Co-Se@NiFe LDH/NF	1.17	0.39
NiFe-LDH/NF	1.16	4.92
Ni-Co-Se/NF	1.29	1.32
Pt-C/NF	1.73	0.48
NF	1.49	4.63

Catalyzata	Overpotential	F1 41-4-	Tafel slope	Defence
Catalysts	(mV)	Electrolyte	(mV·dec ⁻¹)	Kelerence
This work	78@10 mA·cm ⁻²	1.0 M KOH	88.7	/
NiCoP@NiFe	119@10 mA·cm ⁻²	1.0 M KOH 149.42	140.42	10
LDH/NF			149.42	10
NiCoP-Ni ₃ S ₂ -MoS ₂	140@10 mA·cm ⁻²	1.0 M KOH	91.3	11
NiFe LDH@CoS _x /NF	136@10 mA·cm ⁻²	1.0 M KOH	/	12
NiCo-LDH@CdS-N	133@20 mA·cm ⁻²	1.0 M KOH	76	13
Ni ₃ Se ₂ @NiFe-	(8@10 A	1.0 M KOH	106.2	1.4
LDH/NF	$68@10 \text{ mA} \cdot \text{cm}^{-2}$			14
Co-Ni-P@Ce ₂ O/NF	120@20 mA·cm ⁻²	1.0 M KOH	176.7	15
Zn-Co-Ni-P/NF	94@10 mA·cm ⁻²	1.0 M KOH	39.4	16
CoSe/MoSe ₂	110@10 mA·cm ⁻²	1.0 M KOH	54.24	17
NCSe@MGA	78@10 mA·cm ⁻²	1.0 M KOH	55	18

Table S5 Summary of non-noble metal electrocatalysts for HER

Table S6 Summary of EIS fitting results for overall water splitting

Catalysts	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	
Ni-Co-Se@NiFe LDH/NF Ni-Co-	2 1 1 2	<u> </u>	
Se@NiFe LDH/NF	2.113	00.05	
RuO ₂ /NF Pt-C/NF	2.599	852.8	
NF NF	2.482	1144	

References

- L. Meng, H. Xuan, J. wang, X. Liang, Y. Li, J. Yang and P. Han, J. Alloys Compd., 2022, 919, 165877.
- G. Li, C. Liu, Y. Yang, X. Pan, T. Wu, F. Zeng, E. Ma, Q. Qu and L. Li, *Chem. Eng. J.*, 2023, 455, 140893.
- 3. C. Wan, J. Jin, X. Wei, S. Chen, Y. Zhang, T. Zhu and H. Qu, *Journal of Materials Science & Technology*, 2022, **124**, 102-108.
- L. Yan, Z. Du, X. Lai, J. Lan, X. Liu, J. Liao, Y. Feng and H. Li, *Int. J. Hydrogen Energy*, 2023, 48, 1892-1903.
- 5. Y. Yao, E. Hu, Y. Chen, Y. Cui, Z. Wang and G. Qian, J. Solid State Chem., 2022,

315, 123542.

- 6. G. Gao, K. Wang and X. Wang, J. Alloys Compd., 2023, 937, 168478.
- S.-B. Wang, Y.-S. Xia, Z.-F. Xin and L.-X. Xu, Catal. Commun., 2023, 173, 106564.
- 8. K. Kumar Mandari, N. Son and M. Kang, Appl. Surf. Sci., 2022, 593, 153453.
- Y. Liu, Z. Song, Z. Li, M. Han, Y. Cheng and Z. Zheng, *Catal. Commun.*, 2022, 164, 106425.
- 10. H. Zhang, X. Du, X. Zhang and Y. Wang, J. Alloys Compd., 2023, 937, 168412.
- 11. Q. Wang, X. Du and X. Zhang, Int. J. Hydrogen Energy, 2023, 48, 9260-9272.
- Y. Yang, Y. Xie, Z. Yu, S. Guo, M. Yuan, H. Yao, Z. Liang, Y. R. Lu, T.-S. Chan, C. Li, H. Dong and S. Ma, *Chem. Eng. J.*, 2021, **419**, 129512.
- 13. A. Pirkarami, S. Rasouli and E. Ghasemi, J. Energy Chem., 2021, 57, 118-130.
- 14. J. Hu, S. Zhu, Y. Liang, S. Wu, Z. Li, S. Luo and Z. Cui, *J. Colloid Interface Sci.*, 2021, **587**, 79-89.
- 15. G. Ma, X. Du and X. Zhang, J. Alloys Compd., 2021, 864, 158486.
- 16. Y. Ding, X. Du and X. Zhang, Appl. Surf. Sci., 2021, 543, 148818.
- 17. M. Hassan, M. M. Baig, K. H. Shah, A. Hussain, S. A. Hassan and A. Ali, *J. Phys. Chem. Solids*, 2022, **167**, 110780.
- K. Chaudhary, S. Zulfiqar, H. H. Somaily, M. Aadil, M. F. Warsi and M. Shahid, *Electrochim. Acta*, 2022, 431, 141103.