Electronic Supplementary Materials (ESI) Mg-modified graphitic carbon nitride/converter slag composite as an efficient photocatalyst for sugar conversion

Assadawoot Srikhaow, Chitiphon Chuaicham, Jirawat Trakulmututa, Kaiqian Shu and Keiko Sasaki* Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan. Email: <u>keikos@mine.kyushu-u.ac.jp</u>

Chemicals

Dicyandiamide (DA, 99%) were supplied by KISHIDA Chemical Co., Ltd, Japan. D-glucose (anhydrous, 99%), Ethanol (99.5%), sodium hydroxide (NaOH, 97%), magnesium chloride hexahydrate (MgCl₂•6H₂O, 97%), sulfuric acid (95%), ethylenediaminetetraacetic acid disodium salt (EDTA-2Na, 99.5%), para-benzoquinone (BQ, 98%), tryptophan (TRP, 99%), and isopropyl alcohol (IPA, 99.7%) were purchased from FUJIFILM Wako Pure Chemical Corp., Japan.

Photocatalytic experiments

The glucose conversion and the lactic acid yield were calculated using the following equations¹:

$$Glucose \ conversion \ (\%) = (1 - \left(\frac{Molar \ of \ glucose \ after \ the \ reaction}{Molar \ of \ initial \ glucose}\right)) \times 100 \ (1)$$

Lactic acid yield (%) = $\frac{3 \times Molar \ of \ lactic \ acid \ in \ the \ reaction}{6 \times Molar \ of \ initial \ glucose} \times 100$ (2)

Composition	(%)
CaO	45.08
Fe ₂ O ₃	25.52
SiO ₂	12.62
Al ₂ O ₃	7.55
MgO	4.18
P ₂ O ₅	2.36
MnO	1.55
TiO ₂	0.36
SO ₃	0.23

Table S1. Chemical compositions of converter slag (CS) by XRF analysis.

Note: The chemical compositions of CS with concentration lower than 0.05% are not included.

Table S2. Full width at half maximum (FWHM) calculation of all CN-based samples from XRD results.

Sample	FWHM from 002 plan of $g-C_3N_4$
Pure CN	1.224°
CN/CS	1.390°
2.3Mg-CN/CS	1.454°
4.7Mg-CN/CS	1.555°
7.1Mg-CN/CS	1.678°

Table S3. Surface area (S_{BET}), pore volume and average pore diameter of all as-prepared samples.

Sample	S _{BET}	Pore volume	Average pore diameter
	(m²g⁻¹)	(cm³g-1)	(nm)
CS	5	0.0026	22.14
CN	10	0.0784	33.32
4.6Mg-CN	11	0.0897	34.17
CN/CS	16	0.1195	29.53
2.3Mg-CN/CS	17	0.1481	34.24
4.7Mg-CN/CS	21	0.2130	41.39
7.1Mg-CN/CS	25	0.2510	40.16

Fig. S1 XRD diffraction patterns pure CN and 4.6Mg-CN.

Fig. S2 SEM images of a) pure CN and (b) CN/CS.

Fig. S3 XPS survey spectra of 4.6Mg-CN, pure CS and 4.7Mg-CN/CS.

Fig. S4 the energy-resolved distribution of electron traps (ERDT) patterns of CN, CN/CS, 4.7Mg-CN/CS and CS samples.

Fig. S5 HPLC chromatograms of glucose solution after photocatalytic production of lactic acid by 4Mg-CN/CS under visible-light irradiation for 2 h; (a) glucose and (b) lactic acid analysis.

Fig. S6 effect of NaOH concentration on the photocatalytic conversion of glucose by the 4.7Mg-CN/CS composite under the visible-light irradiation at 50 °C after 120 min.

Fig. S7 Possible side reaction pathways of glucose conversion through α and β oxidation yielding formic acid as a by-product.

Reference

1. A. Onda, T. Ochi, K. Kajiyoshi and K. Yanagisawa, *Applied Catalysis A: General*, 2008, **343**, 49-54.