Electronic Supplementary Information

Optimal film thickness and Sn oxidation state of sputter-deposited SnO₂ electron transport layers for efficient perovskite solar cells

Woo Seok Suh,^{II}a Geon Ho Park,^{II}a Song Hyeun Jung,^a Yu-Na Lee,^a Hui-Seon Kim,^{*a} Jia-

Hong Pan^{*b} and Wan In Lee^{*a}

^a Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea

^b State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China

* Corresponding authors

H.-S. Kim E-mail: hui-seon.kim@inha.ac.kr; J.-H. Pan:E-mail jhpan@gxu.edu.cn; W. I. Lee E-mail: wanin@inha.ac.kr

⁺These authors contributed equally.

Fig. S1 Plan-view SEM images of metallic Sn films with various thicknesses deposited on FTO substrate. Thicknesses of the films were controlled by varying the sputtering time (ST).

Fig. S2 Cross-sectional-view SEM images of metallic Sn films with various thicknesses deposited on FTO substrate. Thicknesses of the films were controlled by varying ST.

Fig. S3 Cross-sectional-view SEM images of the SnO_2 films on a Si substrate prepared by the ST of 50 s (a) and 200 s (b).

Fig. S4 Plan-view SEM image of TiO_2 films with various thicknesses deposited on FTO substrate. They were obtained by sputtering metallic Ti films, followed by heat treating at 500°C in air. To control Ti thickness, ST was varied in the range of 50–550 s.

Fig. S5 Cross-sectional-view SEM image of TiO_2 films with various thicknesses deposited on FTO substrate. They were obtained by sputtering metallic Ti films, followed by heat treating at 500°C in air. To control Ti thickness, ST was varied in the range of 50–550 s.

Fig. S6 Plan-view SEM images of SnO_2 films prepared by heat-treating 15 nm-thick metallic Sn films at various temperatures.

Fig. S7 Cross-sectional-view SEM images of SnO_2 films prepared by heat-treating 15 nmthick metallic Sn films at various temperatures.

Fig. S8 Plan-view SEM images of perovskite films grown on the SnO_2 layers heat-treated at 320°C, 420°C, and 520°C, respectively. All scale bars represent 1 μ m.

Fig. S9 XRD patterns of perovskite films grown on the SnO₂ layers heat-treated at 20°C (black), 420°C (blue), and 520°C (red).

Fig. S10 J-V curves of PSC-SnO₂-320 (a), PSC-SnO₂-420 (b), and PSC-SnO₂-520 (c) obtained from reverse and forward scans (scan rate: 50 mV s⁻¹). (d) Table exhibiting PV parameters and hysteresis indexes of various PSC devices. Hysteresis index was evaluated from the equation of $[(PCE_{reverse} - PCE_{forward})/PCE_{reverse}] \times 100\%$.

Fig. S11 Normalized current of PSC-SnO₂-320 (black), PSC-SnO₂-420 (blue), and PSC SnO_2 (red) at an applied bias voltage of 0.6 V under one sun irradiation.

Fig. S12 XPS spectra of Sn $4d_{5/2}$ peaks for the 35 nm-thick SnO₂ films heat-treated at 420°C (a) and 520°C (b) for 30 min.

Fig. S13 Nyquist plots obtained at various bias voltages for PSC devices employing SnO_2 -320, SnO_2 -420, and SnO_2 -520, respectively.