Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Coated electrode for liquid thermoelectric conversion device to enhance Fe²⁺/Fe³⁺ redox kinetics

Touya Aiba¹, Dai Inoue¹, and Yutaka Moritomo^{1,2,3}

¹ Graduate School of Pure & Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-7571, Japan

² Faculty of Pure & Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-7571, Japan

³ Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Ibaraki 305-8571, Japan

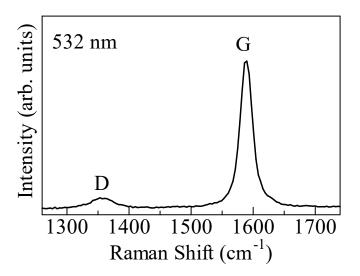


Fig. S1 Raman spectra of graphite power at room temperature. D and G represent for disorder and graphite bands, respectively. Excitation wavelength was 532 nm.

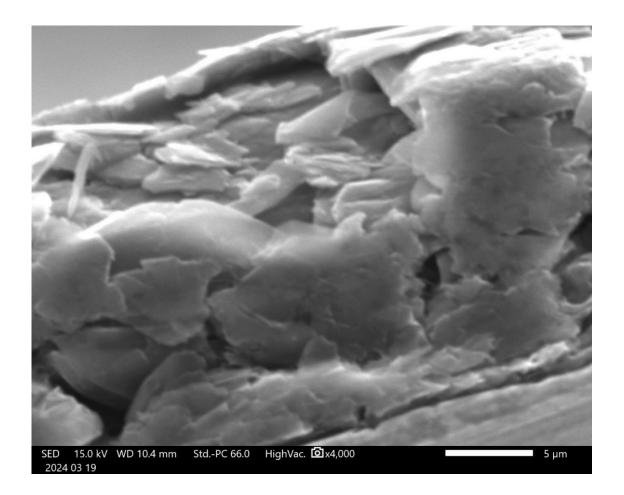


Fig. S2 Magnified cross sectional SEM image of graphite-dispersing coated electrode ($t = 25 \mu m$).

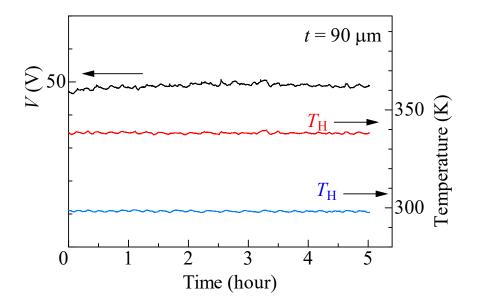


Fig. S3 Thermal voltage V and temperature ($T_{\rm H}$ and $T_{\rm L}$) of electrodes of LTE composed of graphitedispersing coated electrodes against time. Electrode distance d was 10 mm and electrode thickness t was 90 µm. The electrolyte is 0.8 M Fe(ClO₄)₂/Fe(ClO₄)₃ aqueous solution.