Electronic Supplementary Information (ESI)

BiVO₄/Bi₂Mo₂O₉ heterostructure towards oriented charge transfer for efficient photoelectrochemical water oxidation

Yuli Xiong^{a*}, Nan Zhou^a, Yuting Zhou^a, Bo Peng^a, Yuting Cui^a, Peng Yu^{a*},

Zhenxiang Cheng^{b*}

^a College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, P. R. China.

^b Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia.

Corresponding authors: ylxiong@cqnu.edu.cn (Y. Xiong), pengyu@cqnu.edu.cn (P. Yu), cheng@uow.edu.au (Z. Cheng).

Keywords: BiVO₄/Bi₂Mo₂O₉, interfacial interaction, charge transfer, solar energy, photoelectrochemical

1. Experimental Section

1.1 Material characterizations

The crystalline phases of the samples were determined by X-ray power diffraction (XRD) using a Shimadzu ZD-3AX diffractometer with CuK α radiation ($\lambda = 1.5418$ Å) at a scan rate of 2° per min in the angular range from 5° to 90°. The morphology and high-resolution microstructure images were observed through a field emission scanning electron microscope (FE-SEM, Hitachi, Regulus 8220) and a transmission electron microscopy (TEM, Talos F200S, 200kV) separately. The UV-Vis light absorption spectra were record with a spectrophotometer (UV-3600, Shimadzu) in the region of 300 – 800 nm. Room temperature photoluminescence (PL) measurement were carried out with a fluorescence spectrometer (Cary eclipse) with an excitation wavelength of 360 nm. The time-resolved PL measurement was carried out with Edinburgh FS5 with an excitation wavelength of 365 nm. The surface composition and chemical states analysis was carried out by an X-ray photoelectron spectroscopy (XPS, ESCALab250).

1.2 Photoelectrochemical measurements

Electrochemical tests were carried out using a Zahner Zennium electrochemical workstation operated in a standard three-electrode configuration, with a photoelectrode (1 cm²) used as the working electrode. Meanwhile, a Pt coil (diameter is 1 mm, length is 5 cm) served as the counter electrode, an Ag/AgCl electrode (saturated KCl) used as the reference electrode. In a typical experiment, 0.2 M KPi with/without 0.5 M Na₂SO₃ as a hole scavenger was used as the electrolyte. The photo-response of the synthesized electrodes were measured under front-side illumination by a 300 W Xenon arc lamp

(NBet HSX-F300, China) equipped with an AM 1.5G filter (Ceaulight). The intensity of the light source was calibrated with a UV enhanced silicon photo-detector (Newport, Models 1916C and 818-UV) to simulate AM 1.5 illumination (100 mW cm⁻²). For all the samples, a scan rate of 25 mV s⁻¹ used for the photocurrent-voltage (*J*-V) character. A photocurrent stability test was performed at a fixed bias potential of 1.23 V vs RHE under illumination. And the incident photon to current efficiency (IPCE) performance was performed at a fixed bias potential of 1.23 V vs RHE under illumination. Mott-Schottky plots were obtained in the electrolyte of 0.2 M KPi under illumination at an ac frequency of 500 and 1000 Hz. The carrier concentration and the flat potential can be estimated by the following equation:

$$(A_s/C_{bulk})^2 = (2/\epsilon\epsilon\epsilon_0 N_d)[V - V_{FB} - k_B T/e]$$
(1)

Where A_s is the efficient area of electrode, C_{bulk} is the space charge capacitance, ε is the dielectric constant of the samples, ε_0 is the permittivity under vacuum (8.85 × 10⁻¹² $C^2 J^{-1} m^{-2}$), N_d is the carrier density of the samples, V is the applied potential, V_{FB} is the flat band potential, k_B is the Boltzmann constant (1.38 × 10⁻²³ J K⁻¹), T (298 K) is the absolute temperature, and e is the electron charge (1.602 × 10⁻¹⁹ C).

The measured potential versus Ag/AgCl was converted to RHE potential by the Nernst equation

$$E_{\rm RHE} = E_{\rm Ag/AgCl} + 0.0591 \text{ pH} + 0.1976 \tag{2}$$

The photocurrent density arising from PEC performance (J_{water}) can be described as follows:

$$J_{\text{water}} = J_{\text{abs}} \times \eta_{\text{sep}} \times \eta_{\text{oxi}}$$
(3)

where J_{abs} is the photocurrent density when completely converting the absorbed photons into current (i.e., APCE = 100%). η_{sep} is the efficiency of charge separation and η_{oxi} is the efficiency of surface oxidation kinetics. Adding 0.5 M Na₂SO₃ to the electrolyte can completely suppress the surface recombination of charge carriers without influencing the charge separation in the electrode bulk (i.e., $\eta_{oxi} = 100\%$). Therefore, η_{sep} and η_{oxi} can be expressed as follows:

$$\eta_{\text{sep}} = J_{\text{sulfite}} / J_{\text{abs}}$$
(4)
$$\eta_{\text{oxi}} = J_{\text{water}} / J_{\text{sulfite}}$$
(5)

where J_{water} is the photocurrent density for water oxidation; J_{sulfite} is the photocurrent density for sulfite oxidation. By estimating the overlapped areas between the AM 1.5G illumination, assuming APCE = 100%, the J_{abs} of Bi₂Mo₂O₉ and BiVO₄/Bi₂Mo₂O₉ photoanodes are derived to be around 1.7 and 2.2 mA cm⁻².

2. Figures

Figure S1. Top view SEM images of Bi₂Mo₂O₉, inset is the low magnification view.

Figure S2. XRD spectra of Bi₂Mo₂O₉ and the FTO substrate.

Figure S3. (a) TEM and the corresponding EDS elemental mappings of $Bi_2Mo_2O_9$, (b) HRTEM image of $Bi_2Mo_2O_9$.

Figure S4. (a) The cross-sectional SEM of $BiVO_4/Bi_2Mo_2O_9$, the thickness of outer layer $BiVO_4$ and inner layer $Bi_2Mo_2O_9$ is around 400 nm and 600 nm. (b) TEMcorresponding EDX spectra of $BiVO_4/Bi_2Mo_2O_9$.

Figure S5. The high-resolution XPS spectra of Bi 4f for $Bi_2Mo_2O_9$ and $BiVO_4/Bi_2Mo_2O_9$.

Figure S6. The cross-sectional SEM images of (a) 5-Bi₂Mo₂O₉, (b) 10-Bi₂Mo₂O₉, and (c) 20-Bi₂Mo₂O₉, the results suggest the thickness is around 150 nm, 300, and 600 nm. (d) Photocurrent of 5-Bi₂Mo₂O₉ (5 represent SILAR cycle numbers), 10-Bi₂Mo₂O₉, 15-Bi₂Mo₂O₉, 20-Bi₂Mo₂O₉, 25-Bi₂Mo₂O₉, and 30-Bi₂Mo₂O₉ photoanodes in 0.2 M KPi solution (pH 7.0) under AM 1.5G illumination (100 mW cm⁻²) for PEC water oxidation. (e) The linear scanning voltammetry plots of BiVO₄/Bi₂Mo₂O₉ with different BiVO₄ thickness.

Figure S7. Cyclic voltammogram (CV) scans of (a) $Bi_2Mo_2O_9$, (b) $BiVO_4$, and (c) $BiVO_4/Bi_2Mo_2O_9$ in 0.2 M KPi solution, and the scanning rate is 5, 10, 20, 30, 40, and 50 mV s⁻¹, respectively. (d) Charge current density difference ($\Delta J = J_a - J_c$; J_a and J_c is the positive and negative current at 0.78 V vs RHE for $Bi_2Mo_2O_9$, 0.69 V vs RHE for $BiVO_4$, and 0.69 V vs RHE for $BiVO_4/Bi_2Mo_2O_9$) plotted against scan rates for various samples. (e) ΔJ plotted against scan rates for the FTO substrate for the determination of special capacitance (C_s) at 0.6 V vs RHE. (f) The ECSA for these samples, which was estimated from the electrochemical double-layer capacitance (C_{dl}) by measuring CV_s in a non-Faradaic region. The C_{dl} values were determined from the slope of anodic-cathodic current density difference divided by two versus the scan rate. Therefore, the C_{dl} value for the $Bi_2Mo_2O_9$, $BiVO_4$ and $BiVO_4/Bi_2Mo_2O_9$ is approximately 0.8, 3.4 and 1.3 μ F cm⁻², respectively, and the C_s of FTO is 0.05 μ F cm⁻². The ECSA was calculated by using the equation: ECSA = C_{dl} / C_s .

Figure S8. (a) Photocurrent density of $Bi_2Mo_2O_9$ and $BiVO_4/Bi_2Mo_2O_9$ in 0.2 M KPi

with 0.5 M Na₂SO₃ solution. (b) Charge separation efficiency of these samples.

Figure S9. The open-circuit potential decay curves of all samples.

Figure S10. EIS tests of different photoanodes under AM 1.5 G illumination.

Figure S11. (a) Mott–Schottky curves of BiVO₄ under different frequencies in dark, (b) Mott–Schottky curves of different BiVO₄/Bi₂Mo₂O₉ photoanodes under different frequencies in dark. The BiVO₄ has a lower slope, indicating the higher carrier density in dark. However, under light illumination, due to the sluggish charge transfer dynamic and fast charge recombination, the photocurrent of bare BiVO₄ is low. To enhance the charge transfer rate, we constructed the BiVO₄/Bi₂Mo₂O₉ heterostructure.

Figure S12. UV-Vis absorption spectrum of BiVO₄.

Figure S13. (a) XRD pattern of $BiVO_4/Bi_2Mo_2O_9$ heterostructure before/after PEC stability tests. (b) SEM image of $BiVO_4/Bi_2Mo_2O_9$ photoanodes before/after PEC reactions.

Figure S14. (a) Physical setup of the PEC cell, the solar light is illuminated by front direction. For this cell, the reaction surface of photoanode is fixed to 1 cm^2 by a Teflon plastic circular gasket. (b) Schematic of the PEC water oxidation (AM 1.5G illumination, 100 mW cm⁻²).

	$Bi_2Mo_2O_9$	BiVO ₄ /Bi ₂ Mo ₂ O ₉
Onset potential (V)	0.55	0.41
$J (mA cm^{-2})$	0.18	0.61
$\eta_{ m sep}$	35%	41%
$\eta_{ m oxi}$	30.2%	70.1%
Photovoltage (mV)	150	340

Table S1. PEC performances of different photoanodes for water oxidation.

 η_{sep} : charge separation efficiency (at 1.23 V vs RHE)

 η_{ox} : oxidation kinetics efficiency (at 1.23 V vs RHE)

Table S2. ICP tests of $BiVO_4/Bi_2Mo_2O_9$ photoanodes in 20 ml 5% HNO₃ solution, the detected elements including Bi, V, O, and Mo elements. 1 cm² of all photoanodes were used, the weight of each sample is ~2 mg.

Samples	Atomic concentration (µmol L ⁻¹)			Atomic ratio of Bi:Mo:V:O	
	Bi	Mo	V	0	
BiVO ₄ /Bi ₂ Mo ₂ O ₉ (before <i>J</i> -t test)	13.5	8.8	4.7	59.61	1:0.65:0.34:4.4
BiVO ₄ /Bi ₂ Mo ₂ O ₉ (after <i>J</i> -t test)	13.4	8.3	4.5	59.67	1:0.65:0.34:4.5

 Table S3. Relevant works of photocurrent enhancement by bismuth molybdate based

photoelectrodes at 1.23 V vs RHE.

Sample	Electrolyte	Photocurrent	Ref.
Bi ₂ Mo ₂ O ₉ -Bi ₂ MoO ₆	0.1 M Na ₂ SO ₄	0.22 mA cm^{-2}	[1]
$Bi_2MoO_6@Bi_2Mo_2O_9$	0.5 M KPi	0.16 mA cm^{-2}	[2]
W doped Bi ₂ MoO ₆	0.1 M Na ₂ SO ₄	0.11 mA cm^{-2}	[3]
Bi ₂ MoO ₆ /TiO ₂	0.1 M KOH	0.35 mA cm^{-2}	[4]
Bi_2MoO_6/Bi_2S_3	0.1 M Na ₂ SO ₄	1.4 mA cm^{-2}	[5]
BiVO ₄ /Bi ₂ Mo ₂ O ₉	0.2 M KPi	0.61 mA cm^{-2}	This work

References

[1] S. Baduri, D. Sariket, D. Raya, S. Ghosh, J. K. Singh, H-S. Lee, C. Bhattachary, Optimization of semiconductor–electrolyte interfacial phenomena for stable and efficient photoelectrochemical water oxidation behavior of Bi₂Mo₂O₉–Bi₂MoO₆ heterojunction. Electrochim. Acta 2021, 372, 137754. [2] Y. Xiong, L. Yang, H. He, J. Wan, P. Xiao, W. Guo, Enhanced charge separation and transfer by Bi₂MoO₆@Bi₂Mo₂O₉ compound using SILAR for photoelectrochemical water oxidation. Electrochim. Acta 2018, 264, 26–35.

[3] M. Chakraborty, S. Ghosh, V. Mahalingam, Fe and W doped Bi₂MoO₆ nanoflakes: a promising material for efficient solar water splitting. Sustain. Energy Fuels 2020, 4, 1507–1514.

[4] Y. Lou, D. Qiu, S. Chen, H. Chen, L. Wang, Z. Hao, C. He, Y. Chen, X. Cui, Integrating Bi_2MoO_6 nanoflakes into TiO_2 photoanode for efficient charge separation in photoelectrochemical water splitting. J. Environ. Chem. Eng. 2023, 11, 111215.

[5] N. Le, N. T. N. Truong, N. H. Lam, A. M. Tamboli, M. S. Tamboli, M. R. Pallavolu,

C. D. Kim, J. Jung, J. H. Jung, Direct growth of Bi₂S₃ nanorods onto the Bi₂MoO₆ nanoflakes: A promising heterostructure for efficient photoelectrochemical water-splitting application. FlatChem 2023, 37, 100468.