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Table S1  Monofacial-irradiation photovoltaic parameter values of HTL-free CsPbBr3 solar 
cells of FTO/TiO2/CsPbBr3/carbon using carbon pastes as top electrodes fabricated on 
commercial transparent FTO glass substrates as bottom electrodes 

Refs. Preparation method Jsc (mA cm–2) Voc (V) FF PCE (%) Irradiation area 
(cm2) CsPbBr3 top 

electrodes 

1 D S 6.81 1.43 0.7996 7.81 0.06 

2 D S 6.49 1.42 0.79 7.22 0.16 

*3 D S 7.16 1.357 0.7297 7.09 0.09 

4 D S 9.55 1.413 0.73 9.86 0.09 

5 D S 7.11 1.372 0.7299 7.12 - 

6 D S 7.24 1.522 0.804 8.86 - 

7 S/D S 7.32 1.43 0.78 8.16 - 

8 S S 8.12 1.46 0.81 9.6 0.1 

9 S S 8.06 1.528 0.83 10.22 0.09 

 S S 7.84 1.397 0.75 8.21 1 

10 S S 7.47 1.36 0.68 6.91 0.09 

11 S S 5.99 1.33 0.657 5.25 - 

12 S S 7.03 1.40 0.75 7.52 0.8 

13 S S 7.48 1.19 0.688 6.12 0.04 

14 S S 7.56 1.52 0.827 9.53 0.09 

15 S S 7.12 1.49 0.6884 7.29 0.09 

16 S S 8.74 1.23 0.754 8.11 0.04 

17 S S 4.5 1.23 0.69 3.8 0.071 

18 S S 7.4 1.24 0.73 6.7 0.12 

This 
work S S 

7.49 1.48 0.79 8.68 0.049 

7.22 1.45 0.77 8.13 0.156 

D; dry process. S; solution process. *The carbon electrode was formed using a carbon paste containing carbon 
nanotubes and MXene. All top carbon electrodes are opaque. In this study, the top SWNT electrode is 
semitransparent with a controlled transmittance value of 60%T at 550 nm. The photovoltaic parameter values 
are based on monofacial irradiation through FTO. 
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Table S2  Monofacial-irradiation photovoltaic parameter values of see-through CsPbBr3 solar cells fabricated on 
commercial transparent ITO or FTO glass substrates as bottom electrodes 

Refs. Cell configuration Preparation method Jsc  

(mA cm–2) 

Voc (V) FF PCE (%) Irradiation area 
(cm2) CsPbBr3 top 

electrode 

1 FTO/SnO2/CsPbBr3/NiOx/ITO D D 6.67 1.55 0.70 7.28 0.4175 

2 
FTO/ZnO/CsPbBr3/spiro-

OMeTAD/ITO S D 3.73 0.94 0.3495 4.94 0.25 

3 
ITO/SnOx/CsPbBr3/P3HT/ITO 
nanoparticles/Ag nanowires S S 6.33 1.32 0.677 5.64 0.04 

4 
ITO/ZnO/CsPbBr3/spiro-

OMeTAD/PEDOT:PSS D S 6.15 1.38 0.7051 5.98 0.1 

This 
work 

FTO/TiO2/CsPbBr3/SWNT at 
60%T 

S S 
7.49 1.48 0.79 8.68 0.049 

7.22 1.45 0.77 8.13 0.156 
D; dry process. S; solution process. The top electrodes are (semi)transparent to prepare see-through CsPbBr3 solar cells. The see-through 
solar cells (Refs. 2‒4) include organic semiconductors of spiro-OMeTAD and P3HT as an HTL. The photovoltaic parameter values are based on 
monofacial irradiation through the bottom electrodes of FTO or ITO. 
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Fig. S1  Change in XRD patterns via a two-step spin-coating method to prepare CsPbBr3 layers on mp-TiO2/c-

TiO2/FTO using a PbBr2 solution of (a) 1.40, (b) 1.30 or (c) 1.20 mol L‒1. The spin-coating with a CsBr solution was 

repeated 7 to 9 times on PbBr2/mp-TiO2/c-TiO2/FTO until a strong signal at 11.6° of CsPb2Br5 almost disappeared. 

The signal positions of FTO (= SnO2) and TiO2 are indicated by □ and ○, respectively. 

 

  



S6 

 

 

 

 

Fig. S2  Top-view FE-SEM images of PbBr2 layers on mp-TiO2/c-TiO2/FTO using a PbBr2 solution of (a) 1.40, (b) 1.30 

or (c) 1.20 mol L‒1. 
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Fig. S3  AFM images of CsPbBr3 grains on  FTO/c-TiO2/mp-TiO2 using a PbBr2 solution of (a) 1.20, (b) 1.30 or (c) 1.40 

mol L‒1. Ra values show average surface roughness. 
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Fig. S4  (a) UV-Vis-near IR absorption/transmittance spectrum of FTO/c-TiO2/mp-TiO2/CsPbBr3 (1.40 mol L–1). A 

sharp absorption at 505 nm is characteristic of a direct-transition semiconductor. The bandgap energy (Eg) is 

estimated as 2.36 eV based on a Tauc plot (b) transformed from (a). 
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Fig. S5  Top-view SEM image of a SWNT thin film (60%T) transferred onto a glass substrate. Commercial SWNTs 

with a nominal diameter of 1.5 nm form bundles with an average width between 6 and 60 nm. 
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Fig. S6  XRD patterns of s-PSCs before/after transferring the semitransparent SWNT thin film. The CsPbBr3 layer 

was prepared using a PbBr2 solution of (a) 1.20, (b) 1.30 or (c) 1.40 mol L‒1. 
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Fig. S7  J-V curves of s-PSCs at 60%T under monofacial irradiation using pseudo sunlight (100 mW cm‒2) through 

FTO at an area of 4.90 ×10–2 cm2. The CsPbBr3 layer was prepared using a PbBr2 solution of (a) 1.40, (b) 1.30 or (c) 

1.20 mol L‒1. Photovoltaic parameter values are summarized in the following table. 

Table  Photovoltaic parameter values based on Fig. S7  
Concentration of   
PbBr2 solutions (mol L‒1) 

Scan direction JSC (mA·cm-2) VOC  (V) FF PCE (%) HI (%) 

1.2 forward 7.15 1.35 0.74 7.14 2.99  
reverse 7.08 1.38 0.75 7.36 

 

1.3 forward 7.01 1.36 0.76 7.28 1.75  
reverse 6.81 1.41 0.77 7.41 

 

1.4 forward 7.42 1.43 0.76 8.01 7.72  
reverse 7.49 1.48 0.79 8.68 

 

HI values show the hysteresis index calculated as (PCEreverse – PCEforward)/PCEreverse × 100 (%). 
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Fig. S8.  Plots of -dV/dJ vs. (JSC ‒ J)–1 and the linear fitting for calculation of series resistance (Rs) values. In a high-

shunt-resistance (Rsh) condition, Rs values are estimated based on the following equation,1,2 

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑚𝑚𝐾𝐾𝐵𝐵𝑇𝑇
𝑒𝑒

(𝑑𝑑𝑠𝑠𝑠𝑠 − 𝑑𝑑)−1 + 𝑅𝑅𝑠𝑠 

where V is the bias voltage, J is the current density, m is the ideality factor of a heterojunction, KB is the Boltzman 

constant, T is the absolute temperature, e is the elementary charge, and Jsc is the short-circuit current density. Rs 

values are calculated from the linear-fitting intercepts using plots of -dV/dJ vs. (JSC ‒ J)–1. 
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Fig. S9  J–V curves of s-PSCs at different transmittance values of (a) 60, (b) 70, and (c) 80%T in the dark. The J–V 

curves are composed of recombination currents in the diode space-charge region, diffusion currents, and diode 

diffusion currents limited by series resistance. Based on linearities (red dotted lines) of the diffusion currents versus 

applied voltages, the diode ideal factor (m) values were calculated between 1 and 2. 
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Fig. S10  Statistical distributions of the photovoltaic parameter values of s-PSCs at different transmittance values 

of 60 (black), 70 (red), and 80%T (blue) via the monofacial irradiation through (a) FTO and (b) SWNT.  
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Fig. S11  Cross-sectional FE-SEM image of an s-PSC at 60%T. The SWNT bundles cannot penetrate the narrow spaces 

between monolayer-aligned large gains. 

 
 

  



S16 

 

 
 
 
 

 

Fig. S12  J-V curves of an s-PSC at 60%T under monofacial irradiation using an on/off mode of LED light through 

SWNT (black line) and using pseudo sunlight (AM 1.5G) through FTO (blue line) and under bifacial irradiation using 

the on/off LED light through SWNT and pseudo sunlight through FTO (red line). As shown in the schematic PSC, 

the apertures (4.90 × 10–2 cm2) for irradiation through the front (FTO) and rear (SWNT) electrodes are in different 

positions. The LED-light power ranges between 32% and 35% of the pseudo-sunlight power (100 mW cm−2). The 

distance between the LED source and the PSC is adjusted to generate Jsc (SWNT) = 1.00 mA cm–2 in the case of 

60%T. The J-V curve profile (red line) is nearly identical to Fig. 5b irradiated through the front (FTO) and rear (SWNT) 

electrodes at the same position. 
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Fig. S13  Emission spectrum of the LED compared to the pseudo sunlight (AM 1.5G). 
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Fig. S14  Stability experiment of an s-PSC at 60%T exposure to ambient air without sealing.  
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Fig. S15  J-V curve of an s-PSC at 60%T under monofacial irradiation using pseudo sunlight through FTO. The 
irradiation area is expanded to 1.56 × 10–1 from  4.90 × 10–2 cm2 of Fig. 4a. 
 

 


