Techno-economic and environmental impacts assessments of sustainable

aviation fuel production from forest residue

Table S1: Breakdown of Direct fixed capital cost of SAF plant

Cost category	Estimation assumptions
Total equipment purchases cost (PC)	Sum of listed equipment purchases cost and
	unlisted equipment purchase cost
Process piping (a)	$0.31 \times PC^1$
Instrumentation (b)	$0.13 \times PC^1$
Insulation (c)	$0.03 \times PC^2$
Electrical (d)	$0.10 \times PC^1$
Buildings (e)	$0.29 \times PC^1$
Yard improvement (f)	$0.10 \times PC^1$
Auxiliary facilities (g)	$0.20 \times PC^1$
Installation (h)	$0.50 \times PC^{2,3}$
Total plant direct cost (TPDC)	PC + a + b + c + d + e + f + g + h
Engineering (i)	$0.15 \times TPDC^4$
Construction (j)	$0.10 \times TPDC^4$
Total plant other cost (TPOC)	k
Contingency (k)	0.1*(TDPC+TPIC) ⁵
Direct fixed capital cost (DFC)	DFC = TPDC + TPIC + TPOC
Startup and validation cost	5% of DFC
Working capital	Operating cost for one month
Total investment (TI)	DFC + Startup cost + Working capital

		Feed flow rate	WHSV	Catalyst req for 3		Total cost per 3
	Catalyst	(L/H)	(Lgcat-1 h-1)	years (gm)	Cost/kg	year
Water Gas Shift	Cu-ZnO-Al2O3					
Reaction		38037962	15.76	2422800.00	5	12114
Fischer Tropsch	Cobalt					
Process		68058732	207	3402936.6	18	61252.8
Hydrocraking (kg/hr)	0.5Pt/Y(100)35A	6957	2.38	3024.782609	20	60495.6

FT Reactions

1. Methane (CH₄): The formation of methane generally increases with temperature, which indicates a shift towards lighter hydrocarbons and possibly due to the hydrogenation of smaller intermediate carbon species.

 $\mathrm{CO}{+}3\mathrm{H}_2{\rightarrow}\mathrm{CH}_4{+}\mathrm{H}_2\mathrm{OCO}{+}3\mathrm{H}_2{\rightarrow}\mathrm{CH}_4{+}\mathrm{H}_2\mathrm{O}$

 C₂-C₄ Hydrocarbons: These include ethane, propane, and butanes. Their selectivity also tends to increase slightly at higher temperatures.

 $2\mathrm{CO}{+}5\mathrm{H}_2{\rightarrow}\mathrm{C}_2\mathrm{H}_6{+}2\mathrm{H}_2\mathrm{O}_2\mathrm{CO}{+}5\mathrm{H}_2{\rightarrow}\mathrm{C}_2\mathrm{H}_6{+}2\mathrm{H}_2\mathrm{O}$

 $3\mathrm{CO}{+}7\mathrm{H}_2{\rightarrow}\mathrm{C}_3\mathrm{H}_8{+}3\mathrm{H}_2\mathrm{O}_3\mathrm{CO}{+}7\mathrm{H}_2{\rightarrow}\mathrm{C}_3\mathrm{H}_8{+}3\mathrm{H}_2\mathrm{O}$

 $4\mathrm{CO}{+}9\mathrm{H}_2{\rightarrow}\mathrm{C}_4\mathrm{H}_{10}{+}4\mathrm{H}_2\mathrm{O}_4\mathrm{CO}{+}9\mathrm{H}_2{\rightarrow}\mathrm{C}_4\mathrm{H}_{10}{+}4\mathrm{H}_2\mathrm{O}$

C₅₊ Hydrocarbons: These are heavier fractions, including waxes and long-chain alkanes, which are more desirable for diesel and wax production. The selectivity towards C₅₊ hydrocarbons slightly decreases from 200 °C to 215 °C, reflecting a reduced chain growth probability at higher temperatures.

 $n \operatorname{CO} + (2n+1)\operatorname{H}_2 \rightarrow \operatorname{CnH}_{2n+2} + n\operatorname{H}_2\operatorname{O}$

4. C₅-C₁₀ Hydrocarbons

These include lighter liquid fuels like gasoline components. The reaction can be generalized as:

nCO+(2n+1)H₂ \rightarrow C_nH_{2n}+2+nH₂OnCO+(2n+1)H₂ \rightarrow C_nH_{2n}+2+nH₂O

For n = 5 to 10:

 $5CO+11H_2 \rightarrow C_5H_{12}+5H_2O_5CO+11H_2 \rightarrow C_5H_{12}+5H_2O(Pentane) \quad 10CO+21H_2 \rightarrow C_{10}H_{22}+10H_2O_{10}CO+21H_2 \rightarrow C_{10}H_{22}+10H_2O_{10}CO+21H_2O+20H_2$

O (Decane)

5. C₁₁-C₁₈ Hydrocarbons

These are typically found in diesel and jet fuel ranges.

 $11CO+23H_2 \rightarrow C_{11}H_{24}+11H_2O_{11}CO+23H_2 \rightarrow C_{11}H_{24}+11H_2O$ (Undecane)

 $18CO+37H_2 \rightarrow C_{18}H_{38}+18H_2O_{18}CO+37H_2 \rightarrow C_{18}H_{38}+18H_2O$ (Octadecane)

6. C₁₉-C₃₄ Hydrocarbons

These heavier hydrocarbons are important for producing high-quality diesel and waxes.

 $19CO+39H_2 \rightarrow C_{19}H_{40}+19H_2O_{19}CO+39H_2 \rightarrow C_{19}H_{40}+19H_2O$ (Nonadecane)

$34CO + 69H_2 \rightarrow C_{34}H_{70} + 34H_2O_{34}CO + 69H_2 \rightarrow C_{34}H_{70} + 34H_2O \text{ (Tetratriacontane)}$

Process	Compound	Factor	Туре	reference
Gas cleaning	H ₂ S, CO ₂	Reduction to 0.1 ppm	Removal	9
Watergas shift reaction	СО	85	Conversion	10
Fischer-Tropsch synthesis	СО	98	Conversion	11,12
Hydrotreatment	C ₁₇₊	70	Yield	8

Table S3: Conversion factors and degree of removal of various compounds in the various processes

Fig S2: Comparative analysis of MSP of SAF

Fig S3: Net Mass Flows and Energy balance Sankey diagram.

Table S4: Cumulative Energy Demand

Impact category	Total	Proxy_	Forest	Diethanola	Steam,	Diesel	Electricity	Disposal,	Disposal,	Proxy_Dispos	Proxy_Dispos
(Unit :MJ)		Water, at	residue,	mine	for		Mix eGRIS	liquid	wood ash	al, inert solid	al, heavy
		user			chemical		2022/US	wastes,	mixture,	waste, to inert	alkalide
		NREL/U			processe		US-EI U	unspecified	pure, 0%	material	naphtha, to
		SU			s,			to waste	water, to	landfill	sanitary
								water	sanitary	NREL/US U	landfill
								treatment/l	landfill/US		NREL/US U
								NREL/RN	* US-EI U		
								AU			
Total	2.08	0.00132	2.724	0.020	1.262	-0.28275	-1.668	0.000549	5.85E-04	0.008093	0.022
Non renewable,	-0.086	0.00085	0.056	0.019	1.251	-0.27805	-1.166	0.000418	5.49E-04	0.007854	0.020
fossil											
Non-renewable,	-0.375	0.00032	0.0009	0.001	0.0087	-4.0E-04	-0.384	9.92E-05	2.82E-05	0.000186	0.0015
nuclear											
Non-renewable,	4.46E-07	4.84E-10	6.74E-08	8.7E-09	1.02E-06	-2.1E-09	-6.9E-07	3.89E-10	8.9E-10	1.33E-08	2.57E-08
biomass											
Renewable,	2.648	8.13E-05	2.666	0.0001	7.3E-04	-1.3E-04	-0.019	7.39E-06	2.26E-06	1.53E-05	1.01E-04
biomass											
Renewable,	-0.067	3.52E-05	1.2E-05	0.0001	9.2E-04	-1.4E-04	-0.068	1.02E-05	2.72E-06	1.76E-05	1.69E-04
wind, solar,											
geothermal											
Renewable,	-0.029	2.92E-05	0.0001	0.0001	8.43E-04	-3.7E-04	-0.030	1.44E-05	3.1E-06	2.03E-05	1.39E-04
water											

Assumptions in soil carbon change calculations:

 We used energy beneficial case in for production of SAF from forest residue to evaluate carbon change in soil. In previous study, Scenario 1, one hectare can produce approximately ~338.8. dry metric tons (Mg) of biomass over a 100-year period, suitable for biofuel production ¹³. This calculation considers that 50% biomass is collectable for SAF production. This total is calculated based on repeating the 25-year rotation cycle four times, with each rotation producing 169.4 dry Mg ha⁻¹ of biomass.

The yield of SAF from dried biomass is ~13%, hence 338 dry metric ton biomass can produce 43.94MT of SAF. The greenhouse gas (GHG) emissions associated with producing 1 kg of Sustainable Aviation Fuel (SAF) from forest residue are approximately 24.56 g CO₂-eq/MJ. The 44MT of SAF will produce 1.1 MT CO₂ eq. The chemical composition and energy content per kilogram of SAF and conventional jet fuels are comparable, so they emit roughly the same amount of CO₂ when burned. Combustion of jet fuel releases about 3.15 kilograms of CO₂ per kilogram of fuel burned. SAF produced from biomass from one hectare over 100 hectors will produce 138.41-ton eq CO₂.

Table S4: Description of soil carbon dynamics calculations (values in tCO₂ eq)

	S1		
	All	Pile Burning	Biofuel
	decay		
Biogenic Carbon Uptake by Logs	-923.0	-855.4	-855.4
Biogenic Carbon Uptake by Litter (Residues) and Residues for	-298.1	-276.1	-276.1
Biofuel/Pile Burning			
Biogenic Carbon Uptake by Litter (Litterfall)	-532.7	-532.7	-532.7
Biogenic Carbon Uptake by Litter (Roots)	-720.9	-720.9	-720.9
Forest Operations	15.2	14.5	15.5
Biofuel Production			1.1
Biofuel transportation and combustion			140.5
Pile burning		145.1	
Emissions from litter and mineral soil	1543.3	1397.0	1397.0
Total	-916.2	-828.5	-831

In calculation of net CO₂ removal we consider life cycle CO₂ emissions by transportation and combustion stage is

0.8gCO2e/MJ and 73.2 gCO2e/MJ14,15. Hence, 44 MT produces 1.5 MT of CO2 eq from transportation and ~139 MT eq

of CO₂ emissions from combustion, total of 140.5ton eq CO₂.

References:

- 1 A. C. Dimian, Ed., in Computer Aided Chemical Engineering, Elsevier, 2003, vol. 13, pp. 571-604.
- 2 S. H. Mousavi-Avval and A. Shah, Renewable and Sustainable Energy Reviews, 2021, 149, 111340.
- 3 M. Fernanda Rojas Michaga, S. Michailos, M. Akram, E. Cardozo, K. J. Hughes, D. Ingham and M. Pourkashanian, *Energy Conversion and Management*, 2022, **255**, 115346.
- 4 M. Finkelstein, B. H. Davison and J. D. McMillan, *Biotechnology for Fuels and Chemicals: The Twenty-Third Symposium*, Springer Science & Business Media, 2012.
- 5 S. H. Mousavi-Avval, S. Khanal and A. Shah, Sustainability, 2023, 15, 10589.
- 6 Z. Li, N. Li, N. Wang, B. Zhou, J. Yu, B. Song, P. Yin and Y. Yang, RSC Adv, 12, 5509-5516.
- 7 C. Niu, M. Xia, C. Chen, Z. Ma, L. Jia, B. Hou and D. Li, Applied Catalysis A: General, 2020, 601, 117630.
- 8 S. Mitsuoka, K. Murata, T. Hashimoto, N. Chen, Y. Jonoo, S. Kawabe, K. Nakao and A. Ishihara, *ACS Omega*, 2024, 9, 3669–3674.
- 9 Simultaneous Absorption of CO2 and H2S Into Aqueous Blends of N-Methyldiethanolamine and Diethanolamine | Environmental Science & Technology, https://pubs.acs.org/doi/10.1021/es0606475, (accessed May 9, 2024).
- 10 P. Spath, A. Aden, T. Eggeman, M. Ringer, B. Wallace and J. Jechura, *Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier*, National Renewable Energy Lab. (NREL), Golden, CO (United States), 2005.
- 11 K. Im-orb, L. Simasatitkul and A. Arpornwichanop, *Energy*, 2016, 94, 483–496.
- 12 N. Lümmen and E. Røstbø, *Energy*, 2020, **211**, 118996.
- 13 Soil organic carbon change can reduce the climate benefits of biofuel produced from forest residues ScienceDirect, https://www.sciencedirect.com/science/article/pii/S2542435123005378, (accessed April 13, 2024).
- 14 Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization | Nature Communications, https://www.nature.com/articles/s41467-022-35392-1, (accessed April 15, 2024).
- 15 E. Yoo, U. Lee and M. Wang, ACS Sustainable Chem. Eng., 2022, 10, 8725–8732.