Supporting Information

Multilayer Ti₃C₂T_x MXene Electrode Decorated with Polypyridine for Efficient Symmetric Supercapacitor

Peng Lin,¹ Sibo Wang,¹ Ailing Liu,¹ Ting Yi,² Fei Su,^{1,*} Hui Wang,¹ Song Xue¹ and Xueping Zong^{1,*}

- ^{1.} School of Integrated Circuit Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
- ^{2.} Institute of New Energy Power battery and Energy Storage Technology, College of Automotive Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.

Corresponding author:

E-mail: 710921599@qq.com;

E-mail: xp_zong@email.tjut.edu.cn.

1. Characterizations of materials

X-ray diffraction (XRD) characterization was conducted utilizing a Bruker D8 X-ray diffractometer (Bruker D8 Advance diffractometer, Germany). The microstructure and morphology were recorded on Gemini SEM 300 and Dimension ICON SPM. X-ray diffraction was used to evaluate crystal structures using Mini Flex 600 (Rigaku, Japan). XPS spectra were determined using a monochromatic AL-Ka (1486.6 eV) radiation source (Shimadzu, Axis Suora). The specific surface areas (Brunnauer-Emmett-Teller) was calculated using N₂ gas adsorption isotherms.

2. Electrochemical measurements

All electrochemical tests, including Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and the electrochemical impedance spectroscopy (EIS) tests, were studies by CHI 660E electrochemical workstation (Shanghai Chenhua) with 1M H_2SO_4 at room temperature. Three-electrode measurement system was conducted with as-prepared electrode (working electrode), platinum (counter electrode) and saturated calomel electrode (Ag/AgCl in saturated KCl).The working electrode was prepared by mixing the active materials with acetylene black and polytetrafluoroethylene (8:1:1 in mass ratio) in N, N-dimethylformamide to form a slurry, which was coated on the carbon foam collector (1 cm \times 1 cm) and dried at 60 °C for 24 h in a vacuum oven.

3. Figures

Figure S1. XPS spectra for MXene/PPY, high resolution XPS spectra of Ti 2p.

Figure S2. N₂ adsorption-desorption isotherms of MXene and PPY/MXene composite.

Figure S3. CV curves of pristine MXene (a) and pristine PPY (b) at the scan rate from 5 mV s⁻¹ to 100 mV s⁻¹; (c) Comparison of CV curves for MXene and MXene/PPY at a scan rate of 25 mV s⁻¹.

Figure S4. GCD plots of pristine MXene and MXene/PPY composite.

Figure S5. Equivalent circuit.

Figure S6. Cyclic stability of MXene/PPY at 25 mV s⁻¹. The inset image represents the CV curves of PPY/MXene electrode before and after 4000 charge and discharge cycles.

4. Tables

Table S1. Fitted data of Nyquist plot									
Parameter	R	C ₁	R ₂	W ₁ -R	W ₁ -T	W_1 -P			
	1.35	0.0023815	0.38037	3.639	0.36558	0.47427			

 Table S2. The comparison of supercapacitor electrochemical performance

Cathode Material	Negative	Electrolyte	Pd	Wd	Ref
	Material		[W/kg]	[Wh/kg]	
Ti ₃ CN	Ti ₃ CN	2 M KOH	500	5.7	Ref ¹
Ti ₃ CNT _X	rGO	$2 \ M \ H_2 SO_4$	154	5	Ref ²
GAC-2	GAC-2	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	3500	14.4	Ref ³
PPy/Ti_3C_2-S2	PPy/Ti_3C_2 -S2	3.5 M KCl	499.94	21.61	Ref ⁴
Graphene/MnO ₂	Graphene/MnO ₂	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	62	6.2	Ref ⁵

5. References

- Ashraf, I.; Ahmad, S.; Dastan, D.; Shi, Z.; Iqbal, M. Delaminated titaniun carbonitride MXene (d-Ti3CN) based symmetric supercapacitor (SSC) device fabrication with excellent capacitance and cyclic stability. *Inorganic Chemistry Communications* 2024, *161*, 112059.
- (2) Xu, S.; Yan, S.; Chen, X.; Huang, H.; Liang, X.; Wang, Y.; Hu, Q.; Wei, G.; Yang, Y. Vertical porous Ti₃CNT_x/rGO hybrid aerogels with enhanced capacitive performance. *Chemical Engineering Journal* 2023, 459, 141528.
- (3) Ran, J.; Liu, Y.; Feng, H.; Shi, H.; Ma, Q. A review on graphene-based electrode materials for supercapacitor. *Journal of Industrial and Engineering Chemistry* 2024, DOI:https://doi.org/10.1016/j.jiec.2024.03.043.
- (4) Wei, D.; Wu, W.; Zhu, J.; Wang, C.; Zhao, C.; Wang, L. A facile strategy of polypyrrole nanospheres grown on Ti3C2-MXene nanosheets as advanced supercapacitor electrodes. *Journal of Electroanalytical Chemistry* 2020, 877, 114538.
- (5) He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, E. Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultralight and Flexible Supercapacitor Electrodes. ACS Nano 2013, 7 (1), 174.