Supporting Information

Samarium Doped Cobalt Metal-Organic Framework as a Versatile Catalyst for the Conversion of Furfural and 2-Methyl Furan to High-Value Added Biofuel Precursor

Sahil Sharma^a, Jyoti Rohilla^b, Sahil Thakur^{a,b}, Raghubir Singh^{a*}, Varinder Kaur^{b*}

^aDepartment of Chemistry, DAV College, Sector 10, Chandigarh-160011, India

^bDepartment of Chemistry, Panjab University, Sector 14, Chandigarh-160014, India

*Corresponding author: raghubirsingh@davchd.ac.in (R.S.), var ka04@yahoo.co.in (V.K.),

List of Figure	S			
Figure S1	¹ H NMR Spectra of 5,5'-(furan-2-ylmethylene)bis(2-methylfuran)	S2		
Figure S2	¹³ C NMR Spectra of 5,5'-(furan-2-ylmethylene)bis(2-methylfuran).	S3		
Figure S3	DTG Curve of Co-TTA MOF and Sm/Co-TTA MOF.	S4		
Figure S4	EDAX of Co-TTA and Sm/Co-TTA MOF	S4		
Figure S5	XPS of (a) O 1s of Co-TTA MOF, (b) C 1s of Co-TTA MOF, (c) O	S5		
	1s of SM/Co-TTA MOF, (d) C 1s of Sm/Co-TTA MOF.			
Figure S6	NH ₃ -TPD Profiles of (a) Co-TTA MOF, (b) Sm/Co-TTA MOF.	S6		
Figure S7	GC Chromatogram of (a) FMBMF, (b) Furfural, (c) 2 MF	S7		
Figure S8	(a) Kinetic curve of formation of FMBMF by different amounts of	S8		
	catalyst. (b) The kinetic curve of FMBMF formation at different			
	temperature rates. (c) The kinetic curve of FMBMF formation at			
	different time intervals.			
Figure S9	Proposed mechanism of catalytic conversion of FAL and 2-MF to	S8		
	FMBMF.			
Figure S10	FTIR Spectra of Fresh Sm/Co-TTA MOF and after 5 th catalytic	S9		
	cycle.			
List of Tables				
Table S1	Crystal data and structure refinement for Co-TTA MOF.	S9		
Table S2	Selected Bond length(A°) and bond angle for Co-TTA MOF.	S10		
Table S3	Optimization Reactions for Co-TTA MOF.	S11		

¹H NMR (CDCl₃, 500 MHz): 2.19 (s, 6H, H¹ H¹¹), 5.35 (s,1H, H⁶), 5.82 (d, 2H, H⁴ H⁸), 5.91 (d, 2H, H³ H⁹), 6.04 (d, 2H, H¹²), 6.24-6.25 (m, 1H, H¹³), 7.28 (d, 1H, H¹⁴)

Figure S1. ¹H NMR Spectrum of 5,5'-(furan-2-ylmethylene)bis(2-methylfuran).

Figure S2. ¹³C NMR Spectrum of 5,5'-(furan-2-ylmethylene)bis(2-methylfuran).

Figure S3. DTG Curve of Co-TTA MOF and Sm/Co-TTA MOF.

Figure S4. EDAX of Co-TTA and Sm/Co-TTA MOF.

Figure S5. XPS of **(a)** O 1s of Co-TTA MOF , **(b)** C 1s of Co-TTA MOF , **(c)** O 1s of SM/Co-TTA MOF, **(d)** C 1s of Sm/Co-TTA MOF.

Figure S6. NH₃-TPD Profiles of (a) Co-TTA MOF, (b) Sm/Co-TTA MOF.

Figure S7. GC Chromatogram of (a) FMBMF , (b) Furfural , (c) 2 MF

Figure S8. (a) Kinetic curve of formation of FMBMF by different amounts of catalyst. **(b)** The kinetic curve of FMBMF formation at different temperature rates. **(c)** The kinetic curve of FMBMF formation at different time intervals.

Figure S9. Proposed mechanism of catalytic conversion of FAL and 2-MF to FMBMF.

Figure S10. FTIR Spectra of Fresh Sm/Co-TTA MOF and after 5 th catalytic cycle.

Parameter	Co-TTA MOF	Parameter	Co-TTA MOF
Empirical formula	C ₁₈ H ₁₉ Co _{1.5} N ₂ O ₈	μ/mm^{-1}	1.237
Formula weight	479.75	F(000)	982.0
Temperature/K	293(2)	Crystal size/mm ³	0.3 imes 0.1 imes 0.1
Crystal system	monoclinic	Radiation	MoKa ($\lambda = 0.71073$)
Space group	$P2_1/n$	20 range for data collection/°	5.388 to 56.064
a/Å	14.7519(12)	Index ranges	$-18 \le h \le 19, -11 \le k \le 12, -19 \le 1 \le 19$
b/Å	9.6628(7)	Reflections collected	13904
c/Å	15.4954(12)	Independent reflections	$4752 [R_{int} = 0.0810, R_{sigma} = 0.0873]$
α/\circ	90	Data/restraints/parameters	4752/76/271
β/°	106.904(3)	Goodness-of-fit on F ²	1.193
$\gamma/^{\circ}$	90	Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.1065, wR2 = 0.3073
Volume/Å ³	2113.4(3)	Final R indexes [all data]	R1 = 0.1510, wR2 = 0.3572
Z	4	Largest diff. peak/hole / e Å-3	2.04/-1.64
$\rho_{calc}g/cm^3$	1.508		

 Table S1. Crystal data and structure refinement for Co-TTA MOF.

Bond	Length(A°)	Bond	Length(A°)
Co2- O2	2.039(5)	Co1- O1	1.995(6)
Co2- O2 ¹	2.039(5)	Co1- O7 ²	2.005(6)
Co2- O3	2.143(5)	Co1- O4	2.264(6)
Co2- O3 ¹	2.143(5)	Co1- O5	2.226(10)
Co2- O8 ²	2.057(5)	Co1- O6	2.007(9)
Co1- O3	2.106(5)	Co2- O8 ³	2.057(5)

Table S2. Selected Bond length(A°) and Bond angle for Co-TTA MOF.

Bond	Angle/°	Bond	Angle/°	Bond	Angle/°
O2-Co2-O2 ¹	180.0	O8 ² -Co2-O3 ¹	88.9(2)	O1-Co1-O5	84.1(4)
O2-Co2-O3	88.25(19)	O8 ³ -Co2-O3 ¹	91.1(2)	O1-Co1-O6	103.9(4)
O2-Co2-O31	91.75(19)	O8 ² -Co2-O3	91.1(2)	O7 ² -Co1-O3	102.6(2)
O2 ¹ -Co2-O3	91.75(19)	O8 ³ -Co2-O3	88.9(2)	O7 ² -Co1-O4	94.7(3)
O2 ¹ -Co2-O3 ¹	88.25(19)	O8 ² -Co2-O8 ³	180.0	O7 ² -Co1-O5	170.5(4)
O2-Co2-O8 ²	93.9(2)	O3-Co1-O4	59.6(2)	O7 ² -Co1-O6	89.4(4)
O2 ¹ -Co2-O8 ³	93.9(2)	O3-Co1-O5	83.8(3)	C1-O2-Co2	140.5(5)
O2 ¹ -Co2-O8 ²	86.1(2)	O1-Co1-O3	96.6(2)	Co1-O3-Co2	108.5(2)
O2-Co2-O8 ³	86.1(2)	O1-Co1-O7 ²	102.0(3)	C2-O3-Co2	128.7(5)
O3-Co2-O3 ¹	180.0(2)	O6-Co1-O5	81.9(5)	C2-O3-Co1	94.1(5)
O1-Co1-O4	153.7(3)	O5-Co1-O4	82.4(4)	C2-O3-Co1	94.1(5)

S.No.	Catalyst Amount(mg)	Temperature (°C)	Time(h)	Yield (%)
1.	10	50	3	43
2.	15	50	3	39
3.	10	40	3	31
4.	10	60	3	44
5.	10	50	4	41
6.	10	50	5	36

 Table S3. Optimization Reactions for Co-TTA MOF.