Supporting Information

A metal-free perylene-porphyrin based covalent organic framework for electrocatalytic hydrogen evolution

Siddhartha Samanta, ^a Sahina Khatun, ^a Ishita Mukherjee, ^a Sanhita Maity, ^b Matthew A. Addicoat, ^c Anirban Pradhan, ^{a,*}

^a Department of Chemistry, Birla Institute of Technology (BIT) – Mesra, Ranchi, Jharkhand, 835215, India, Email: <u>anirbanpradhan@bitmesra.ac.in</u>

^b Department of Applied Sciences, Amity University, Jharkhand

^c School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.

Section	Contents	Page no
S1	Synthetic Scheme of 5,10,15,20tetrakis (paraaminophenyl)	S2
	21H,23Hporphyrin(5) and 4,4',4",4"'-(perylene-2,5,8,11-tetrayl)	
	tetrabenzaldehyde (9).	
S2	¹ H NMR and ¹³ C NMR spectrum of the synthesized compounds.	S3-S4
S3	Experimental Section	S4-S6
S4	A Comparison table for the metal free HER activity of	S7-S8
	PETA-PAM-COF with other different materials which are	
	previously reported in literature	
S5	Theoretical Calculations	S9-S22
S 6	References	S23

Section S1:

1. Synthetic Scheme of 5,10,15,20tetrakis (paraaminophenyl) 21H,23Hporphyrin(5):

The synthesis of tetra-amine porphyrin (5) was done using previously reported procedure.¹⁴

2. Synthetic Scheme of 4,4',4'',4'''-(perylene-2,5,8,11-tetrayl) tetrabenzaldehyde (9):

Section S2:

¹H NMR and ¹³C NMR spectrum of synthesized compounds:

Fig. S1. ¹H-NMR of compound 2,5,8,11-tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) perylene (7).

Fig. S2. ¹³C-NMR of compound 2,5,8,11-tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) perylene (7).

Fig. S3. ¹H-NMR of compound 4,4',4",4"'-(perylene-2,5,8,11-tetrayl) tetrabenzaldehyde (9):

Fig. S4. FTIR Spectra of the PETA-PAM-COF after immersion in acidic (a) and basic medium (b).

Fig. S5. Solid-state UV and photoluminescence spectra of PETA-PAM-COF.

Fig. S6. Thermogravimetric Analysis (TGA) graph of PETA-PAM-COF.

Fig. S7. XRD pattern of **PETA-PAM-COF** after treating in different conditions; 2M H₂SO₄ and 2M NaOH.

Fig. S8. XRD pattern of PETA-PAM-COF after and before HER was performed.

Section S4

Table S1: A Comparison table for the metal free HER activity of **PETA-PAM-COF** with other different materials which are previously reported in literature:

Material	Over potential @ 10 mAcm ⁻²	Tafel slope (mV/decade)	Exchange current density (i ₀)	Experiment condition	Reference
	(mv)				
Pt electrode	58	30	$2.7 \times 10^{-3} \text{ A cm}^{-2}$	0.5 M H ₂ SO ₄	1-3
C3N4@NG	240	51.5	3.5×10 ⁻⁷ A cm ⁻²	4 M AgCl/KCl	4
CoP-2ph-CMP- 800	360	121	-	1 М КОН	5
Cu-MOF	209	84	-	0.5 M H ₂ SO ₄	6
N,P-graphene	420	91	2.4×10 ⁻⁷ A cm ⁻²	0.5 M H ₂ SO ₄	7
P-doped graphene	553	133	9×10 ⁻³ μF cm ⁻²	0.5 M H ₂ SO ₄	7
N-doped graphene	490	116	$7 \times 10^{-2} \ \mu F \ cm^{-2}$	0.5 M H ₂ SO ₄	7
NS co-doped Nano-porous Graphene 5000C	276	81	6.5×10 ⁻⁵ mA cm ⁻²	0.5 M H ₂ SO ₄	8
C3N4/FTO	100	120	-	0.1M KOH	9
p-MWCNTs-ao- cp	220	71.3	16×10 ⁻³ mA cm ⁻²	0.5 M H ₂ SO ₄	10
g-C3N4 nanoribbon-G	207	54	3.98×10 ⁻³ mA cm ⁻²	0.5 M H ₂ SO ₄	11
THTNi 2DSP	333	80.5	6×10 ⁻⁴ mA cm ⁻²	0.5 M H ₂ SO ₄	12
Cu-CMP850	350	135	-	1 M KOH	13
ТрРАМ	250	106	2.4×10 ⁻⁴ A cm ⁻²	0.5 M H ₂ SO ₄	14
Ru@COF	212	79	-	1.5 M H ₂ SO ₄	15

SB-PORPy COF	380 @ 5 mA.cm ⁻²	116	5 mA cm ⁻²	0.5 M H ₂ SO ₄	16
CoP nanosheets	100	76	0.67 mA cm^{-2}	1.0 M KOH	17
MoCx	142	53	0.023 mA cm^{-2}	0.5 M H ₂ SO ₄	18
Mo ₂ C@NPC	260	126.4	$1.9 \times 10^{-3} \mathrm{A} \mathrm{cm}^{-2}$	0.5 M H ₂ SO ₄	19
NU-1000_Ni-S	238	111	-	0.5 M H ₂ SO ₄	20
Co-(MOFs)	324	33	-	1 M KOH	21
C-Fe, Co-COF	260	150	6.1 mA cm ⁻²	0.1 M KOH	22
Cu-CMP850	350	135	-	1.0 M KOH	23
TFPB-PAM	185	68.5	$4.9 \times 10^{-4} \mathrm{A} \mathrm{cm}^{-2}$	0.5 M H ₂ SO ₄	24
NENU-500	237	96	0.139 mA cm^{-2}	0.5 M H ₂ SO ₄	25
PETA-PAM- COF	261	122	$3.7 \times 10^{-4} \mathrm{A} \mathrm{cm}^{-2}$	0.5 M H ₂ SO ₄	This work

Section S5

Computational Method:

The theoretical calculations from the powder X-ray diffraction (PXRD) pattern for the PETA-PAM-COF: The positions of atoms of the PETA-PAM-COF were optimized using the Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) method as implemented in the DFTB+ version 19.1. All pair wise atomic interactions (C, H) were treated using the mio-0-1 parameter set 3 and dispersion was accounted for using UFF dispersion. It is known that the layer stacking is affected by the Coulomb repulsion between the partial atomic charges in adjacent layers. Hence, several simulated stacking possibilities were considered for the COF by shifting adjacent layers with respect to each other in different directions. Every one of the starting geometry was fully optimized without any constraints (P1 space group). The predicted AA stacking structure has the lowest energy, and is in good agreement with the experimental PXRD pattern.

Fig. S9. Simulated AA stacking structure of PETA-PAM-COF.

Table S2. Energies, stabilization energies, interlayer distance and the HOMO-LUMO gap ofthe optimized **PETA-PAM-COF** structures.

Stacking mode	c (Å) Interlayer distance	Total DFTB Energy (a.u.)	LJ energy (a.u.)	Per layer stabilization (kcal mol ⁻¹)	HOMO-LUMO gap (eV)
Monolayer		-196.789961	0.8600		1.304
Slip AA	3.66	-393.866047	1.4385	-89.77	0.803
AA	3.83	-393.821260	1.4298	-75.72	1.151
AB	3.13	-393.7863914	1.5347	-64.78	1.220

Unit cell structure and parameters:

PETA-PAM-COF						
Lattice type: Triclinic						
Space Group: P1						
a =26.8849; b =27.9821; c =7.65738						
α =90.1737; β =89.7679; γ =89.7558						

Table S3. Fractional atomic coordinates fo	r the unit cell of the PETA-PAM-COF.
--	--------------------------------------

Number	Atomic	Label	X-axis	Y-axis	Z-axis	Element
	Number					
1	6	C1	0.57114	0.95467	0.02193	С
2	6	C2	0.59122	0.90760	0.01806	С
3	6	C3	0.64401	0.90077	0.01645	С
4	6	C4	0.67572	0.94180	0.01828	С
5	6	C5	0.65426	0.98738	0.02807	С
6	6	C6	0.60196	0.99463	0.02968	С
7	6	C7	0.66369	0.85307	0.01387	С
8	6	C8	0.72990	0.93466	0.01298	С
9	6	С9	0.74958	0.88699	0.01546	С
10	6	C10	0.71791	0.84591	0.01792	С
11	6	C11	0.80239	0.88030	0.01598	С
12	6	C12	0.83448	0.92059	0.01629	С
13	6	C13	0.81534	0.96697	0.01192	С
14	6	C14	0.76288	0.97311	0.00709	С

15	1	H1	0.53042	0.95892	0.01748	Н
16	1	H2	0.87489	0.91432	0.02380	Н
17	6	C15	0.55907	0.86737	0.01847	С
18	6	C16	0.57813	0.82094	0.01383	С
19	6	C17	0.63061	0.81467	0.00888	С
20	1	H3	0.51865	0.87371	0.02629	Н
21	6	C18	0.73949	0.80037	0.02641	С
22	6	C19	0.82255	0.83330	0.01863	С
23	1	H4	0.86328	0.82915	0.01295	Н
24	6	C20	0.79184	0.79326	0.02622	С
25	1	Н5	0.74811	1.00972	-0.00206	Н
26	1	H6	0.71555	0.76868	0.03522	Н
27	1	H7	0.64532	0.77801	0.00020	Н
28	1	H8	0.67828	1.01901	0.03684	Н
29	6	C21	0.54498	0.77875	0.01845	С
30	6	C22	0.49618	0.78066	-0.04928	С
31	6	C23	0.56123	0.73533	0.09316	С
32	6	C24	0.46486	0.74118	-0.04113	С
33	1	H9	0.48251	0.81337	-0.11291	Н
34	6	C25	0.53019	0.69563	0.09926	С
35	1	H10	0.59845	0.73252	0.15184	Н
36	6	C26	0.48131	0.69788	0.03345	С
37	1	H11	0.42707	0.74348	-0.09535	Н
38	1	H12	0.54382	0.66241	0.15976	Н
39	6	C27	0.58018	0.04338	0.03755	С
40	6	C28	0.53300	0.05070	0.11546	С

41	6	C29	0.60451	0.08339	-0.03489	С
42	6	C30	0.51010	0.09531	0.11239	С
43	1	H13	0.51378	0.02106	0.18110	Н
44	6	C31	0.58178	0.12835	-0.03615	С
45	1	H14	0.64117	0.07929	-0.09800	Н
46	6	C32	0.53358	0.13480	0.03340	С
47	1	H15	0.47300	0.10021	0.17133	Н
48	1	H16	0.60114	0.15855	-0.09813	Н
49	6	C33	0.84829	1.00929	0.01747	С
50	6	C34	0.89728	1.00758	-0.05004	С
51	6	C35	0.83165	1.05259	0.09342	С
52	6	C36	0.92847	1.04711	-0.03983	С
53	1	H17	0.91122	0.97497	-0.11486	Н
54	6	C37	0.86256	1.09236	0.10150	С
55	1	H18	0.79421	1.05525	0.15161	Н
56	6	C38	0.91169	1.09024	0.03658	С
57	1	H19	0.96644	1.04498	-0.09367	Н
58	1	H20	0.84862	1.12548	0.16303	Н
59	6	C39	0.81411	0.74469	0.03065	С
60	6	C40	0.86165	0.73774	0.10488	С
61	6	C41	0.79018	0.70459	-0.04291	С
62	6	C42	0.88533	0.69354	0.09651	С
63	1	H21	0.88056	0.76737	0.17183	Н
64	6	C43	0.81364	0.65999	-0.04904	С
65	1	H22	0.75321	0.70835	-0.10293	Н
66	6	C44	0.86224	0.65403	0.01608	С

67	1	H23	0.92269	0.68903	0.15262	Н
68	1	H24	0.79454	0.62972	-0.11172	Н
69	6	C45	0.44889	0.65588	0.04370	С
70	1	H25	0.46678	0.62181	0.09058	Н
71	6	C46	0.89066	0.60926	-0.00557	С
72	1	H26	0.87059	0.57671	-0.05508	Н
73	7	N1	0.40240	0.65826	0.00539	N
74	7	N2	-0.06235	0.61000	0.02337	N
75	6	C47	0.37198	0.61764	0.01024	С
76	6	C48	0.38449	0.57565	-0.08290	С
77	6	C49	0.32655	0.61927	0.10273	С
78	6	C50	0.35177	0.53711	-0.08573	С
79	1	H27	0.41857	0.57427	-0.16302	Н
80	6	C51	0.29668	0.57874	0.11283	С
81	1	H28	0.31668	0.65130	0.17915	Н
82	6	C52	0.30767	0.53678	0.01585	С
83	1	H29	0.36057	0.50712	-0.17377	Н
84	1	H30	0.26483	0.57966	0.20335	Н
85	6	C53	0.27464	0.49413	0.02025	С
86	6	C54	0.29834	0.44854	0.03203	С
87	6	C55	0.22220	0.50125	0.01379	С
88	6	C56	0.35090	0.43953	0.03838	С
89	7	N3	0.27584	0.40433	0.03174	N
90	7	N4	0.18585	0.46695	0.02173	N
91	6	C57	0.19886	0.54849	0.00785	С
92	6	C58	0.35844	0.39091	0.03040	С

93	1	H31	0.38070	0.46584	0.04924	Н
94	6	C59	0.31077	0.36808	0.03232	С
95	1	H32	0.23776	0.39908	0.02987	Н
96	6	C60	0.14077	0.49012	0.02609	С
97	6	C61	0.14916	0.54178	0.02796	С
98	1	H33	0.21645	0.58340	-0.00936	Н
99	1	H34	0.39497	0.37372	0.02283	Н
100	6	C62	0.30173	0.31796	0.03945	С
101	6	C63	0.09250	0.46912	0.02060	С
102	1	H35	0.12206	0.57080	0.04450	Н
103	6	C64	0.25352	0.29694	0.04553	С
104	6	C65	0.34552	0.28512	0.03532	С
105	6	C66	0.08349	0.41894	0.02251	С
106	6	C67	0.04897	0.50215	0.01097	С
107	6	C68	0.24520	0.24531	0.05077	С
108	7	N5	0.20843	0.32000	0.03651	N
109	6	C69	0.34395	0.24286	-0.06697	С
110	6	C70	0.38928	0.29297	0.13333	С
111	7	N6	0.11851	0.38280	0.02876	N
112	6	C71	0.03589	0.39600	0.02655	С
113	6	C72	0.00453	0.49571	0.10781	С
114	6	C73	0.05171	0.54373	-0.09403	С
115	6	C74	0.19569	0.23837	0.02734	С
116	1	H36	0.27231	0.21651	0.07091	Н
117	6	C75	0.17222	0.28559	0.02864	С
118	6	C76	0.38117	0.20831	-0.05782	С

119	1	H37	0.31295	0.23674	-0.15729	Н
120	6	C77	0.42923	0.26081	0.12937	С
121	1	H38	0.39193	0.32371	0.22271	Н
122	6	C78	0.09613	0.33861	0.03832	С
123	1	H39	0.15657	0.38811	0.02439	Н
124	6	C79	0.04355	0.34764	0.04497	С
125	1	H40	-0.00071	0.41287	0.01601	Н
126	6	C80	-0.03469	0.52860	0.10083	С
127	1	H41	0.00076	0.46572	0.19940	Н
128	6	C81	0.01528	0.57913	-0.08748	С
129	1	H42	0.08323	0.54866	-0.18389	Н
130	1	H43	0.17835	0.20332	0.01036	Н
131	6	C82	0.11974	0.29285	0.03202	С
132	6	C83	0.42489	0.21711	0.03838	С
133	1	H44	0.37800	0.17518	-0.13448	Н
134	1	H45	0.46230	0.26783	0.20962	Н
135	1	H46	0.01384	0.32155	0.06386	Н
136	6	C84	-0.02898	0.57184	0.00850	С
137	1	H47	-0.06823	0.52269	0.18072	Н
138	1	H48	0.01959	0.61172	-0.16585	Н
139	6	C85	0.08649	0.25039	0.02822	С
140	6	C86	0.09685	0.20837	0.12457	С
141	6	C87	0.04260	0.25030	-0.07342	С
142	6	C88	0.06671	0.16804	0.11331	С
143	1	H49	0.12834	0.20723	0.21566	Н
144	6	C89	0.00951	0.21208	-0.07120	С

145	1	H50	0.03429	0.28029	-0.16120	Н
146	6	C90	0.02151	0.16997	0.02081	С
147	1	H51	0.07615	0.13594	0.18900	Н
148	1	H52	-0.02435	0.21370	-0.15142	Н
149	6	C91	0.50546	0.17984	0.01566	С
150	1	H53	0.52507	0.21184	-0.04030	Н
151	6	C92	0.94414	1.13215	0.04975	С
152	1	H54	0.92609	1.16628	0.09649	Н
153	7	N7	0.45896	0.17959	0.05375	N
154	7	N8	0.99089	1.12954	0.01412	N
155	6	C6	0.60196	-0.00537	0.02968	С
156	6	C27	0.58018	1.04338	0.03755	С
157	6	C46	-0.10934	0.60926	-0.00557	С
158	7	N2	0.93765	0.61000	0.02337	N
159	6	C90	1.02151	1.16997	0.02081	С
160	7	N8	-0.00911	0.12954	0.01412	N
161	6	C93	0.57114	0.95467	0.52193	С
162	6	C94	0.59122	0.90760	0.51806	С
163	6	C95	0.64401	0.90077	0.51645	С
164	6	C96	0.67572	0.94180	0.51828	С
165	6	C97	0.65426	0.98738	0.52807	С
166	6	C98	0.60196	0.99463	0.52968	С
167	6	C99	0.66369	0.85307	0.51387	С
168	6	C100	0.72990	0.93466	0.51298	С
169	6	C101	0.74958	0.88699	0.51546	С
170	6	C102	0.71791	0.84591	0.51792	С
		L				

171	6	C103	0.80239	0.88030	0.51598	С
172	6	C104	0.83448	0.92059	0.51629	С
173	6	C105	0.81534	0.96697	0.51192	С
174	6	C106	0.76288	0.97311	0.50709	С
175	1	H55	0.53042	0.95892	0.51748	Н
176	1	H56	0.87489	0.91432	0.52380	Н
177	6	C107	0.55907	0.86737	0.51847	С
178	6	C108	0.57813	0.82094	0.51383	С
179	6	C109	0.63061	0.81467	0.50888	С
180	1	H57	0.51865	0.87371	0.52629	Н
181	6	C110	0.73949	0.80037	0.52641	С
182	6	C111	0.82255	0.83330	0.51863	С
183	1	H58	0.86328	0.82915	0.51295	Н
184	6	C112	0.79184	0.79326	0.52622	С
185	1	Н59	0.74811	1.00972	0.49794	Н
186	1	H60	0.71555	0.76868	0.53522	Н
187	1	H61	0.64532	0.77801	0.50020	Н
188	1	H62	0.67828	1.01901	0.53684	Н
189	6	C113	0.54498	0.77875	0.51845	С
190	6	C114	0.49618	0.78066	0.45072	С
191	6	C115	0.56123	0.73533	0.59316	С
192	6	C116	0.46486	0.74118	0.45887	С
193	1	H63	0.48251	0.81337	0.38709	Н
194	6	C117	0.53019	0.69563	0.59926	С
195	1	H64	0.59845	0.73252	0.65184	Н
196	6	C118	0.48131	0.69788	0.53345	С

197	1	Н65	0.42707	0.74348	0.40465	Н
198	1	H66	0.54382	0.66241	0.65976	Н
199	6	C119	0.58018	0.04338	0.53755	С
200	6	C120	0.53300	0.05070	0.61546	С
201	6	C121	0.60451	0.08339	0.46511	С
202	6	C122	0.51010	0.09531	0.61239	С
203	1	H67	0.51378	0.02106	0.68110	Н
204	6	C123	0.58178	0.12835	0.46385	С
205	1	H68	0.64117	0.07929	0.40200	Н
206	6	C124	0.53358	0.13480	0.53340	С
207	1	H69	0.47300	0.10021	0.67133	Н
208	1	H70	0.60114	0.15855	0.40187	Н
209	6	C125	0.84829	1.00929	0.51747	С
210	6	C126	0.89728	1.00758	0.44996	С
211	6	C127	0.83165	1.05259	0.59342	С
212	6	C128	0.92847	1.04711	0.46017	С
213	1	H71	0.91122	0.97497	0.38514	Н
214	6	C129	0.86256	1.09236	0.60150	С
215	1	H72	0.79421	1.05525	0.65161	Н
216	6	C130	0.91169	1.09024	0.53658	С
217	1	H73	0.96644	1.04498	0.40633	Н
218	1	H74	0.84862	1.12548	0.66303	Н
219	6	C131	0.81411	0.74469	0.53065	С
220	6	C132	0.86165	0.73774	0.60488	С
221	6	C133	0.79018	0.70459	0.45709	С
222	6	C134	0.88533	0.69354	0.59651	С

223	1	H75	0.88056	0.76737	0.67183	Н
224	6	C135	0.81364	0.65999	0.45096	С
225	1	H76	0.75321	0.70835	0.39707	Н
226	6	C136	0.86224	0.65403	0.51608	С
227	1	H77	0.92269	0.68903	0.65262	Н
228	1	H78	0.79454	0.62972	0.38828	Н
229	6	C137	0.44889	0.65588	0.54370	С
230	1	H79	0.46678	0.62181	0.59058	Н
231	6	C138	0.89066	0.60926	0.49443	С
232	1	H80	0.87059	0.57671	0.44492	Н
233	7	N9	0.40240	0.65826	0.50539	N
234	7	N10	0.93765	0.61000	0.52337	N
235	6	C139	0.37198	0.61764	0.51024	С
236	6	C140	0.38449	0.57565	0.41710	С
237	6	C141	0.32655	0.61927	0.60273	С
238	6	C142	0.35177	0.53711	0.41427	С
239	1	H81	0.41857	0.57427	0.33698	Н
240	6	C143	0.29668	0.57874	0.61283	С
241	1	H82	0.31668	0.65130	0.67915	Н
242	6	C144	0.30767	0.53678	0.51585	С
243	1	H83	0.36057	0.50712	0.32623	Н
244	1	H84	0.26483	0.57966	0.70335	Н
245	6	C145	0.27464	0.49413	0.52025	С
246	6	C146	0.29834	0.44854	0.53203	С
247	6	C147	0.22220	0.50125	0.51379	С
248	6	C148	0.35090	0.43953	0.53838	С

249	7	N11	0.27584	0.40433	0.53174	N
250	7	N12	0.18585	0.46695	0.52173	N
251	6	C149	0.19886	0.54849	0.50785	С
252	6	C150	0.35844	0.39091	0.53040	С
253	1	H85	0.38070	0.46584	0.54924	Н
254	6	C151	0.31077	0.36808	0.53232	С
255	1	H86	0.23776	0.39908	0.52987	Н
256	6	C152	0.14077	0.49012	0.52609	С
257	6	C153	0.14916	0.54178	0.52796	С
258	1	H87	0.21645	0.58340	0.49064	Н
259	1	H88	0.39497	0.37372	0.52283	Н
260	6	C154	0.30173	0.31796	0.53945	С
261	6	C155	0.09250	0.46912	0.52060	С
262	1	H89	0.12206	0.57080	0.54450	Н
263	6	C156	0.25352	0.29694	0.54553	С
264	6	C157	0.34552	0.28512	0.53532	С
265	6	C158	0.08349	0.41894	0.52251	С
266	6	C159	0.04897	0.50215	0.51097	С
267	6	C160	0.24520	0.24531	0.55077	С
268	7	N13	0.20843	0.32000	0.53651	N
269	6	C161	0.34395	0.24286	0.43303	С
270	6	C162	0.38928	0.29297	0.63333	С
271	7	N14	0.11851	0.38280	0.52876	N
272	6	C163	0.03589	0.39600	0.52655	С
273	6	C164	0.00453	0.49571	0.60781	С
274	6	C165	0.05171	0.54373	0.40597	С

075	(01//	0.105(0	0.00007	0 50724	<u> </u>
275	6	C166	0.19569	0.23837	0.52734	C
276	1	H90	0.27231	0.21651	0.57091	Н
277	6	C167	0.17222	0.28559	0.52864	С
278	6	C168	0.38117	0.20831	0.44218	С
279	1	H91	0.31295	0.23674	0.34271	Н
280	6	C169	0.42923	0.26081	0.62937	С
281	1	H92	0.39193	0.32371	0.72271	Н
282	6	C170	0.09613	0.33861	0.53832	С
283	1	H93	0.15657	0.38811	0.52439	Н
284	6	C171	0.04355	0.34764	0.54497	С
285	1	H94	-0.00071	0.41287	0.51601	Н
286	6	C172	0.96531	0.52860	0.60083	С
287	1	H95	0.00076	0.46572	0.69940	Н
288	6	C173	0.01528	0.57913	0.41252	С
289	1	H96	0.08323	0.54866	0.31611	Н
290	1	H97	0.17835	0.20332	0.51036	Н
291	6	C174	0.11974	0.29285	0.53202	С
292	6	C175	0.42489	0.21711	0.53838	С
293	1	H98	0.37800	0.17518	0.36552	Н
294	1	H99	0.46230	0.26783	0.70962	Н
295	1	H100	0.01384	0.32155	0.56386	Н
296	6	C176	0.97102	0.57184	0.50850	С
297	1	H101	0.93177	0.52269	0.68072	Н
298	1	H102	0.01959	0.61172	0.33415	Н
299	6	C177	0.08649	0.25039	0.52822	С
300	6	C178	0.09685	0.20837	0.62457	С
L	<u> </u>	L	1	1	1	<u> </u>

301	6	C179	0.04260	0.25030	0.42658	С
302	6	C180	0.06671	0.16804	0.61331	С
303	1	H103	0.12834	0.20723	0.71566	Н
304	6	C181	0.00951	0.21208	0.42880	С
305	1	H104	0.03429	0.28029	0.33880	Н
306	6	C182	0.02151	0.16997	0.52081	С
307	1	H105	0.07615	0.13594	0.68900	Н
308	1	H106	-0.02435	0.21370	0.34858	Н
309	6	C183	0.50546	0.17984	0.51566	С
310	1	H107	0.52507	0.21184	0.45970	Н
311	6	C184	0.94414	1.13215	0.54975	С
312	1	H108	0.92609	1.16628	0.59649	Н
313	7	N15	0.45896	0.17959	0.55375	N
314	7	N16	0.99089	1.12954	0.51412	N
315	6	C98	0.60196	-0.00537	0.52968	С
316	6	C119	0.58018	1.04338	0.53755	С
317	6	C164	1.00453	0.49571	0.60781	С
318	6	C172	-0.03469	0.52860	0.60083	С
319	6	C173	1.01528	0.57913	0.41252	С
320	6	C176	-0.02898	0.57184	0.50850	С
321	6	C182	1.02151	1.16997	0.52081	С
322	7	N16	-0.00911	0.12954	0.51412	N

Section S6

- 1 B. E. Conwaya, and G. Jerkiewicz, *Electrochimica Acta Materialia* 2000, **45**, 4075-4083.
- 2 K. Kunimatsu, T. Senzaki, M.Tsushima, and M. Osawa, *Chem. Phys. Lett.* 2005, **401**, 451-454.
- 3 E. Lason, G.S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jonsson and J. K. Nørskov, *Phys. Chem. Chem. Phys.* 2007, **9**, 3241-3250.
- 4 Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec and S. Z. Qiao, *Nat.Commun.* 2014, 5, 3783.
- 5 H. Jia, Y. Yao, Y. Gao, D. Lu and P. Du, Chem. Commun. 2016, 52, 13483-13486.
- 6 M. Jahan, Z. Liu and K. P. Loh, Adv. Funct. Mater. 2013, 23, 5363-5372.
- 7 Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec and S. Z. Qiao, ACS. Nano 2014, 8, 5290-5296.
- 8 Y. Ito, W. Cong, T. Fujita, Z. Tang and M. Chen, *Angew. Chem. Int. Ed.* 2015, 54, 2131-2136.
- 9 M. Shalom, S. Gimenez, F. Schipper, I.H. Cardona, J. Bisquert and M. Antonietti, *Angew. Chem. Int. Ed.* 2014, **53**, 3654-3658.
- 10 W. Cui, Q. Liu, N. Cheng, A.M. Asiri, X. Sun, Chem. Commun. 2014, 50, 9340-9342.
- 11 Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi and L. Qu, *Angew. Chem. Int. Ed.* 2014, **53**, 13934-13939.
- 12 R. Dong, M. Pfeffermann, H. Liang, Z. Zheng, X. Zhu, J. Zhang and X. Feng, Large-Area, Free-Standing, *Angew. Chem. Int. Ed.* 2015, **54**, 12058-12063.
- 13 S. Cui, M. Qian, X. Liu, Z. Sun and P. Du, ChemSusChem. 2016, 9, 2365-2373.
- 14 B.C. Patra, S. Khilari, R.N. Manna, S. Mondal, D. Pradhan, A. Pradhan and A. Bhaumik, *ACS Catal.* 2017, 7, 9, 6120–6127.
- 15 S. Maiti, R.A. Chowdhury and K. A. Das, ChemNanoMat, 2019, 6, 99-106.
- 16 S. Bhunia, S. K. Das, R. Jana, S. C. Peter, S. Bhattacharya, M. Addicoat, A. Bhaumik, and A. Pradhan, *ACS Appl. Mater. Interfaces*, 2017, **9**, 23843–23851.
- 17 L. Su, X. Cui, T. He, L. Zeng, H. Tian, Y. Song, K. Qi, and B. Y. Xia, *Chem. Sci.* 2019, **10**, 2019-2024.
- 18 H. B. Wu, B. Y. Xia, L. Yu, X.-Y. Yu, and X. W. Lou, Nat. Comm. 2016, 6, 6512.
- 19 J.-S. Li, Y. Wang, C.-H. Liu, S.L. Li, Y.G, Wang, L. Z. Dong, Z. -H. Dai, Y.-F. Li, and Y. -Q. Lan, *Nat. Comm.* 2016, 6, 6512.
- 20 I. Hod, P. Deria, W. Bury, J. E. Mondloch, C.-W. Kung, M. So, M. D. Sampson, A. W. Peters, C. P. Kubiak, O. K. Farha, and J. T. Hupp, *Nat. Comm.* 2015, **6**, 8304.
- 21 K. He, Z. Cao, R. Liu, Y. Miao, H. Ma, and Y. Ding, *Nano Research* 2016, 9, 1856-1865.
- 22 D. Wu, Q. Xu, J. Qian, X. Li, and Y. Sun, Chem. Eur. J. 2019, 25, 3105-3111.
- 23 S. Cui, M. Qian, X. Liu, Z. Sun, and P. Du, Chem Sus Chem. 2016, 9, 2365-2373.
- 24 A. Pradhan, and N.R. Manna, ACS Appl. Polym. Mater. 2021, 3, 1376–1384.
- 25 J.-S. Qin, D.-Y. Du, W. Guan, X.-J. Bo, Y.-F. Li, L.-P. Guo, Z.-M. Su, Y.-Y. Wang, Y.-Q Lan, and H.-C. Zhou, *J. Am. Chem. Soc.* 2015, **137**, 7169-7177.