Supporting Information

A surface sulfurization strategy for tuning the lithiophilicity of garnet electrolyte pellets towards advanced solid-state Lithium metal electrolyte

Genxi Yu¹, Youchun Wu², Dawei Sha², Jianwen Cai¹, Gaofa Nie¹, Yaping Wang², Long Pan^{2,*}, ZhengMing Sun^{2,*}

¹School of Automotive Engineering, Changzhou Institute of Technology, Changzhou 213032, China

²School of Materials Science and Engineering, Southeast University, Nanjing 211189, China

*E-mail: <u>zmsun@seu.edu.cn; panlong@seu.edu.cn</u>

Methods

Computational methods and models. All calculations were carried out by using the projector augmented wave method in the framework of the density functional theory^[1], as implemented in the Vienna ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) and Perdew–Burke–Ernzerhof (PBE) exchange functional^[1] was used. Structural relaxation calculations were performed by using the spin-polarized GGA method^[2]. For the interface calculations with large supercells, we just need to use the $1 \times 1 \times 1$ k-mesh. The convergence criterions of energy and force calculations were set to 10^{-5} eV/atom and 0.01 eV Å⁻¹, respectively. The Li₂CO₃ (001) /Li (001) and Li₂S (001)/Li (001) interface models were constructed by Li₂CO₃(001) slab, Li₂S (001) slab and Li (001) slab, which are the low-energy surfaces^[3-5]. The coherent interface approximation was applied, in which the soft Li (001) 4×4 surface slabs are less strained to match the Li₂S (001) 1×1 surface slab.

To evaluate the wettability of Li metal on the Li₂CO₃ and Li₂S surfaces, we calculated the interface formation energies of Li₂CO₃ (001)/Li(001) and Li₂S (001)/Li (001) systems, which can be evaluated by the energy difference between an interface system and the bulk energy of the two materials that comprise it, $E_f = (E_{ab} - N_a * E_a - N_b * E_b)/2S^{[6]}$, here, E_{ab} denotes the total energy of the complete system containing the interface, and it depends on how many formula units of materials a and b comprise the interface (N_a and N_b, respectively). E_a and E_b denote the bulk energy per formula unit for materials a and b, respectively, and S refers to the interfacial area, 2 means two interfaces in the interface models.

Figure S1 (a), (b) SEM images of LLZT particles at different magnifications, (c), (d) TEM image of LLZT@LS particle and corresponding SAED pattern.

Figure S2 (a), (b) Cross-section SEM images of LLZT pellet at different magnifications.

Figure S3 (a), (b) TEM image of LLZT and LLZT@LC particles, respectively.

Figure S4 TGA curve of LLZT@LC particles.

Figure S5 (a) Optical image of molten lithium on LLZT@LC by repeated rubbed, (b) Surface SEM images of LLZT@LC after rub-coating molten Li.

Figure S6 (a) Nyquist plots of the LLZT@LS pellets at temperatures arranged from 30 °C to 80 °C, the inset shows the equivalent circuit, (b) Arrhenius plots of the ionic conducting for the LLZT@LS and LLZT@LC.

Figure S7 EIS spectrum of the LLZT pellet at 25 °C.

Figure S8 Charge–discharge voltage profiles of Li/LLZT/Li cell at a current density of 0.025, 0.05, and 0.1 mA cm⁻².

Figure S9 Cyclic voltammogram of the Li/LLZT@LS/SS cell at 0.5 mV s $^{-1}$ and 60 $^{\circ}C.$

Figure S10 Charge-discharge voltage profiles of (a) LFP/LLZT/Li and (b) LFP/LLZT@LC/Li cell at different rates.

Table S1 Relative density date for cubic LLZT pellets.

LLZT	M _{LLZT}	P _{ethanol}	m _{submerged}	P _{real}	P _{theoretical}	Prelative
Group 1	0.598 g	$0.789 \mathrm{~g~cm^{-3}}$	0.512 g	5.486 g cm^{-3}	5.5 g cm^{-3}	99.7%
Group 2	0.578 g	$0.789 \mathrm{~g~cm^{-3}}$	0.495 g	5.494 g cm^{-3}	5.5 g cm^{-3}	99.8%

 $\label{eq:constraint} \begin{array}{l} \mbox{Table S2} \ \mbox{The interface formation energies (in J m$^-2$) of $Li_2CO_3(001)$/Li(001) and $Li_2S(001)$/Li(001) systems.} \end{array}$

Interface	Li ₂ CO ₃ (001)/Li (001)	Li ₂ S (001)/Li (001)
E_{f} (in J m ⁻²)	-0.78	-4.54

Supplementary References:

[1] W. Kohn and L. J. Sham, *Phys. Rev.*, 1965, **140**, A1133.

[2] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, *Phys. Rev. B*, 1998, 57, 1505.

[3] J. F. Wu, B. W. Pu, D. Wang, S. Q. Shi, N. Zhao, X. Guo and X. Guo, *ACS Appl. Mater. Interfaces*, 2019, **11**, 898–905.

[4] M. Bruno and M. Prencipe, Surf. Sci., 2007, 601, 3012-3019.

[5] L. Pastero, F. R. Massaro and D. Aquilano, Cryst. Growth Des., 2007, 7, 2749-2755.

[6] N. D. Lepley and N. A. W. Holzwarth, Phys. Rev. B, 2015, 92, 214201.