Supporting Information

2	Unlocking the value of food waste: sustainable production of ethylene									
3	glycol over low-cost Ni-W catalysts supported on glucose-derived carbons									
4	Lucília Sousa Ribeiro ^{1,2, #,*} , Rafael Gomes Morais ^{1,2, #} , José Joaquim de Melo Órfão ^{1,2} , Manuel									
5	Fernando Ribeiro Pereira ^{1,2}									
6	lucilia@fe.up.pt, rgm@fe.up.pt, jjmo@fe.up.pt, fpereira@fe.up.pt									
7										
8	¹ LSRE-LCM – Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials,									
9	Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal									
10	² ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto,									
11	Rua Dr. Roberto Frias, 4200-465 Porto, Portugal									
12	[#] Both authors contributed equally to this work									
13	*Corresponding author: Lucília S. Ribeiro, lucilia@fe.up.pt, Phone: +351 220 414 922									
14										
15	1. Characterization of substrates									
16	1.1. Textural properties									
17	The SEM results of the food wastes before and after ball-milling are presented in Figure S.1 and Figure									
18	S.2, respectively.									

21 Figure S.1 – SEM images of the untreated food wastes (×1000 and ×5000 magnifications): a) banana peel, b) orange peel and c) spent coffee grounds. In images a) and b),

22

the numbers 1 and 2 correspond to the inner and outer sides of the fruit peel, respectively.

- 24 Figure S.2 – SEM images of the ball-milled wastes (×1000 and ×5000 magnifications): a) banana peel, b) orange peel and c) spent coffee grounds.
- 25
- 26

2. Characterization of catalysts 27

- 2.1. Textural properties 28
- 29 The N₂ adsorption-desorption isotherms of the synthesized Ni-W catalysts supported on glucose-derived
- 30 carbons are shown in Figure S.3.

Figure $S.3 - N_2$ adsorption-desorption isotherms of the Ni-W catalysts.

32 33

34 2.2. Microscopy

35 The SEM images and EDS results of the synthesized Ni-W catalysts supported on glucose-derived carbons
36 are presented in Figure S.4 and Figure S.5, respectively, while the elemental mapping is displayed in Figure
37 S.6.

39 Figure S.4 – SEM images of a) 20Ni-20W/CG, b) $20Ni-20W/AG_{500}$, c) $20Ni-20W/AG_{1700}$, d) $5Ni-20W/AG_{1700}$, d) $5Ni-20W/AG_{170}$, d) $5Ni-20W/AG_{1700}$, d) $5Ni-20W/AG_{1700}$, d) $5Ni-20W/AG_{170}$, d)

 $40 \qquad 20W/AG_{850}, e) \ 10Ni-20W/AG_{850}, f) \ 20Ni-20W/AG_{850}, g) \ 30Ni-20W/AG_{850} \ and \ h) \ 20Ni-10W/AG_{850}, f) \ 20Ni-20W/AG_{850}, g) \ 30Ni-20W/AG_{850}, g)$

 $20W/AG_{850}$ and e) $20Ni-10W/AG_{850}$.

- **43** Figure S.5 BSED micrographs of a) 5Ni-20W/AG₈₅₀, b) 10Ni-20W/AG₈₅₀, c) 20Ni-20W/AG₈₅₀, d) 30Ni-

51 Figure S.7 – Elemental mapping of a) 5Ni-20W/AG₈₅₀, b) 10Ni-20W/AG₈₅₀, c) 20Ni-20W/AG₈₅₀, d) 30Ni-

52 20W/AG₈₅₀ and e) 20Ni-10W/AG₈₅₀. C (red), O (green), Ni (yellow) and W (blue) are represented in the

53

elemental maps given.

54 3. Catalytic tests

Table S.1 displays the results obtained in four additional tests: 1) using the support without the addition of the metal phase (AG₈₅₀), 2) using a monometallic Ni catalyst, 3) using a monometallic W catalyst, and 4) using a physical mixture of two monometallic Ni and W catalysts.

57

58

Table S.1 – Catalytic results of cellulose conversion and yield of products^[a].

Enter	Catalyst	X(%)	$Yields \pm 1.7 \ ^{[b]} \ (\%)$									
Enuy			EG	PG	SOR	THR	ERY	GLY	FA	DHA	HA	Others
1	AG_{850}	93	7.8	2.5	1.5	0.0	0.0	3.9	1.5	0.0	0.0	75.8
2	20Ni/AG ₈₅₀	100	12.5	3.3	32.9	1.1	2.4	5.4	0.0	7.2	2.3	32.9
3	10W/AG ₈₅₀	100	35.1	0.0	1.6	0.0	0.0	8.2	0.0	0.1	12.4	42.6
4	$20Ni/AG_{850} + 10W/AG_{850} \ ^{[c]}$	100	47.2	2.3	7.8	0.9	1.2	4.0	0.5	0.1	5.5	30.5

[a] Reaction conditions: 750 mg ball-milled cellulose, 300 mg catalyst, 300 mL H₂O, 205 °C, 50 bar H₂, 300 rpm, 5 h.

[b] EG: ethylene glycol; PG: propylene glycol; SOR: sorbitol; THR: threitol; ERY: erythritol; GLY: glycerol; FA: formic acid; DHA: dihydroxyacetone; HA: hydroxyacetone.

[c] 300 mg of each catalyst.

60 Figure S.8 shows the results obtained for reusability tests of $20Ni-10W/AG_{850}$.

Figure S.8 – Reusability tests of 20Ni-10W/AG₈₅₀. Reaction conditions: 750 mg ball-milled cellulose, 300
mg 20Ni-10W/AG₈₅₀, 300 mL H₂O, 205 °C, 50 bar H₂, 300 rpm, 5 h.