## **Supporting Information**

Manganese, nitrogen co-doped porous carbon with highloading active sites as the oxygen reduction catalyst for Znair battery

Hao Xu<sup>a\*</sup>, Yuxuan Gao<sup>a</sup>, Ruopeng Li<sup>b\*</sup>, Weiyan Sun<sup>a</sup>, Xiangyu Lu<sup>b</sup>, Jie Bai <sup>a</sup>, Peixia Yang<sup>b</sup>

<sup>a</sup> College of Chemical Engineering, Inner Mongolia University of Technology, 010051
 Hohhot, China

<sup>b</sup> School of Chemistry and Chemical Engineering, Harbin Institute of Technology,
 150001 Harbin, China

\* Corresponding authors: Hao Xu (xuhao@imut.edu.cn); Ruopeng Li (liruopeng630@163.com);

## Materials

KOH (99.999 %), manganese acetylacetonate (Mn(acac)<sub>3</sub>, 97%) and 2methylimidazole (2-MeIm, 98%) were acquired from Shanghai Aladdin. Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (99%) was acquired from Sinopharm. Nafion solution (5%) was obtained from Dupont. Methanol (99.5%) and isopropanol solution (99%) were obtained from Tianjin Fuyu.

## **Electrochemical measurements**

All electrochemical measurements were conducted by standard threeelectrode configuration controlled by an electrochemical workstation (CHI 760E) at room temperature. A glassy carbon rotating disk electrode with surface area of 0.196 cm<sup>2</sup> served as working electrode. Graphite sheet and mercury/mercury oxide (Hg/HgO) were used as counter and reference electrodes, respectively, in 0.1 M KOH. To prepare catalyst ink, 2.5 mg of catalyst was dispersed into 500  $\mu$ L of a mixed solution containing 20  $\mu$ L of a Nafion solution, 300  $\mu$ L of a ultrapure water, and 180  $\mu$ L of an isopropanol solution, followed by ultrasonication for 60 min. All potentials have been converted to the reversible hydrogen electrode (RHE) potential.



Fig. S1. The mass yield of Mn-N-C-900



Fig. S2. XRD spectrum of ZIF-8@Mn(acac)<sub>3</sub>



Fig. S3. C 1s XPS spectra of (a) Mn-N-C-800, (b) Mn-N-C-900 and (c) Mn-N-C-1000 catalysts.



Fig. S4. Mn 2p XPS spectra of Mn-N-C-900 catalyst.

| Sample      | Pyridinic-N<br>(%) | Mn-N <sub>x</sub><br>(%) | Pyrrole N<br>(%) | Graphitic-N<br>(%) | Oxidized-N<br>(%) |
|-------------|--------------------|--------------------------|------------------|--------------------|-------------------|
| Mn-N-C-800  | 27.82              | 24.19                    | 12.97            | 20.73              | 14.29             |
| Mn-N-C-900  | 44.8               | 27.47                    | 12.72            | 4.63               | 10.38             |
| Mn-N-C-1000 | 25.31              | 16.97                    | 23.81            | 19.5               | 14.41             |

| Table S1 The | percentage of different | t N-sites derived fr | om high-resolution | N XPS scans of N 1s |
|--------------|-------------------------|----------------------|--------------------|---------------------|
|              |                         |                      | 0                  |                     |

**Table S2** Comparison of the ORR performance of various M-N-C catalysts in alkaline environment

 from the recent literature and this work

| Catalysts              | Electrolyte | Half-wave<br>potential (V vs.<br>RHE) | Reference          |
|------------------------|-------------|---------------------------------------|--------------------|
| Mn-N-C-900             | 0.1 M KOH   | 0.882                                 | This work          |
| Fe-N-C HNSs            | 0.1 M KOH   | 0.84                                  | Adv. Mater.        |
|                        |             |                                       | 2019, 31,          |
|                        |             |                                       | 1806312            |
| Fe <sub>2</sub> N/NPCF | 0.1 M KOH   | 0.865                                 | J. Colloid Interf. |
|                        |             |                                       | Sci. 2022, 616,    |
|                        |             |                                       | 539-547.           |
| SA-Fe-NC               | 0.1 M KOH   | 0.88                                  | Chem. Mater.       |
|                        |             |                                       | 2021, 33, 5542-    |
|                        |             |                                       | 5554.              |
| Fe SA-NSC-900          | 0.1 M KOH   | 0.86                                  | ACS Energy         |
|                        |             |                                       | Lett. 2021, 6.     |
|                        |             |                                       | 379-386.           |
| Mn-N-C                 | 0.1 M KOH   | 0.88                                  | ACS Sustainable    |
|                        |             |                                       | Chem. Eng.         |
|                        |             |                                       | 2020, 8, 9367-     |
|                        |             |                                       | 9376               |

| Co@hNCTs-800 | 0.1 M KOH | 0.887 | Nano Energy |
|--------------|-----------|-------|-------------|
|              |           |       | 2020, 71,   |
|              |           |       | 104592.     |