Supporting Information

Tandem Electroreduction of Nitrate to Green Ammonia on Recycled Copper Sheets from Spent Batteries: Splicing the Surface Roughness Achieves High Yield Rate

Abdelrahman M. Abdelmohsen[§], Ahmed M. Agour[§], Ibrahim M. Badawy, Ghada E. Khedr, Yasmine Mesbah and Nageh K. Allam*

Energy Materials Laboratory (EML), Physics Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt

* Corresponding Author's email: nageh.allam@aucegypt.edu

Reagents.

Sodium hydroxide (NaOH, 96%), potassium hydroxide (KOH, \geq 85%) and Hydrochloric acid (HCl, 37%) were purchased from Sigma-Aldrich. Urea and Absolute ethanol were purchased from Merck. Ferric nitrate nonahydrate (FeN₃O_{9.9}H₂O·4H₂O, \geq 98.0%), were purchased from Alfa Aesar. Ammonium chloride (NH₄Cl, \geq 98%) was purchased from Fischer. Trisodium citrate, Citric acid (C₈H₈O₇, 99.5%), and Salicylic acid (C₇H₆O₃, 99%) were purchased from Loba Chemie. Sodium nitroferricyanide (Na₂[Fe(CN)₅NO]. 2H₂O, 99%) was purchased from Alpha Chemika. Sodium hypochlorite (NaOCl, approx. 4%w/v) was purchased from SDDFCL. P Dimethyl Amino Benzaldehyde (C9H11NO, 98%) was purchased from Qualikems.

Characterization.

XRD patterns of the obtained powders were performed using a D8 Discover (Bruker). Scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS) elemental mapping were conducted using a Thermo Fisher (USA) Quattro S Felid Emission Gun, Environmental SEM "FEG ESEM" and energy-dispersive X-ray spectrometer (EDS) elemental mapping were conducted on a JEM-ARM 200F. Ultraviolet–visible (UV–vis) spectra were carried out on a SHIMADZU UV-2700 UV–vis spectrophotometer. FTIR spectroscopy on a Nicolet 380 spectrometer (Thermo Scientific Nicolet, Waltham, MA, USA).

Figure S1. (a) UV-Vis spectrum of NH_4OH with different concentrations with the as-prepared indicator, (b) the corresponding calibration curve, (c) the UV-Vis spectrum of potassium nitrite with the as-prepared indicator, and (d) the corresponding calibration curve.

Figure S2. XRD pattern of the bare Cu-foil

Table S1. Elemental composition of the bare Cu-foil as revealed from the XRF analysis

Element	Cu (%)	Na (%)	Mg (%)	Al (%)
Percent	98.41	0.94	0.17	0.014

Figure S3 EDX spectra of the (a) acetone-treated, (b) acid-treated, and (c) electropolished Cufoil samples.

Figure S4. Pourbaix diagram of Cu.

Figure S5. Cyclic voltammograms of Cu-foil measured at different scan rates from 20 to 120 mV/s. a) The CVs for acetone treated sample (top) and the linear best-fit line of C_{dl} (bottom) b) CVs (top) and best linear fit (bottom) for acid-treated sample c) CVs (top) and best linear fit (bottom) for electropolished sample

Computational details:

The equations applied for NO₃⁻ conversion to NH₃ are as follows:

*
$$+ NO_{3}^{-} \rightarrow * NO_{3} + e^{-}$$

* $NO_{3} + 2H^{+} + 2e^{-} \rightarrow * NO_{2} + H_{2}O$
* $NO_{2} + 2H^{+} + 2e^{-} \rightarrow * NO + H_{2}O$
* $NO + H^{+} + e^{-} \rightarrow * NOH$
* $HNO + 2H^{+} + 2e^{-} \rightarrow * NH_{2}OH$
* $NH_{2}OH + 2H^{+} + 2e^{-} \rightarrow * NH_{3} + H_{2}O$
* $NH_{3} \rightarrow * NH_{3} + *$

where * represents the surface. Then, the reaction Gibbs free energy change can be calculated by the following equation:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S$$

where ΔE is the total energy difference before and after intermediate adsorbed, ΔE_{ZPE} and ΔS are the differences of zero-point energy and entropy, respectively. The vibrational frequency calculations were applied to calculate the zero-point energy and entropy of free molecules and adsorbents. To avoid directly computing the energy of charged NO₃⁻, gaseous HNO₃ is used as a reference in the following steps. Correspondingly, the adsorption energy of NO₃⁻

 (ΔG_{NO3}^*) can be approximately calculated as

$$\Delta G^* NO_3 = G^* NO_3 - G^* - GHNO_{3(g)} + 0.5GH_{2(g)}$$

where G^*_{NO3} , G^* , $G_{HNO3(g)}$ and G_{H2} are the Gibbs free energy of NO_3^- adsorbed, HNO₃ and H₂ molecules in the gas phase, respectively. The HER catalytic activity of catalysts can be evaluated by ΔG_H , which is defined as were calculated based on.

$$\Delta E = E_{surf + H} - E_{surf} - \frac{1}{2}E(H_2)$$

The Gibbs free energy of Hydrogen is calculated using:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S$$

 Δ ZPE is the difference in zero-point energy and Δ S is the difference in entropy between the adsorbed state and gas phase. Since Δ ZPE - T Δ S \approx 0.24 eV, thus Δ G = Δ E + 0.24 eV.

Figure S7. SEM images of a) acetone treated b) acid treated and c) electropolished Cu sheets after a complete electrochemical run under -0.8V vs RHE

Figure S8. XPS spectra of the electropolished Cu sheet