Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

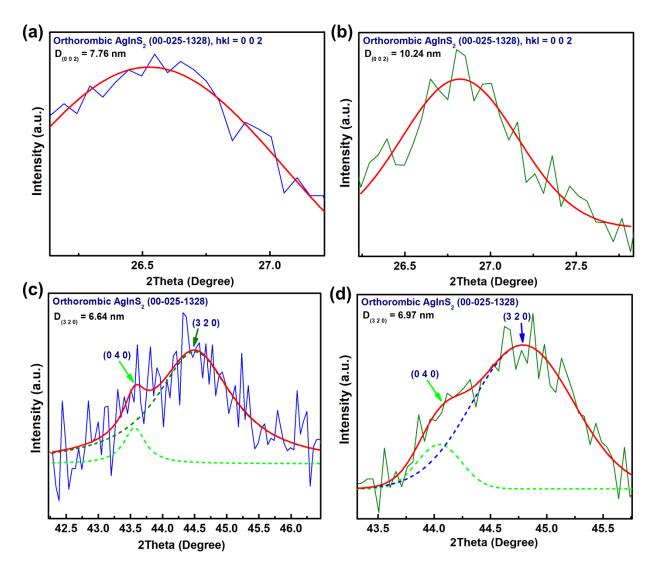
Cu-Mediated Broadening of the Absorption Band of Quaternary Cu-Ag-In-S/CdSe Type-II Core/Shell Quantum Dot-Sensitized Solar Cells with an Efficiency of 12.51% Under 0.25 Sun

Siti Utari Rahayu^{1,2}, Andy Candra³, Jen-Bin Shi⁴ and Ming-Way Lee ^{1*}

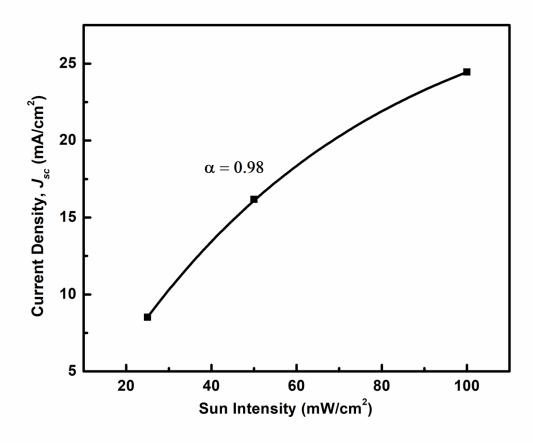
¹Department of Physics and Institute of Nanoscience, National Chung Hsing University,

Taichung, 402, Taiwan

²Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera


Utara, Medan 20155, Sumatera Utara, Indonesia

³Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera


Utara, Medan 20155, Sumatera Utara, Indonesia

⁴Department of Electronic Engineering, Feng Chia University, Taichung, 40724, Taiwan

*Corresponding Author: <u>mwl@phys.nchu.edu.tw</u>

Fig. S1 Gaussian curve fit of (a) AgInS₂ QDs (0 0 2), (b) Cu-Ag-In-S QDs (0 0 2), Gaussian multi peaks curve fit of (c) AgInS₂ QDs (0 4 0 and 3 2 0), (d) Cu-Ag-In-S QDs (0 4 0 and 3 2 0)

Fig. S2 Sun intensity dependence of the current density, J_{sc} . The data are fitted with the power law equation to determine the degree of linearity of the photocurrent with the sun intensity.