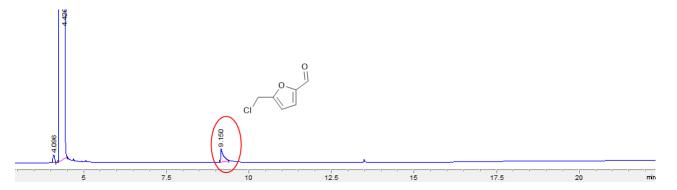
Preparation of catalysts

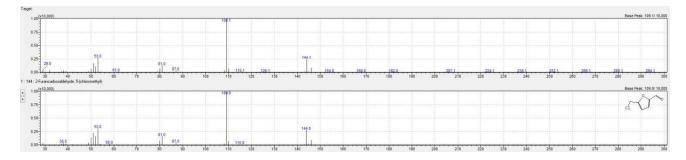
The Pd/C, Ru/C, Rh/C and Pt/C catalysts with a metal loading of 5wt.% were prepared by the incipient wetness impregnation of activated carbon with aqueous solutions of PdCl₂, RuCl₃, RhCl₃ and H₂PtCl₆. After being kept at room temperature for 12 h, the catalysts were dried at 393 K for 12 h and reduced at 623 K for 2 h in a 5% H₂/Ar flow. After cooling to room temperature, the catalysts were passivated by 1% O₂/Ar flow for 6 h.

The hydroxyapatite (HAP) loaded metal catalysts (denoted as M/HAP, M = Ni, Ru, Pd, Pt) used in the hydrodeoxygenation (HDO) process were prepared by deposition-precipitation (DP) method. Taking Ni/HAP for example, 2.0 g HAP was vigorously stirred in 30 mL aqueous solution of Ni(NO₃)₂ for 0.5 h at room temperature. Subsequently, the pH of resultant slurry was slowly adjusted to about 8.0 with NH₃·H₂O solution. The mixture was stirred for another 2 h. Finally, the solid was separated by filtration and thoroughly washed with deionized water (to remove the NO₃⁻). The resultant solid material was dried at 393 K for 12 h and reduced in a 20% H₂/Ar flow at 573 K for 3 h. After being cooled down to room temperature in hydrogen flow, the Ni/HAP catalyst was passivated by 1% O₂/Ar for 6 h. Analogously, the Ru/HAP, Pd/HAP and Pt/HAP catalysts were prepared by the method, using RuCl₃, PdCl₂ and H₂PtCl₆ as the precursors. To facilitate the comparison, the theoretical metal contents in the investigated HDO catalysts were fixed at 2wt.%.

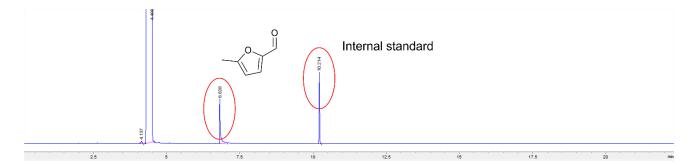
Characterization of catalysts

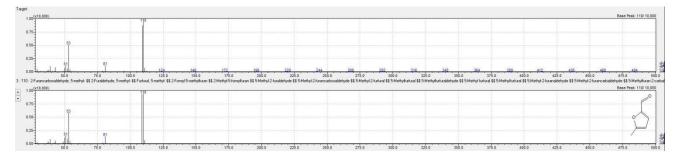

The specific Brunauer–Emmett–Teller (BET) surface areas (S_{BET}) of the catalysts were measured by N₂-physisorption that was carried out at 77 K with an ASAP 2010 apparatus. Before each measurement, the acidic resin was evacuated at 373 K for 6 h.

The amounts of acid sites on the surfaces of acidic resins were measured with a Micromeritics AutoChem II 2920 Automated Catalyst Characterization System by NH₃chemisorption. To do this, the catalyst was put into the quartz tube, pretreated with He flow at 393 K for 30 min. After the baseline was stable, NH₃ was injected in a pulse mode until the saturation. The amounts of acid sites on the surfaces of acidic resins were calculated base on the consumption of NH₃.


General experimental details for NMR and GC-MS analysis

¹H NMR and ¹³C NMR spectra of the products from the HAA reaction of MFA and 2-MF were recorded at room temperature in CDCl₃ on Bruker AVANCE III 400 MHz instrument. The chemical shifts for ¹H NMR were recorded in ppm downfield using the peak of CDCl₃ (7.26 ppm) as the internal standard. The chemical shifts for ¹³C NMR were recorded in ppm downfield using the central peak of CDCl₃ (77.16 ppm) as the internal standard.


GC-MS analysis of the products was carried out by a Varian Corp 450GC/320MS which was equipped with a HP-5 capillary column.


Figure S1. Gas chromatogram of the product obtained from the conversion of cellulose in the first-stage. Reaction conditions: 473 K, 1 MPa N₂, 400 rpm, 6 h; 1.5 g cellulose, 3 g NaCl, 10 mL H₂O, 20 mL organic solvent were used in the test.

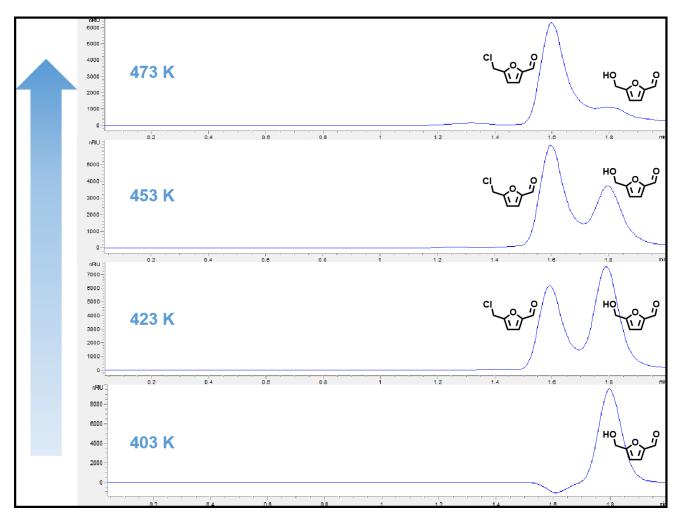
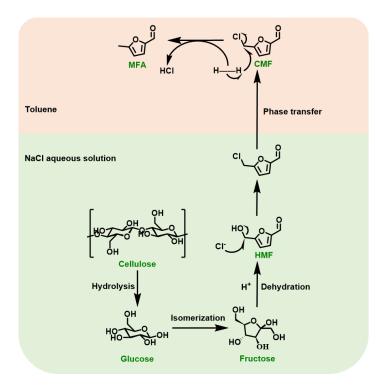
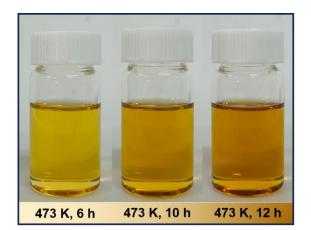
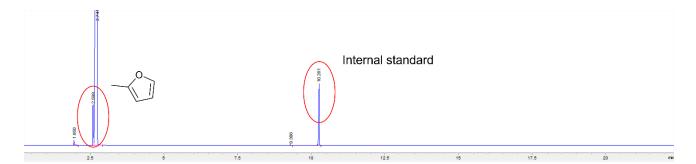
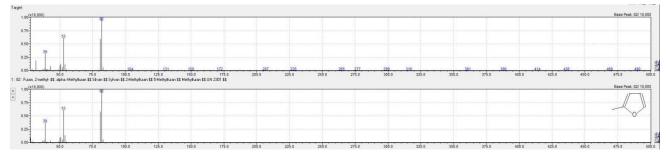

Figure S2. Mass spectrogram of the chloromethylfurfural obtained from the conversion of cellulose in the first-stage.

Figure S3. Gas chromatogram of the product obtained from the conversion of cellulose by the two-stage process. Reaction conditions: First stage: 473 K, 1 MPa N₂, 400 rpm, 6 h; 0.3 g cellulose, 3 g NaCl, 10 mL H₂O, 20 mL organic solvent were used in each test. Second stage: 303 K, 2 MPa H₂, 400 rpm, 2 h; the organic phase product from the first stage and 0.03 g Pd/C were used in each test.

Figure S4. Mass spectrogram of the 5-methylfurfural (MFA) obtained from the two-stage conversion of cellulose.

Figure S5. HPLC chromatograms of the products obtained from the conversion of cellulose at different reaction temperatures. Reaction conditions: 1 MPa N₂, 400 rpm, 6 h; 0.3 g cellulose, 3 g NaCl, 10 mL H₂O, 20 mL organic solvent were used in each test.


Figure S6. Reaction pathway for the synthesis of MFA from cellulose.

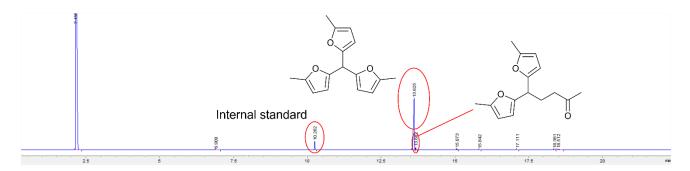

Figure S7. Photo of the products obtained from the conversion of cellulose at different reaction times. Reaction conditions: 473 K, 1 MPa N₂, 400 rpm; 0.3 g cellulose, 3 g NaCl, 10 mL H₂O, 20 mL organic solvent were used in each test.

Figure S8. Gas chromatogram of the product obtained from decarbonylation of MFA. Reaction conditions: 443 K, 4 h, 400 rpm; 1 mmol MFA, 0.05 g Pd/C and 5 mL ethyl acetate were used in the test.

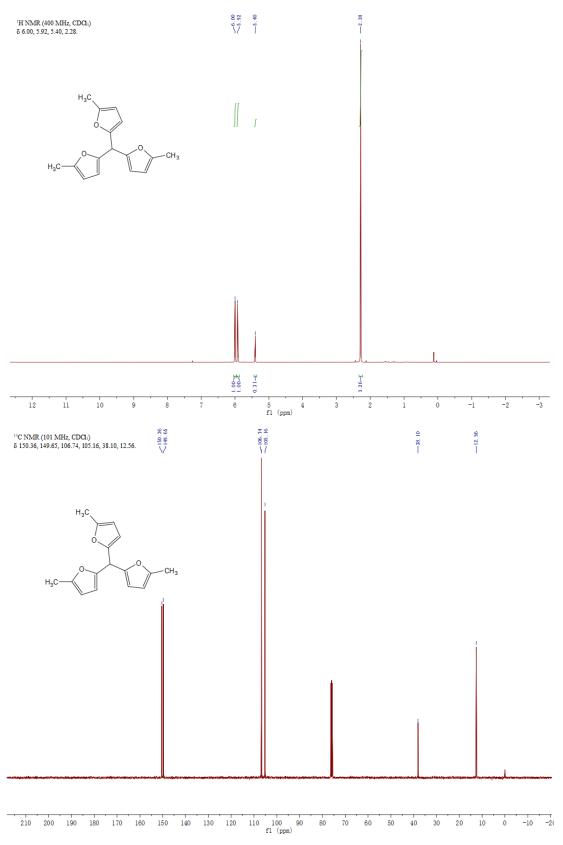
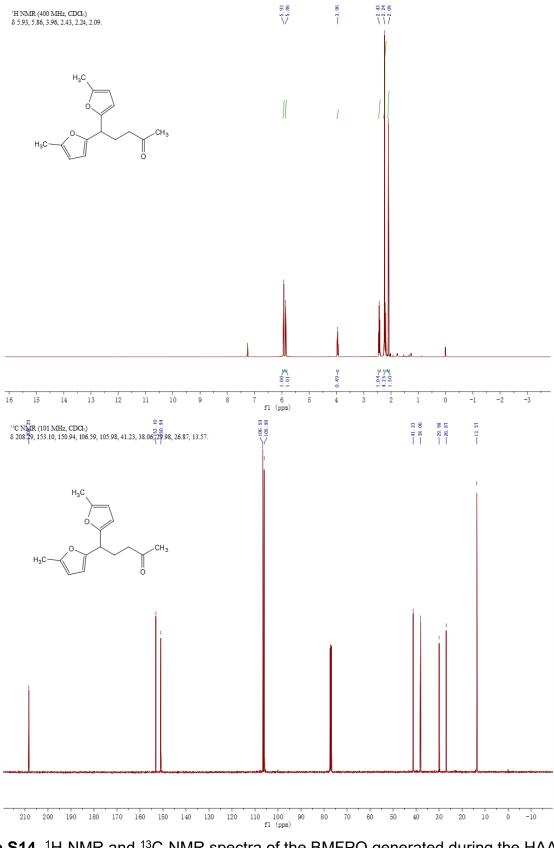
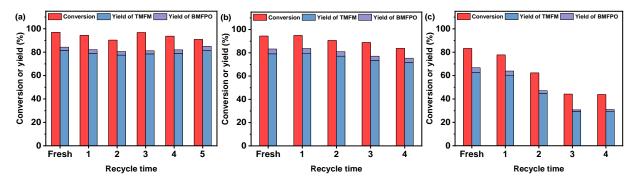
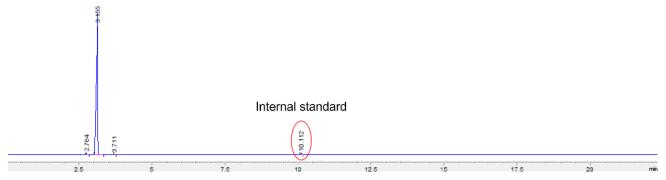

Figure S9. Mass spectrogram of the 2-methylfuran (2-MF) obtained from the decarbonylation of MFA.

Figure S10. Gas chromatogram of the product obtained from HAA of MFA and 2-MF. Reaction conditions: 333 K, 400 rpm, 4 h; 5 mmol MFA, 10 mmol 2-MF and 0.09 g Nafion resin were used for each test.


Figure S11. Mass spectrogram of the TMFM obtained from the HAA reaction of MFA and 2-MF.


Figure S12. ¹H-NMR and ¹³C-NMR spectra of the TMFM obtained from the HAA reaction of MFA and 2-MF.

-				1	3							N
)=\
				1								0
											0	
43	3											χ
1000000				1.0000000							E	


Figure S13. Mass spectrogram of the BMFPO generated during the HAA reaction of MFA and 2-MF.

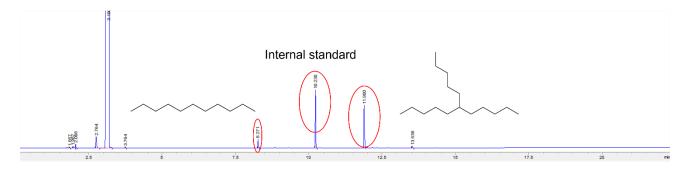

Figure S14. ¹H-NMR and ¹³C-NMR spectra of the BMFPO generated during the HAA reaction of MFA and 2-MF.

Figure S15. Conversion of 2-MF and the yields of TMFM and BMFPO over Nafion (a), Amberlyst-15 (b) and Amberlyst-36 (c) resins as the function of recycle time. Reaction conditions: 333 K, 400 rpm, 2 h; 5 mmol MFA, 10 mmol 2-MF, 0.09 g catalyst were used for each test.

Figure S16. Gas chromatogram of blank control experiment for HDO. Reaction conditions: 493 K, 4 MPa H₂, 500 rpm, 24 h; 30 mL cyclohexane, 0.1 g Ni/HAP and 0.1 g H-ZSM-5 were used for the test.

Figure S17. Gas chromatogram of the product obtained from HDO of TMFM. Reaction conditions: 453 K, 4 MPa H₂, 500 rpm, 24 h; 0.1 g TMFM, 30 mL cyclohexane, 0.1 g Ni/HAP and 0.1 g H-ZSM-5 were used for the test.

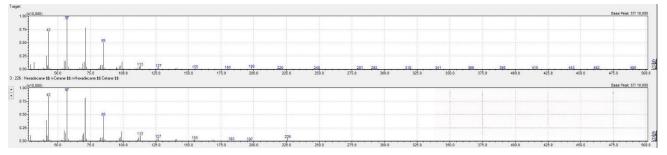


Figure S18. Mass spectrogram of the C_{16} alkane obtained from HDO of TMFM.

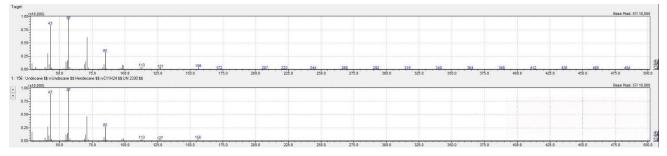


Figure S19. Mass spectrogram of the C_{11} alkane obtained from HDO of TMFM.

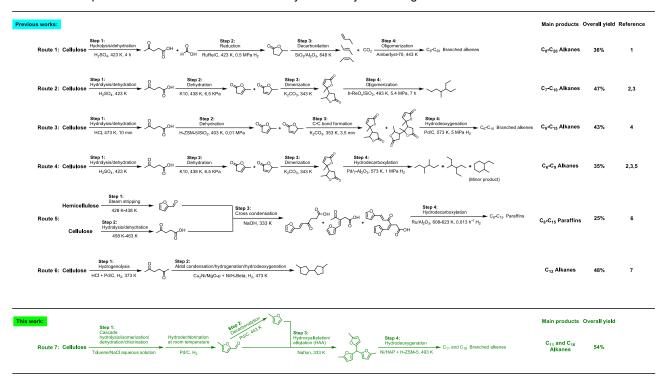


Table S1. Comparison of the different routes for the synthesis of jet fuel range alkanes with cellulose.

References

- 1. S. Murat Sen, C. A. Henao, D. J. Braden, J. A. Dumesic and C. T. Maravelias, Chem. Eng. Sci., 2012, 67, 57-67.
- 2. B. Girisuta, L. P. B. M. Janssen and H. J. Heeres, Ind. Eng. Chem. Res., 2007, 46, 1696-1708.
- 3. M. Mascal, S. Dutta and I. Gandarias, Angew. Chem., Int. Ed., 2014, 53, 1854-1857.
- 4. J. Xin, S. Zhang, D. Yan, O. Ayodele, X. Lu and J. Wang, Green Chem., 2014, 16, 3589-3595.
- 5. F. Chang, S. Dutta and M. Mascal, *ChemCatChem*, 2017, **9**, 2622-2626.
- Y. Liu, L. Chen, Y. Chen, X. Zhang, J. Liu, Q. Liu, Y. Li, C. Wang, Q. Zhang and L. Ma, *Bioresour. Technol.*, 2023, 372, 128653.
- 7. Y. Liu, G. Li, Y. Hu, A. Wang, F. Lu, J.-J. Zou, Y. Cong, N. Li and T. Zhang, Joule, 2019, 3, 1028-1036.