Techno-economic and environmental impacts assessments of sustainable

aviation fuel production from forest residue

Table S1: Breakdown of Direct fixed capital cost of SAF plant

FT Reactions

1. **Methane (CH**4): The formation of methane generally increases with temperature, which indicates a shift towards lighter hydrocarbons and possibly due to the hydrogenation of smaller intermediate carbon species.

 $CO+3H_2\rightarrow CH_4+H_2OCO+3H_2\rightarrow CH_4+H_2O$

2. **C2-C⁴ Hydrocarbons**: These include ethane, propane, and butanes. Their selectivity also tends to increase slightly at higher temperatures.

 $2CO+5H_2 \rightarrow C_2H_6+2H_2O_2CO+5H_2 \rightarrow C_2H_6+2H_2O$

 $3CO+7H_2 \rightarrow C_3H_8+3H_2O_3CO+7H_2 \rightarrow C_3H_8+3H_2O$

4CO+9H2→C4H10+4H2O4CO+9H2→C4H10+4H2O

3. **C5+ Hydrocarbons**: These are heavier fractions, including waxes and long-chain alkanes, which are more desirable for diesel and wax production. The selectivity towards C_{5+} hydrocarbons slightly decreases from 200 °C to 215 °C, reflecting a reduced chain growth probability at higher temperatures.

 $n CO + (2n+1)H_2 \rightarrow CnH_{2n+2} + nH_2O$

4. C5-C¹⁰ Hydrocarbons

These include lighter liquid fuels like gasoline components. The reaction can be generalized as:

 $nCO+(2n+1)H_2\rightarrow C_nH_{2n}+2+nH_2OnCO+(2n+1)H_2\rightarrow C_nH_{2n}+2+nH_2O$

For $n = 5$ to 10:

 $5CO+11H_2 \rightarrow C_5H_{12}+5H_2O_5CO+11H_2 \rightarrow C_5H_{12}+5H_2O$ (Pentane) $10CO+21H_2 \rightarrow C_10H_{22}+10H_2O_{10}CO+21H_2 \rightarrow C_10H_{22}+10H_2$

O (Decane)

5. C11-C¹⁸ Hydrocarbons

These are typically found in diesel and jet fuel ranges.

11CO+23H₂→C₁₁H₂₄+11H₂O₁₁CO+23H₂→C₁₁H₂₄+11H₂O (Undecane)

 $18CO+37H_2 \rightarrow C_{18}H_{38}+18H_2O_{18}CO+37H_2 \rightarrow C_{18}H_{38}+18H_2O$ (Octadecane)

6. C19-C³⁴ Hydrocarbons

These heavier hydrocarbons are important for producing high-quality diesel and waxes.

19CO+39H₂→C₁₉H₄₀+19H₂O₁₉CO+39H₂→C₁₉H₄₀+19H₂O (Nonadecane)

34CO+69H₂→C₃₄H₇₀+34H₂O₃₄CO+69H₂→C₃₄H₇₀+34H₂O (Tetratriacontane)

Process	Compound	Factor	Type	reference
Gas cleaning	H_2S , CO_2	Reduction to 0.1 ppm	Removal	Q
Watergas shift reaction	CΟ	85	Conversion	10
Fischer-Tropsch synthesis	ററ	98	Conversion	11,12
Hydrotreatment	C_{17+}	70	Yield	8

Table S3: Conversion factors and degree of removal of various compounds in the various processes

Fig S3: Net Mass Flows and Energy balance Sankey diagram.

Table S4: Cumulative Energy Demand

Assumptions in soil carbon change calculations:

1. We used energy beneficial case in for production of SAF from forest residue to evaluate carbon change in soil. In previous study, Scenario 1, one hectare can produce approximately \sim 338.8. dry metric tons (Mg) of biomass over a 100-year period, suitable for biofuel production ¹³. This calculation considers that 50% biomass is collectable for SAF production. This total is calculated based on repeating the 25-year rotation cycle four times, with each rotation producing 169.4 dry Mg ha⁻¹ of biomass.

The yield of SAF from dried biomass is \sim 13%, hence 338 dry metric ton biomass can produce 43.94MT of SAF. The greenhouse gas (GHG) emissions associated with producing 1 kg of Sustainable Aviation Fuel (SAF) from forest residue are approximately 24.56 g CO_2 -eq/MJ. The 44MT of SAF will produce 1.1 MT CO_2 eq. The chemical composition and energy content per kilogram of SAF and conventional jet fuels are comparable, so they emit roughly the same amount of $CO₂$ when burned. Combustion of jet fuel releases about 3.15 kilograms of $CO₂$ per kilogram of fuel burned. SAF produced from biomass from one hectare over 100 hectors will produce 138.41 -ton eq $CO₂$.

Table S4: Description of soil carbon dynamics calculations (values in $tCO₂$ eq)

In calculation of net $CO₂$ removal we consider life cycle $CO₂$ emissions by transportation and combustion stage is

0.8gCO₂e/MJ and 73.2 gCO_{2e}/MJ^{14,15}. Hence, 44 MT produces 1.5 MT of CO2 eq from transportation and ~139 MT eq

of $CO₂$ emissions from combustion, total of 140.5ton eq $CO₂$.

References:

- 1 A. C. Dimian, Ed., in *Computer Aided Chemical Engineering*, Elsevier, 2003, vol. 13, pp. 571–604.
- 2 S. H. Mousavi-Avval and A. Shah, *Renewable and Sustainable Energy Reviews*, 2021, **149**, 111340.
- 3 M. Fernanda Rojas Michaga, S. Michailos, M. Akram, E. Cardozo, K. J. Hughes, D. Ingham and M. Pourkashanian, *Energy Conversion and Management*, 2022, **255**, 115346.
- 4 M. Finkelstein, B. H. Davison and J. D. McMillan, *Biotechnology for Fuels and Chemicals: The Twenty-Third Symposium*, Springer Science & Business Media, 2012.
- 5 S. H. Mousavi-Avval, S. Khanal and A. Shah, *Sustainability*, 2023, **15**, 10589.
- 6 Z. Li, N. Li, N. Wang, B. Zhou, J. Yu, B. Song, P. Yin and Y. Yang, *RSC Adv*, **12**, 5509–5516.
- 7 C. Niu, M. Xia, C. Chen, Z. Ma, L. Jia, B. Hou and D. Li, *Applied Catalysis A: General*, 2020, **601**, 117630.
- 8 S. Mitsuoka, K. Murata, T. Hashimoto, N. Chen, Y. Jonoo, S. Kawabe, K. Nakao and A. Ishihara, *ACS Omega*, 2024, **9**, 3669–3674.
- 9 Simultaneous Absorption of CO2 and H2S Into Aqueous Blends of N-Methyldiethanolamine and Diethanolamine | Environmental Science & Technology, https://pubs.acs.org/doi/10.1021/es0606475, (accessed May 9, 2024).
- 10 P. Spath, A. Aden, T. Eggeman, M. Ringer, B. Wallace and J. Jechura, *Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier*, National Renewable Energy Lab. (NREL), Golden, CO (United States), 2005.
- 11 K. Im-orb, L. Simasatitkul and A. Arpornwichanop, *Energy*, 2016, **94**, 483–496.
- 12 N. Lümmen and E. Røstbø, *Energy*, 2020, **211**, 118996.
- 13 Soil organic carbon change can reduce the climate benefits of biofuel produced from forest residues ScienceDirect, https://www.sciencedirect.com/science/article/pii/S2542435123005378, (accessed April 13, 2024).
- 14 Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization | Nature Communications, https://www.nature.com/articles/s41467-022-35392-1, (accessed April 15, 2024).
- 15 E. Yoo, U. Lee and M. Wang, *ACS Sustainable Chem. Eng.*, 2022, **10**, 8725–8732.