Supplementary Information

Synergistic effect of heterointerface engineering and oxygen vacancy in electro-spun polymer fibres derived carbon-supported 1D hierarchical WO3/SnO² nanostructures for high-performance supercapacitor devices

Vaishali Tanwar, Saurabh Kumar Pathak and Pravin P Ingole* Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India-110016 *Corresponding author: ppingole@chemistry.iitd.ac.in

Figure S1. Zoomed view of Raman spectra for $SnO_2(\partial)C$, WO₃(∂)C, and WO₃/ $SnO_2(\partial)C$ fibers showing (a) M-O bonds in the range of 500-850 cm⁻¹, (b) Deconvoluted Raman Spectra using Voight Function for (c) $WO_3/SnO_2(a)$, (c) FTIR spectra in the wavenumber range of 1500-400 cm⁻¹(left panel), Enlarged view (right panel) for $SnO_2@C$, WO₃@C, and WO₃/SnO₂@C fibers.

Figure S2. The size distribution histograms of the (a-c) as-synthesized electrospun nanofibers of SnO₂, WO₃ and WO₃/SnO₂, (d-e) Calcined Fibers of SnO₂@C, WO₃@C, and WO₃/SnO₂ @C fibers.

Figure S3. (a) FESEM image and (b) corresponding EDX spectrum of $WO_3/SnO_2@C$ fibers. EDX mapping depicting (c) the mixed elemental composition, and individual elements $(d - j)$ W, Sn, O, C, and N for WO_3/ SnO_2 fibers.

Table S1: Details of the BET surface areas and average pore diameter of MO@C fibers calculated from the N2 adsorption-desorption isotherms

Sample	BET Surface Area $(m^2 g^{-1})$	Average Pore diameter(nm)
WO ₃ @C	8.2	12.024
SnO ₂ (<i>a</i>)C	15.4	10.181
$WO_3/SnO_2@C$	23.1	9.2274

Figure S4. (a) STM images depicting the area of interest for EDS analysis, (b) The corresponding elemental overlap of $WO_3/SnO_2@C$ fibers.

Figure S5. (left) SAED pattern recorded for $WO_3/SnO_2@C$ fibers. (right) The thermogravimetric analysis of the $SnO_2(QC, WO_3(QC, and WO_3/SnO_2(QC, fibers))$.

Figure S6. High-resolution XPS CL spectra (a) C 1s for $WO_3/SnO_2@C$, $WO_3@C$, $SnO_2@C$, and PAN fibers, Before and after the cycling stability (b) W-4f, (c) Sn 3d for $WO_3/SnO_2@C$.

Figure S7. (a) The N2 adsorption-desorption analysis, (b) pore size distribution via BJH analysis of the SnO₂ $@C$, WO₃ $@C$, and WO₃/SnO₂ $@C$ fibers.

Figure S8. Left panel: The comparative CV curves of $WO_3/ \text{SnO}_2(\partial)C$ fibers in the potential range of 0–1 V at a scan rate of 100 mV s⁻¹ in different electrolytes. Right Panel: The CV curve of WO₃@C and SnO₂@C fibers in the potential range of 0–0.8 V at a scan rate of 25 mV s⁻¹

Figure S9. Electrochemical performance of WO₃/SnO₂@C (a) via CVs, (b) GCD at varying potential windows, (c) Variation of C_{SP} (from GCD analysis) with current density, and (d) corresponding Ragone plot.

Figure S10. (a) The Bode phase angle plot, (b) stability stability test till 5000 cycles at 10 A g^{-1} for $WO_3@C$, $SnO_2@C$, and $WO_3/SnO_2@C$ fibers.

Figure S11. Comparison of PAN, $WO_3/SD_2@C$, via (a) CV in the potential range of 0 to 0.9 V at 25 mVs⁻¹; (b) GCD in the potential range of 0 to 0.9 V at 10 Ag⁻¹;(c) cyclic stability up to

5000 cycles at 10 A g^{-1} ;(d) EIS in the frequency range 1- 10^4 Hz at OCP: Inset Zoomed EIS of PAN with Equivalent circuit elements.

Figure S12. FESEM of WO₃/SnO₂@C before and after 5000 GCD cycles.

Figure S13. A comparison of Cdl values for $SnO_2@C$, $WO_3@C$, and $WO_3/SnO_2@C$ fibers.

Figure S14. CV with current density normalized by SSA, and Ca values for WO₃@C, SnO₂@C, and WO₃/SnO₂@C fibers

Figure S15: (a) anodic current density versus square root scan rate $(v^{1/2})$ at peak potentials, (b) $I/v^{0.5}$ vs $v^{0.5}$ plot for $WO_3/SnO_2@C$, the percentage of capacitance contribution at different scan rates for (c) $WO_3@C$, (d) $SnO_2@C$.

Table S3: Details of the R_s and Warburg coefficient (σ) of MO@C fibers calculated using the Randles circuit.

Sample	$\mathbf{R}_{\rm s}(\Omega)$	$\sigma(\Omega s^{-1/2})$
$WO_3@C$	3.3	101.7
SnO ₂ (<i>a</i>)C	4. 1	47.31
$WO_3/SnO_2@C$	3.7	20.23

Figure S16: Electrochemical performance comparison of WO₃/SnO₂@C in 2-electrode and 3electrode configurations in terms of (a) areal capacitance, and (b) galvanostatic chargedischarge profiles at a constant current of 2 mA.

Figure S17. Nyquist plot for the symmetric device $(WO_3/SnO_2@C)$ in the frequency range 0.1 to 10^4 Hz