Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Dry Reforming of HC_s (Methane, Ethane, and Propane) over a 40Ni_{0.75}(Ce_{1-x}Fe_x)_{0.25}/Al₂O₃ Catalyst: A comparative study

Akanksha Singh Rajput, Taraknath Das*

Heterogeneous Catalysis Laboratory (Reaction Engineering)

Department of Chemical Engineering, Indian Institute of Technology Roorkee, 247667, Haridwar, Uttara Khand (UK), India.

*Email: taraknath.das@ch.iitr.ac.in or tarak3581@gmail.com

Supporting information:

Table S1: The H₂ consumption, CO₂ desorption, and Hydrogen Chemisorption analysis of the synthesized catalysts.

Catalyst	H ₂ –consumption	CO ₂ -desorption	H ₂ -Chemisorption analysis			
	(ml /g _{cat})	(ml/g _{cat})	Metal Dispersion (PD) (%)	Metallic Surface Area per gram of Metal (SAmetallic) (m ² /g-metal)	Active Particle Size (APS) (nm)	
40Ni _{0.75} Ce _{0.25} /Al ₂ O ₃	216.8	0.353	24.2	161.2	12.9	
$40 Ni_{0.75} (Ce_{0.75} Fe_{0.25})_{0.25} / Al_2 O_3$	227.4	0.565	24.5	163.2	11.5	
$40 Ni_{0.75} (Ce_{0.5} Fe_{0.5})_{0.25} / Al_2 O_3$	183.1	0.301	23.7	158.3	12.8	
$40 \text{Ni}_{0.75}(\text{Ce}_{0.25}\text{Fe}_{0.75})_{0.25}/\text{Al}_2\text{O}_3$	170.4	0.223	23.2	154.5	13.5	
40Ni _{0.75} Fe _{0.25} /Al ₂ O ₃	158.8	0.175	23	153.6	12.5	

Catalyst	Reactants	% Yield of		% Conversion of		H ₂ :CO ratio	
		CH ₄	H ₂	СО	НС	CO ₂	
40Ni _{0.75} Ce _{0.25} /Al ₂ O ₃	$CH_4 + CO_2$	-	60	67	62	69	0.90
40Ni _{0.75} (Ce _{0.75} Fe _{0.25}) _{0.25} /Al ₂ O ₃		-	66	74	68	76	0.91
$40Ni_{0.75}(Ce_{0.5}Fe_{0.5})_{0.25}/Al_2O_3$		-	59	71	61	74	0.94
$40 Ni_{0.75} (Ce_{0.25} Fe_{0.75})_{0.25} / Al_2 O_3$		-	56	68	58	70	0.93
40Ni _{0.75} Fe _{0.25} /Al ₂ O ₃		-	52	67	54	69	0.90
40Ni _{0.75} Ce _{0.25} /Al ₂ O ₃	$C_2H_6 + CO_2$	12	69	76	86	81	1.3
40Ni _{0.75} (Ce _{0.75} Fe _{0.25}) _{0.25} /Al ₂ O ₃		16	73	77	91	85	1.3
40Ni _{0.75} (Ce _{0.5} Fe _{0.5}) _{0.25} /Al ₂ O ₃		15	68	75	90	83	1.18
40Ni _{0.75} (Ce _{0.25} Fe _{0.75}) _{0.25} /Al ₂ O ₃		14	67	74	89	79	1.31
40Ni _{0.75} Fe _{0.25} /Al ₂ O ₃		13	67	72	84	77	1.4
40Ni _{0.75} Ce _{0.25} /Al ₂ O ₃	$C_3H_8 + CO_2$	21	70	81	88	86	1.3
40Ni _{0.75} (Ce _{0.75} Fe _{0.25}) _{0.25} /Al ₂ O ₃		22	80	84	90	88	1.1
40Ni _{0.75} (Ce _{0.5} Fe _{0.5}) _{0.25} /Al ₂ O ₃		21	69	80	88	85	1.12
40Ni _{0.75} (Ce _{0.25} Fe _{0.75}) _{0.25} /Al ₂ O ₃		20	69	77	87	84	1.12
40Ni _{0.75} Fe _{0.25} /Al ₂ O ₃		19	70	76	86	83	1.13

Table S2: The % Yield and % conversion of various products during the HC dry reforming reaction, all the reaction performed on 600 °C reaction temperature and 1 atm pressure. Total reactant flow rate was set at 70 ml/min (HC:CO₂:N₂ = 1:1:5).

Reactants Rea Ten	Reaction	% Yield of					% Conversion of		H ₂ :CO
	Temperature (°C)	CH ₄	C ₂ H ₄	C ₃ H ₆	H ₂	CO	HC	CO ₂	– ratio
CH ₄ & CO ₂	500	-	-	-	-	-	-	-	-
	550	-	-	-	-	-	-	-	-
	600	-	-	-	66	74	67	75	0.93
	650	-	-	-	68	61	81	86	0.91
	700	-	-	-	77	59	93	100	0.95
	750	-	-	-	87	57	96	100	1
	800	-	-	-	88	54	98	100	1
C ₂ H ₆ & CO ₂	500	30	44	-	32	40	78	65	1.47
	550	29	42	-	43	44	87	72	1.38
	600	16	-	-	73	77	91	85	1.3
	650	6	-	-	82	80	96	90	1.35
	700	4	-	-	87	82	100	100	1.34
	750	2	-	-	86	83	100	100	1.25
	800	6	38	-	86	75	99	100	1.04
C ₃ H ₈ & CO ₂	500	61	-	-	54	50	88	77	1.1
	550	51	-	-	68	62	89	80	1.19
	600	22	-	-	80	84	90	88	1.1
	650	13	-	-	84	85	91	88	1.1
	700	11	-	3	85	82	93	89	0.99
	750	16	-	14	87	89	94	99	0.93
	800	36	-	26	94	79	99	100	0.68

Table S3: The % Yield and % conversion of various products during the HC dry reforming reaction, at different reaction temperature and 1 atm pressure. Total reactant flow rate was maintained at 70 ml/min (HC:CO₂:N₂ = 1:1:5) over the catalyst $40Ni_{0.75}(Ce_{0.75}Fe_{0.25})_{0.25}/Al_2O_3$.

Reactant and reaction temperature	HC:CO ₂		% Yield of					% Conversion of	
	ratio	CH ₄	C ₂ H ₄	C ₃ H ₆	H ₂	CO	HC	CO ₂	– ratio
CH ₄ & CO ₂	1:1	-	-	-	77	58	94	100	0.95
700 °C	1:1.5	-	-	-	85	72	96	86	0.8
	1:2	-	-	-	78	66	99	76	0.73
	1:2.5	-	-	-	79	65	100	68	0.68
	1:3	-	-	-	76	64	100	56	0.60
C ₂ H ₆ & CO ₂	1:1	6	0	-	82	80	95	90	1.35
650 °C	1:1.5	8	0	-	73	78	97	90	1.25
	1:2	6	27	-	45	61	95	85	1.07
	1:2.5	4	22	-	26	47	90	76	0.91
	1:3	11	32	-	41	53	82	71	0.76
C ₃ H ₈ & CO ₂	1:1	22	-	-	80	84	90	88	1.1
600 °C	1:1.5	33	-	-	79	71	99	90	0.89
	1:2	29	-	-	78	67	95	75	0.80
	1:2.5	18	-	-	75	60	83	68	0.82
	1:3	17	-	-	72	60	69	57	0.75

Table S4: The % Yield and % conversion of various products during the HC dry reforming reaction, where HC (10 ml/min) reactant and N₂ (50 ml/min) flow rate is fixed and CO₂ flow rate varies (10, 15, 20, 25, 30 ml/min) over the catalyst $40Ni_{0.75}(Ce_{0.75}Fe_{0.25})_{0.25}/Al_2O_3$.

Table-S5: The detailed percent conversion of various catalysts (reported) and the synthesized catalysts (present study).

Catalysts	Reaction	Temperature (°C)	% Conv. of HC	% Conv. of CO ₂	References
15Ni/Al ₂ O ₃ -SiO ₂	DRM	700	74	80	8

RuO ₂ +NiO	DRM	650	49.9	61.1	9
		800	87.9	100	
Ni-Fe/La-Al	DRM	800	92	98	16
5Ni/0.3Mg-HAP	DRM	700	75	78	21
Ni/La-Al ₂ O ₃	DRE	650	75	63	3
NdFe _{0.7} Ni _{0.3} O ₃	DRE	600	33	44	10
FeNi/Ce-Al _{0.5}	DRE	600	17	41	13
LaFe _{0.9} Ni _{0.1} O ₃	DRE	600	21.4	49.7	19
NiO(25)-MgO	DRP	600	40	43	14
		650	45	62	
		700	80	85	
		800	100	100	
A-LCO	DRP	550	19	35	15
3wt.%La ₂ O ₃	DRP	750	70	15	20
NiO-CeO ₂ /Al-F	DRP	650	64	46	31
		700	100	75	
		750	100	90	

40Ni _{0.75} Ce _{0.25} /Al ₂ O ₃	DRM	700	93	100	Present
	DRE	650	96	90	study
	DRP	000	90	88	

S.1. The % conversion, % yield, deactivation factor, and the H₂:CO ratio were calculated for the DRM, DRE, and DRP reactions.a) DRM reaction:

$$\% X_{CH_4} = \frac{C_{CH_4(in)} - C_{CH_4(out)}}{C_{CH_4(in)}} * 100$$

$$\% X_{CO_2} = \frac{C_{CO_2(in)} - C_{CO_2(out)}}{C_{CO_2(in)}} * 100$$

$$\% Y_{H_2} = \frac{mole \ of \ H_2(out)}{2 * mole \ of \ CH_4(in)}} * 100$$

$$\% Y_{CO} = \frac{mole \ of \ CO_{(out)}}{mole \ of \ CH_4(in)} + mole \ of \ CO_{2(in)}} * 100$$

$$\frac{H_2}{CO} = \frac{mole \ of \ H_2 \ produced}{mole \ of \ CO \ produced}}$$

$$DF = \frac{Final \ HC \ conversion - Initial \ HC \ conversion}{Initial \ HC \ conversion}}$$

DF- Deactivation Factor

b) DRE reaction:

$$\% X_{C_{2}H_{6}} = \frac{C_{C_{2}H_{6}(in)} - C_{C_{2}H_{6}(out)}}{C_{C_{2}H_{6}(in)}} * 100$$

$$\% X_{CO_{2}} = \frac{C_{CO_{2}(in)} - C_{CO_{2}(out)}}{C_{CO_{2}(in)}} * 100$$

$$\% Y_{H_{2}} = \frac{mole \ of \ H_{2}(out)}{3 * mole \ of \ C_{2}H_{6}(in)}} * 100$$

$$\% Y_{CO} = \frac{mole \ of \ CO_{(out)}}{mole \ of \ C_{2}H_{6}(in)} + mole \ of \ CO_{2}(in)} * 100$$

$$\% Y_{CH_{4}} = \frac{mole \ of \ CH_{4}(out)}{2 * mole \ of \ C_{2}H_{6}(in)}} * 100$$

$$\% Y_{C_{2}H_{4}} = \frac{mole \ of \ C_{2}H_{6}(in)}{mole \ of \ C_{2}H_{6}(in)} + mole \ of \ CO_{2}(in)} * 100$$

$$\frac{H_{2}}{mole \ of \ C_{2}H_{6}(in)} + mole \ of \ CO_{2}(in)} * 100$$

c) DRP reaction:

$$\% X_{C_3H_8} = \frac{C_{C_3H_8(in)} - C_{C_3H_8(out)}}{C_{C_3H_8(in)}} * 100$$

$$\% X_{CO_2} = \frac{\mathcal{L}_{CO_2(in)} - \mathcal{L}_{CO_2(out)}}{\mathcal{L}_{CO_2(in)}} * 100$$

$$\% Y_{H_2} = \frac{mole \ of \ H_{2 \ (out)}}{4 * mole \ of \ C_3 H_{8 \ (in)}} * 100$$

$$% Y_{CO} = \frac{mole \ of \ CO_{(out)}}{mole \ of \ C_3H_{8 \ (in)} + mole \ of \ CO_{2 \ (in)}} * 100$$
$$% Y_{CH_4} = \frac{mole \ of \ CH_{4 \ (out)}}{3 * mole \ of \ C_3H_{8 \ (in)}} * 100$$
$$% Y_{C_3H_6} = \frac{mole \ of \ C_3H_{8 \ (in)}}{mole \ of \ C_3H_{8 \ (in)} + mole \ of \ CO_{2 \ (in)}} * 100$$
$$\frac{H_2}{CO} = \frac{mole \ of \ H_2 \ produced}{mole \ of \ CO \ produced}$$