Experimental And Theoretical Insight of Benzene-1,4-Dicarboxylic

Acid Based Co-MOF: An Anodic Material for Expedient Battery-

Supercapacitor Hybrids

Junaid Khan^{a, b*}, Anique Ahmed^c, Muhammad Imran Saleem^d, Abdullah A. Al-Kahtani^e

^aDepartment of Physics, Government Postgraduate Collage No.1, Abbottabad, Khyber Pakhtunkhwa, Pakistan

^bDepartment Of Higher Education Achieves and Libraries, Government of Khyber Pakhtunkhwa, Pakistan

^cFaculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa, Pakistan

^dDepartment of Chemical and Bilogical Engineering, Gachon University, 1342 Seongnam-daero, Seongnam13120, Republic of Korea

^eChemistry Department, Collage of Science, King Saud University, P. O. Box 2455, Riyadh-22451, Saudi Arabia

*Email: junaidkhan.nanotech@gmail.com

Figure S1: FTIR results of Co-MOF.

Figure S2: N_2 adsorption/desorption curve

Figure S3: CV outcomes of Co-MOF synthesized via hydrothermal approach employing different thermal environment, indicating the dominant performance of one synthesized at 150 $^{\circ}C$