Supporting information

Rational design of $g-C_3N_4/CdS/MIL-125$ -derived TiO₂ ternary heterojunction as highly efficient photocatalyst for wastewater treatment under visible-light irradiation

Jiaqi Wang, ^{#a} Hongyang Huo, ^{#a} Guozhe Sui, ^{*a, b} Shuang Meng, ^{a, b} Dongxuan Guo, ^{*a, b}

Shanshan Fu, ^{a, b} Dantong Zhang, ^{a, b} Xue Yang, ^{*a, b} Jinlong Li *a, ^b

^a College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R.

China

^b Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar

University, Qiqihar 161006, P. R. China.

Corresponding authors:

*E-mail address: gzhsui@qqhru.edu.cn (G.Z. Sui); dongxuanguo92@gmail.com (D.X. Guo);

jinlong@qqhru.edu.cn (J.L. Li); Fax: +86-452-2738227; Tel: +86-452-2738227

The author contributes equally to this paper and should be considered as co-first author.

Fig. S1. XRD patterns of (a) CdS/TiO₂-x and (b) MIL-125 (Ti).

Fig. S2. (a) SEM and (b) TEM image of MIL-125 (Ti), (c) SEM image of CdS/TiO₂-10, and (d) SEM-mapping images of 20-g-C₃N₄/CdS/TiO₂-10.

Fig. S3. (a) N_2 sorption isotherms curves, and (b) the corresponding curves of pore size distribution of g-C₃N₄, CdS/TiO₂-10 and 20-g-C₃N₄/CdS/TiO₂-10.

Fig. S4. XPS survey spectrum of of $g-C_3N_4$, CdS, TiO₂, CdS/TiO₂-10 and 20-g-C₃N₄/CdS/TiO₂-10.

Fig. S5. (a) Kubelka-Munk plots of $g-C_3N_4$, CdS and TiO₂, (b-d) VB-XPS plots of $g-C_3N_4$, CdS and TiO₂.

Table S1	Ecn	and Erm	of σ -C ₂ N ₄	CdS a	and TiO ₂
I dole Di	$\cdot \boldsymbol{L}_{CB}$	and LVB	$01 \leq 031 \cdot 4$	Cub, t	102

Samplas	g-C ₃ N ₄		CdS		TiO ₂	
Samples	$E_{\rm CB}({\rm eV})$	$E_{\rm VB}({\rm eV})$	$E_{\rm CB}({\rm eV})$	$E_{\rm VB}({\rm eV})$	$E_{\rm CB}({\rm eV})$	$E_{\rm VB}({\rm eV})$
Mot-Schottky test	-1.29	1.36	-0.43	1.50	-0.15	2.81

Fig. S6 (a) The adsorption curve of the synthesized photocatalyst for RhB under dark conditions; (b) The adsorption curve of other dyes; (c) The adsorption curve of dye solutions with different pH.

Fig. S7. (a) Photocatalytic degradation of RhB by CdS/TiO_2 -x and (b) the corresponding pseudo-first-order kinetic curves.

Fig. S8. (a) XRD patterns and (b) FTIR spectra of 20-g-C₃N₄/CdS/TiO₂-10 before and after photocatalytic degradation reaction.

Fig. S9. The proposed pathway for photodegradation RhB by 20-g-C₃N₄/CdS/TiO₂-10.

Sample	C _{catalyst} (g·L ⁻¹)	C _{pollutant} (mg·L ⁻¹)	Light	Time (min)	Degradatio n efficeincy (%)	k (min ⁻¹)	Ref
20-g-C ₃ N ₄ /CdS/TiO ₂ -	2.5	10 (RhB)	500 W Xe	90	98.9	0.0494	This
10			$(\lambda > 420 \text{ nm})$				work
CdIn ₂ S ₄ @A/R-TiO ₂	1.0	20 (MG)	1000 W Xe	180	82.1	0.0492	[1]
Ag-TiO ₂ @carbon	2.0	15 (RhB)	500 W Hg	25	98.8	0.049	[2]
$g-C_3N_4/TiO_2$	3.0	10 (MB)	$(\lambda > 420 \text{ nm})$	150	97.7	_	[3]
YCQDs/NH2BDC10-	2.0	90 (D 1-D)	300 W Xe	120	071	_	Г <i>А</i> Э
TiO ₂	2.0	80 (KnB)	$\frac{12}{(\lambda > 420 \text{ nm})}$	120	87.1		[4]
TO / set	2.0	20 (MB)	300 W Xe	120	91.4	-	[5]
			$(\lambda > 420 \text{ nm})$				
N-TiO ₂ -2	8.0	10 (RhB)	_	240	90.0	0.01014	[6]
BiOBr/Bi ₂₄ O ₃₁ Br ₁₀ /Ti	5.0	10 (D 1 D)	500 W W	0.0	70.0	0.04404	[7]
O ₂	5.0	10 (KhB)	500 W Xe	80	/8.0	0.04484	[/]
10AgC-	5.0	7 (DhD)	500 W Va	90	07.6	_	ГОЛ
$TiO_2/Cd_{0.5}Zn_{0.5}S$	5.0	/ (KNB)	500 w Ae		7/.0		٢٥١

Table S2. The photodegradation efficiency of RhB for MOF-derived TiO_2 photocatalysts.

No.	Formula	(m/z)	Molecular structure
Rh B	$C_{28}H_{31}N_2O_3$	443.23	
P1	$C_{26}H_{27}N_2O_3$	415.21	NH*
P2	$C_{22}H_{19}N_2O_3$	359.14	H ₂ N O O O H
Р3	$C_{20}H_{15}N_2O_3$	331.11	H ₂ N O O H
Р4	$C_{20}H_{14}N_2O_3$	315.25	O NH2*
Р5	$C_{16}H_{22}O_4$	274.27	
Р6	C ₁₇ H ₁₂ O	230.25	

Table S3, Mass	spectra of th	e possible i	ntermediate	products.
	spectra of m	c possible n	mermeutate	prout

References

[1] X.H. Zhao, Y.T. Zhou, Q. Liang, M. Zhou, Z.Y. Li, S. Xu, Coupling MOF-derived titanium oxide with $CdIn_2S_4$ formed 2D/3D core–shell heterojunctions with enhanced photocatalytic performance, Sep. Purif. Technol. 279 (2021) 119765. http://doi.org/10.1016/j.seppur.2021.119765.

[2] X.B. Yang, J.J. Pan, J.P. Hu, S.Q. Huang, K.J. Cheng, MIL-125(Ti) derived Ag doped tablet-like TiO₂@carbon composites as efficient photocatalyst for degradation of rhodamine B, J. Solid State Chem. 320 (2023) 123862.http://doi.org/10.1016/j.jssc.2023.123862.

[3] J. Jia, Y.M. Wang, M.L. Xu, M.L. Qi, Y.L. Wu, G. Zhao, MOF-derived the direct Z-scheme $g-C_3N_4/TiO_2$ with enhanced visible photocatalytic activity, J. Sol-Gel Sci. Technol. 93 (2019) 123-130. http://doi.org/10.1007/s10971-019-05172-3.

[4] J.T. Shi, C.K. Ju, T.T. Yang, J.H. Shi, K.K. Pu, T. Zhao, N. Zheng, L.J. Nie, K.K. Xue, Y.H. Gao, Carbon quantum dots modified NH₂-MIL-125(Ti) acid-etching derived TiO₂-based photocatalysts and efficient removal of high concentrations of dyes from wastewater under visible light, Colloids Surf. A Physicochem. Eng. Asp. 677 (2023) 132378. http://doi.org/10.1016/j.colsurfa.2023.132378.

[5] S.J. Liu, Q.C. Zou, Y. Ma, D.J. Chi, R. Chen, H.X. Fang, W. Hu, K. Zhang, L.F. Chen, Metal-organic frameworks derived TiO₂/carbon nitride heterojunction photocatalyst with efficient catalytic performance under visible light, Inorg. Chim. Acta, 536 (2022) 120918. http://doi.org/10.1016/j.ica.2022.120918.

[6] J.L. Li, X.T. Xu, X.J. Liu, W. Qin, L.K. Pan, Novel cake-like N-doped anatase/rutile mixed phase TiO₂ derived from metal-organic frameworks for visible light photocatalysis, Ceram. Int. 43 (2017) 835-840. <u>http://doi.org/10.1016/j.ceramint.2016.10.017</u>.

[7] S.R. Zhu, M.K. Wu, W.N. Zhao, F.Y. Yi, K. Tao, L. Han, Fabrication of heterostructured BiOBr/Bi₂₄O₃₁Br₁₀/TiO₂ photocatalyst by pyrolysis of MOF composite for dye degradation, J. Solid State Chem. 255 (2017) 17-26. <u>http://doi.org/10.1016/j.jssc.2017.07.038</u>.

[8] Y.H. Wang, C.L. Kang, X.Y. Li, Q. Hu, C. Wang, Ag NPs decorated C-TiO₂/Cd_{0.5}Zn_{0.5}S

Z-scheme heterojunction for simultaneous RhB degradation and Cr(VI) reduction, Environ. Pollut. 286 (2021) 117305. <u>http://doi.org/10.1016/j.envpol.2021.117305</u>.