Supplementary Information

Synergistic effect of heterointerface engineering and oxygen vacancy in electro-spun polymer fibres derived carbon-supported 1D hierarchical WO₃/SnO₂ nanostructures for high-performance supercapacitor devices

Vaishali Tanwar, Saurabh Kumar Pathak and Pravin P Ingole* Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India-110016 *Corresponding author: <u>ppingole@chemistry.iitd.ac.in</u>

Figure S1. Zoomed view of Raman spectra for $SnO_2@C$, $WO_3@C$, and $WO_3/SnO_2@C$ fibers showing (a) M-O bonds in the range of 500-850 cm⁻¹, (b) Deconvoluted Raman Spectra using Voight Function for (c) $WO_3/SnO_2@$, (c) FTIR spectra in the wavenumber range of 1500-400 cm⁻¹(left panel), Enlarged view (right panel) for $SnO_2@C$, $WO_3@C$, and $WO_3/SnO_2@C$ fibers.

Figure S2. The size distribution histograms of the (a-c) as-synthesized electrospun nanofibers of SnO_2 , WO_3 and WO_3/SnO_2 , (d-e) Calcined Fibers of $SnO_2@C$, $WO_3@C$, and WO_3/SnO_2 @C fibers.

Figure S3. (a) FESEM image and (b) corresponding EDX spectrum of $WO_3/SnO_2@C$ fibers. EDX mapping depicting (c) the mixed elemental composition, and individual elements (d - j) W, Sn, O, C, and N for WO_3/SnO_2 fibers.

Table S1: Details of the BET surface areas and average pore diameter of MO@C fibers calculated from the N2 adsorption-desorption isotherms

Sample	BET Surface Area (m ² g ⁻¹)	Average Pore diameter(nm)
WO ₃ @C	8.2	12.024
SnO ₂ @C	15.4	10.181
WO ₃ /SnO ₂ @C	23.1	9.2274

Figure S4. (a) STM images depicting the area of interest for EDS analysis, (b) The corresponding elemental overlap of $WO_3/SnO_2@C$ fibers.

Figure S5. (left) SAED pattern recorded for $WO_3/SnO_2@C$ fibers. (right) The thermogravimetric analysis of the $SnO_2@C$, $WO_3@C$, and $WO_3/SnO_2@C$ fibers.

Figure S6. High-resolution XPS CL spectra (a) C 1s for $WO_3/SnO_2@C$, $WO_3@C$, $SnO_2@C$, and PAN fibers, Before and after the cycling stability (b) W-4f, (c) Sn 3d for $WO_3/SnO_2@C$.

Figure S7. (a) The N2 adsorption-desorption analysis, (b) pore size distribution via BJH analysis of the $SnO_2@C$, $WO_3@C$, and $WO_3/SnO_2@C$ fibers.

Figure S8. Left panel: The comparative CV curves of WO₃/ SnO₂@C fibers in the potential range of 0–1 V at a scan rate of 100 mV s⁻¹ in different electrolytes. Right Panel: The CV curve of WO₃@C and SnO₂@C fibers in the potential range of 0–0.8 V at a scan rate of 25 mV s⁻¹

Figure S9. Electrochemical performance of $WO_3/SnO_2@C$ (a) via CVs, (b) GCD at varying potential windows, (c) Variation of C_{SP} (from GCD analysis) with current density, and (d) corresponding Ragone plot.

Figure S10. (a) The Bode phase angle plot, (b) stability stability test till 5000 cycles at 10 A g^{-1} for WO₃@C, SnO₂@C, and WO₃/SnO₂@C fibers.

Figure S11. Comparison of PAN, WO₃/ SnO₂@C, via (a) CV in the potential range of 0 to 0.9 V at 25 mVs⁻¹; (b) GCD in the potential range of 0 to 0.9 V at 10 Ag⁻¹;(c) cyclic stability up to

5000 cycles at 10 A g⁻¹;(d) EIS in the frequency range 1- 10^4 Hz at OCP: Inset Zoomed EIS of PAN with Equivalent circuit elements.

Figure S12. FESEM of WO₃/SnO₂@C before and after 5000 GCD cycles.

Figure S13. A comparison of Cdl values for SnO₂@C, WO₃@C, and WO₃/SnO₂@C fibers.

Figure S14. CV with current density normalized by SSA, and Ca values for $WO_3@C$, $SnO_2@C$, and $WO_3/SnO_2@C$ fibers

Table S2: Details of the electrochemical	performance of WO	$\sqrt{SnO_2(a)C}$ in half	configuration
		5 407	L)

Configuration	Csp	Current Density	Ca	Current	Cm	Scan Rate
	(F g ⁻¹)	(A g ⁻¹)	(mF cm ⁻²)	(mA cm ⁻²)	(F g ⁻¹)	(mVs ⁻¹)
Three-	446	20	51	2	1093	5
Electrode	463	15	53	1.5	1037	10
	516	10	54	1	1010	15
	543	8	59	0.8	930	20
	589	6	62	0.6	925	25

Figure S15: (a) anodic current density versus square root scan rate ($\nu^{1/2}$) at peak potentials, (b) I/ $\nu^{0.5}$ vs $\nu^{0.5}$ plot for WO₃/SnO₂@C, the percentage of capacitance contribution at different scan rates for (c) WO₃@C, (d) SnO₂@C.

Table S3: Details of the R_s and Warburg coefficient (σ) of MO@C fibers calculated using the Randles circuit.

Sample	$R_{s}\left(\Omega ight)$	$\sigma \left(\Omega \ \mathrm{s}^{\mathrm{-1/2}} ight)$
WO ₃ @C	3.3	101.7
SnO ₂ @C	4.1	47.31
WO ₃ /SnO ₂ @C	3.7	20.23

Figure S16: Electrochemical performance comparison of $WO_3/SnO_2@C$ in 2-electrode and 3electrode configurations in terms of (a) areal capacitance, and (b) galvanostatic chargedischarge profiles at a constant current of 2 mA.

Figure S17. Nyquist plot for the symmetric device (WO₃/SnO₂@C) in the frequency range 0.1 to 10^4 Hz