Supporting Information

Thermally integrated photoelectrochemical devices with perovskite/silicon tandem solar cells: a modular approach for scalable direct water splitting

Angela R. A. Maragno^a, Adina Morozan^b, Jennifer Fize^b, Michel Pellat^c, Vincent Artero^{b,*}, Sophie Charton^{a,*}, Muriel Matheron^{d,‡,*}

^a CEA, DES, ISEC, DMRC, Univ. Montpellier, Marcoule, France

^b Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France

^c Univ. Grenoble Alpes, CEA, LITEN, DTNM, 38000 Grenoble, France

^d Univ. Grenoble Alpes, CEA, LITEN, Campus INES, 73375 Le Bourget du Lac, France

* Lead contacts

[‡] Present address: Univ. Grenoble Alpes, CEA, LITEN, DTCH, 38000 Grenoble, France

IPEC cell and module components

Figure S1 - a) Front side (illuminated side) of an IPEC module. Tandem solar cells have different colours due to changes in perovskite and PTAA thickness. b) Back side of the IPEC module showing the water inlet circuit (plastic tubes) and

hydrogen outlet circuit (metal tubes). c) Temperature measurement set-up for the 1 sun illuminated IPEC module through multiple temperature sensors (from Figure 4).

Component	Specific features					
Anodic box	Polyoxymethylene (POM), $7 \times 7 \text{ cm}^2$ (cell), $21 \times 22 \text{ cm}^2$ (module)					
	Current collecting plate with flow channels, 3D-printed					
	polypropylene (PP): active flow area of 3.5×3.5 cm ² , 6 machined					
Anodic plate	serpentine channels of 1 mm width					
	Electrically conductive coating: sputtered bilayer of Cr/Au					
	(5 nm/200 nm)					
Pt wire	4 cm length, 1 mm diam. (Alfa Aesar), ensures electrical contact					
	between anode and solar cell					
Pt/Ti grid	Platinum-coated titanium grid (254 μ m thick, 3.5 × 3.5 cm ² ,					
	FuelCellStore)					
	Anode catalyst: 5.7 mg cm ^{-2} lr black (Alfa Aesar)					
Membrane	Nation NRE-212 membrane (50 μ m thick, Alta Aesar)					
Electrode	Gas diffusion cathode: 0.5 mg·cm ⁻² 60% Pt-Vulcan/carbon cloth					
Assembly	(FuelCellStore)					
	Active surface area of $3.5 \times 3.5 \text{ cm}^2$					
Gaskets	Silicon (GETELEC) of thickness: $300 \mu\text{m}$ anode side, $200 \mu\text{m}$					
	cathode side, 1 mm between anodic plate and anodic box					
	Current collecting plate with flow channels, 3D-printed 316L					
Cathodic plate	stainless steel: external area 6.5×6.5 cm ² , active flow area of 3.5×6.5 cm ² .					
1	3.5 cm ² , flow channels consisting of 1 mm width-cubic pins, internal					
	heat exchanger with 13 machined flow channels of 2.3 mm diameter					
In sheet	Indium film 100 μ m-thick (Chimie Tech Services), ensures electrical					
	contact between catnodic box and solar cell backside $\frac{1}{2}$					
Color coll	Perovskite/silicon tandem solar cell: 3×3 cm ² on a 5×5 cm ²					
Solar cell	substrate, metallization shading of ca. 15 % of the illuminated $\sqrt{2}$					
Mack	Surface, 7.0 cm active area					
10.24 cm^2						
	10.24 CIII					

Table S1 –	Components	of the	IPEC cell	and module.
1 abic D1	components	or the	II LC COI	and module

Determination of solar cells active area

Active area is defined as the area where all layers of the solar cells are stacked, taking into account the shading from opaque metallization (evaporated gold and additional metal ribbon) deposited on the front side. We used ImageJ software and a contrast determination method to determine A_{stack} , the area where all layers are stacked (in average, 9.0 cm²), from which we subtracted A_{shaded} , the average area occupied by metallization (in average, 1.4 cm²).

Figure S2 – Determination of the active area of a perovskite/silicon tandem solar cell. a) Initial image of the solar cell's front side, showing the 5×5 cm² substrate with the 3×3 cm² central zone where all layers are present. This central zone is defined by the 3×3 cm² front side ITO hard mask. b) In yellow, the area selection corresponding to A_{stack}, as determined with ImageJ. c) Within this central zone, in yellow, the area selection corresponding to gold metallization. d) In yellow, the area corresponding to the metal ribbon. A_{shaded} is determined summing the areas from c) and d).

	A _{stack} (cm ²)	A _{shaded} (cm ²)	Active area (A _{stack} – A _{shaded}) (cm ²)	% shaded (A _{shaded} /A _{stack})
Cell 1	9.0	1.6	7.5	17.2
Cell 2	9.1	1.4	7.7	15.7
Cell 3	9.0	1.2	7.8	13.4
Average	9.0	1.4	7.6	15.4

Table S2 – Determination of perovskite/silicon tandem solar cells active area.

Pictures of the IPEC modules in the outdoor experiment

Figure S3 - a) IPEC modules (circled) integrated into the autonomous device dedicated to the production of green methane at JRC in Ispra during the 72 hour demonstration outdoors (31). b) Front side and c) back side of the five IPEC modules aged outdoor.

Determination of the correction factor for the horizontal irradiance

Figure S4 – Direct radiation striking a tilted plane. a) Sheme of the IPEC modules, tilted 25° against the horizontal. b) Calculated direct radiation on the IPEC modules (in green), on the horizontal plane (in blue), and on the plane always perpendicular to the sun thanks to a light tracker. The latitude was 45° N. Day on the abscissa is the number of days since January 1^{st} . The ratio of irradiances used to correct the GHI for STH* calculation is 0.9. Figure and calculations adapted from (55).

Typical maximum power point voltages of perovskite/silicon solar cells under 1 sun

Figure S5 – Typical voltages reached at the maximum power point for the perovskite/silicon tandem solar cells under 1 sun (minimum value: 1253 mV, maximum value : 1444 mV, median value: 1364 mV).

Structure of the 3D-printed cathode with the heat exchanger

Figure S6 – Design of the 3D-printed metallic flow plate showing the heat exchanger channels and the central rough conductive surface.

Faradic efficiency during various IPEC cell performance tests

Table S3 – Faradic efficiency in IPEC cells under 1 sun illumination, during long and short operational periods. The average value of FE is used for the STH efficiency calculations.

	Faradic efficiency (FE) (%)
IPEC cell (Table 1)	74
Cycle 1 (Table 2)	80
Cycle 2 (Table 2)	76
Cycle 3 (Table 2)	70
Cycle 1 (Table S4)	75
Cycle 2 (Table S4)	68
Cycle 3 (Table S4)	71
Average	74

Influence of heat exchanger on IPEC cell performance

Cycle	V _{op} (V)	Average I _{op} (mA)	t (h)	Vol. H2 (L)	STH (%)	STH* (%)
	without heat exchanger					
1		69	5	0.06	4.6	4.6
2	1.44	76	8	0.09	3.8	3.8
3		65	10	0.07	2.5	2.5
	with heat exchanger					
1		60	8	0.16	7.3	7.3
2	From 1.44 to 1.5	57	8	0.14	6.6	6.4
3		45	8	0.12	6.9	5.1

 Table S4 – IPEC cell performance under cycles of continuous 1 sun illumination, without or with heat exchanger.

 Active area 7.3 cm² in the case without heat exchanger.

Estimation of STH efficiency from I(V) curves of perovskite/silicon tandem solar cells

Figure S7 – Estimated initial STH efficiency for the forty five IPEC cells from the current densities of the solar cells (disconnected from the PEM electrolyser) measured at 1.45 V under 1 sun. The Faradaic efficiency was taken at 74 %. STH range from 7.5 up to 10.8 %.

IPEC cell stability under light/dark cycles (repeated)

Figure S8 – IPEC cell stability under light / dark cycles (repeated experiment from Figure 3). Operating current (in blue) and hydrogen flow rate (in green).

Operating current of the nine IPEC cells from the IPEC module

Table S5 – Operating currents of the nine IPEC cells comprising the IPEC module. The corresponding STH efficiencies were calculated with a Faradaic efficiency of 74 %. Values of operating currents are given at the beginning and at the end of the 6 h stability run under continuous illumination from Figure 4.

	Initial		Final	
Solar cell	Iop (mA)	STH (%)	I _{op} (mA)	STH (%)
1	36	4.3	35	4.2
2	45	5.4	34	4.1
3	26	3.1	3.1 30	
4	57	6.8	44	5.3
5	30	3.6	6	0.7
6	33	4.0	36	4.3
7	46	5.5	25	3.0
8	24	2.9	20	2.4
9	29	3.5	26	3.1
Average	36	4.3	28	3.4

Impact of variations in perovskite and p-layer thicknesses on performance

Figure S9 – a) Current delivered at 1.45 V (close to operating point) by the perovskite/silicon tandem solar cells under 1 sun. b) Corresponding maximum power point voltage. Results are shown here for devices before encapsulation.

Performance of the tandem solar cells before and after outdoor ageing in Ispra

Figure S10 – PV performance parameters of the forty-five perovskite/silicon tandem solar cells before and after outdoor ageing in Ispra, measured under calibrated solar simulator. Power Conversion Efficiency (PCE), open circuit voltage (V_{oc}), fill factor (FF), short circuit current density (J_{sc}), voltage at maximum power point (V_{mpp}) and current density at 1.45 V (J @ 1.45V).

 $Figure \ S11-Typical \ I(V) \ curve \ of \ a \ perovskite/silicon \ tandem \ solar \ cell \ before \ (in \ blue) \ and \ after \ ageing \ (in \ red).$

Details of reports from literature used to build the graphs from Figure 6

Table S6 – Comparison of best IPEC cells and modules from this study with State of Art devices: illuminated or absorber active area, STH efficiency and tested lifetime (results are gathered for various ageing conditions: light cycling, continuous illumination or outdoor).

Device type	Illuminated or active area (cm ²)	STH (%)	Tested lifetime (h)	Ref.
	0.2	19	20	Cheng et al.(51)
	0.316	31.2	48	Jia <i>et al.</i> (56)
PVE or PEC with	1	14	1000	Kistler et al. (57)
III-V multi-junctions	4	17	2	Tembhurne <i>et al.</i> (24)
	8	N.A.	96	Kistler et al.(10)
	385 000	20.3	~ 5000	Holmes <i>et al.</i> (11)
	0.1875	17.52	0.1	Park <i>et al.</i> (13)
	0.3	17.6	0.1	Karuturi et al.(15)
	0.44	20.8	102	Fehr et al.(20)
	0.5	21.32	8	Pan <i>et al.</i> (18)
	0.5091	19.68	20	Wang <i>et al.</i> (17)
DVE on DEC with	1	17	0.1	Sharma <i>et al.</i> (58)
PVE OF PEC With porovskite besed	1	20	15	Wang <i>et al.</i> (16)
multi-junctions	1	21.5	72	Datta <i>et al.</i> (19)
	1	15	120	Song <i>et al.</i> (59)
	1.42	18.7	2.5	Gao <i>et al.</i> (14)
	7.6	8	72	IPEC cell from this work (Table 1)
	342 6.3	63	72	IPEC modules from this work
		12	(Table 4)	
	100	9.1	100	Pehlivan <i>et al.</i> (60)
PVE or PEC with	100	10	168	Calnan <i>et al.</i> (25)
single junction	100	13.4	12	Calnan <i>et al.</i> (25)
absorbers	2600	7	50	Calnan <i>et al.</i> (25)
	100000	10	6500	Lee <i>et al.</i> (61)
	1	0.13	154	Pornrungroj et al.(62)
PC devices	90 000	0.76	0.5	Nishiyama et al.(45)
	1 000 000	0.45	~ 2200	Nishiyama et al.(45)

References

- 55. Honsberg CB, Bowden SG. www.pveducation.org. 2019 [cited 2024 Apr 22]. Solar Radiation on a Tilted Surface. Available from: https://www.pveducation.org/pvcdrom/properties-of-sunlight/solar-radiation-on-a-tilted-surface
- 56. Jia J, Seitz LC, Benck JD, Huo Y, Chen Y, Ng JWD, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat Commun. 2016 Oct 31;7(1):13237.
- Kistler TA, Um MY, Agbo P. Stable Photoelectrochemical Hydrogen Evolution for 1000 h at 14% Efficiency in a Monolithic Vapor-fed Device. J Electrochem Soc. 2020 Mar;167(6):066502.

- Sharma A, Duong T, Liu P, Soo JZ, Yan D, Zhang D, et al. Direct solar to hydrogen conversion enabled by silicon photocathodes with carrier selective passivated contacts. Sustain Energy Fuels. 2022 Jan 18;6(2):349–60.
- 59. Song Z, Li C, Chen L, Dolia K, Fu S, Sun N, et al. All-Perovskite Tandem Photoelectrodes for Unassisted Solar Hydrogen Production. ACS Energy Lett. 2023 Jun 9;8(6):2611–9.
- 60. Pehlivan İB, Oscarsson J, Qiu Z, Stolt L, Edoff M, Edvinsson T. NiMoV and NiO-based catalysts for efficient solar-driven water splitting using thermally integrated photovoltaics in a scalable approach. iScience. 2021 Jan 22;24(1):101910.
- Lee M, Haas S, Smirnov V, Merdzhanova T, Rau U. Scalable Photovoltaic-Electrochemical Cells for Hydrogen Production from Water - Recent Advances. ChemElectroChem. 2022;9(24):e202200838.
- 62. Pornrungroj C, Mohamad Annuar AB, Wang Q, Rahaman M, Bhattacharjee S, Andrei V, et al. Hybrid photothermal–photocatalyst sheets for solar-driven overall water splitting coupled to water purification. Nat Water. 2023 Nov;1(11):952–60.