Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Supporting information

Unveiling the mechanism of CO₂ electroreduction to C₁ and C₂ products on ordered double transition metal MXenes.

Romana Khanam^a, Syed Fozia^a and Manzoor Ahmad Dar^{a*}

^a Department of Chemistry, Islamic University of Science and Technology,

Awantipora, Jammu and Kashmir-192122, India

Table of Contents

Table S1: Optimized geometries of Unit cells of M-Xenes along with calculated lattice parameters.

Fig. S1: Top view of optimised structures of $M'_2M''C$ M-Xenes where M' can be Cr, Mo, Ti, V and M'' be Nb, Ta, Ti, and V.

Fig. S2: Top view of lowest energy configuration of CO₂ adsorbed on M-Xenes.

Table S2: Calculated Bader charge of CO2 adsorbed on MXenes.

Table S3: Calculated activation barrier of C-O dissociation mechanism for three best catalysts.

Fig. S3: Phase plot comparing CO₂ binding energy with a) binding energy of *OH b) binding energy of *H c) binding energy of *O

Fig. S4: Behaviour of CO₂ adsorption on the catalyst surface with other co-adsorbates (*H, *O, *OH).

Fig. S5: Detailed computed free energy diagram representing the various possible pathways for the reduction of CO₂ to C₁ products on **a**) Cr₂NbC₂ **b**) Cr₂TaC₂ **c**) Cr₂TiC₂ **d**) Cr₂VC₂ **e**) Mo₂NbC₂ **f**) Mo₂TaC₂ **g**) Mo₂TiC₂ **h**) Mo₂VC₂ **i**) Ti₂NbC₂ **j**) Ti₂TaC₂ **k**) V₂TaC₂ **l**) V₂TiC₂

Fig. S6: Detailed computed free energy diagram representing the various possible pathways for the reduction of CO₂ to C₂ products on **a**) Cr_2NbC_2 **b**) Cr_2TaC_2 **c**) Cr_2TiC_2 **d**) Cr_2VC_2 **e**) Mo_2NbC_2 **f**) Mo_2TaC_2 **g**) Mo_2TiC_2 **h**) Mo_2VC_2 i) Ti_2NbC_2 **j**) Ti_2TaC_2 **k**) V_2TaC_2 **l**) V_2TiC_2

Fig. S7: Proposed reaction mechanism for CO₂ reduction to **a**) C₁ products (CH₄ and CH₃OH) and **b**) C₂ products (C₂H₄ and C₂H₅OH) on MXenes.

Fig S8: Electrode/Solution Interface of potential determining steps of CO_2 reduction on Mo_2TaC_2 MXene: a) Initial state and b) Final state of C_2 products.

Fig. S9: Variation of energy versus the AIMD simulation time for Mo_2TaC_2 for 6 ps at 600 K. The insets are the top views of snapshots of configurations.

System	Structure	Lattice parameters	
Cr ₂ NbC ₂		a=b=3.175 Å c=5.874 Å α=β=90° γ=120°	
Cr2TaC2		a=b=3.164 Å c=5.816 Å α=β=90° γ=120°	
Cr ₂ TiC ₂		a=b=3.035 Å c=6.242 Å α=β=90° γ=120°	
Cr ₂ VC ₂		a=b=3.006 Å c=6.172 Å α=β=90° γ=120°	
Mo2NbC2		a=b=3.282 Å c=6.584 Å α=β=90° γ=120°	
Mo2TaC2		a=b=3.134 Å c=7.050 Å α=β=90° γ=120°	
Mo2TiC2		a=b=3.167 Å c=6.712 Å α=β=90° γ=120°	
Mo2VC2		a=b=3.188 Å c=6.438 Å α=β=90° γ=120°	
Ti ₂ NbC ₂		a=b=3.157 Å c=7.143 Å α=β=90° γ=120°	

Table S1: Optimized geometries of Unit cells of M-Xenes along with calculated latticeparameters.

Ti2TaC2	a=b=3.089 Å c=7.480 Å α=β=90° γ=120°
V2TaC2	a=b=3.091 Å c=6.681 Å α=β=90° γ=120°
V2TiC2	a=b=3.005 Å c=6.816 Å α=β=90° γ=120°

Fig S1: Top view of optimised structures of $M'_2M''C$ MXenes where M' can be Cr, Mo, Ti, V and M'' be Nb, Ta, Ti, and V.

Fig. S2: Top view of lowest energy configuration of CO₂ adsorbed on MXenes.

Catalyst	C (e)	O (e)	Net Bader charge (e)
Cr ₂ NbC ₂	0.86	-1.06	-1.26
Cr_2TaC_2	0.87	-1.06	-1.25
Cr ₂ TiC ₂	0.82	-1.05	-1.28
Cr_2VC_2	0.82	-1.05	-1.28
Mo ₂ NbC ₂	0.87	-1.05	-1.23
Mo ₂ TaC ₂	0.87	-1.05	-1.23
Mo ₂ TiC ₂	0.88	-1.05	-1.22
Mo ₂ VC ₂	0.86	-1.06	-1.26
Ti ₂ NbC ₂	0.67	-1.13	-1.59
Ti ₂ TaC ₂	0.59	-1.12	-1.65
V ₂ TaC ₂	0.71	-1.06	-1.41
V ₂ TiC ₂	1.07	-1.12	-1.17

Table S2: Calculated Bader charge of CO2 adsorbed on MXenes.

Table S3: Calculated activation barrier of C-O dissociation mechanism for three best catalysts.

Catalyst	$\Delta G_{CO}(eV)$	$\Delta G_{CO2}(eV)$	ΔGa (eV)
Mo ₂ TaC ₂	-1.38	-1.9	0.51
Mo ₂ TiC ₂	-1.66	-2.18	0.52
Mo ₂ VC ₂	-1.82	-2.45	0.63

Fig. S3: *Phase plot comparing CO*₂ *binding energy with a) binding energy of *OH b) binding energy of *H c) binding energy of *O*

Fig. S4: Behaviour of CO_2 adsorption on the catalyst surface with other co-adsorbates (*H, *O, *OH).

Reaction Pathway

Reaction Pathway

Fig. S5: Detailed computed free energy diagram representing the various possible pathways for the reduction of CO₂ to C₁ products on a) Cr₂NbC₂ b) Cr₂TaC₂ c) Cr₂TiC₂ d) Cr₂VC₂ e) Mo₂NbC₂ f) Mo₂TaC₂ g) Mo₂TiC₂ h) Mo₂VC₂ i) Ti₂NbC₂ j) Ti₂TaC₂ k) V₂TaC₂ l) V₂TiC₂. The

most favourable pathways are highlighted in red colour with the potential determining steps represented by green colour.

Fig. S6: Detailed computed free energy diagram representing the various possible pathways for the reduction of CO_2 to C_2 products on a) Cr_2NbC_2 b) Cr_2TaC_2 c) Cr_2TiC_2 d) Cr_2VC_2 e) Mo_2NbC_2 f) Mo_2TaC_2 g) Mo_2TiC_2 h) Mo_2VC_2 i) Ti_2NbC_2 j) Ti_2TaC_2 k) V_2TaC_2 l) V_2TiC_2 . The most favourable pathways are highlighted in red colour with the potential determining steps represented by green colour.

Fig. S7: Proposed reaction mechanism for CO_2 reduction to a) C_1 products (CH_4 and CH_3OH) and b) C_2 products (C_2H_4 and C_2H_5OH) on MXenes.

Fig S8: Electrode/Solution Interface of potential determining steps of CO_2 reduction on Mo_2TaC_2 MXene: a) Initial state and b) Final state of C_2 products.

Fig. S9: Variation of energy versus the AIMD simulation time for Mo_2TaC_2 for 6 ps at 600 K. The insets are the top views of snapshots of configurations.