## SUPPORTING INFORMATION

# Enhancing kerosene selectivity in Fischer-Tropsch synthesis with ceria-coated catalysts

M. Amine Lwazzani<sup>1</sup>; Andrés A. García Blanco<sup>1</sup>; Martí Biset-Peiró<sup>1</sup>; Elena Martín-Morales<sup>1</sup>; Jordi Guilera<sup>1,2\*</sup>

<sup>1</sup> Catalonia Institute for Energy Research (IREC), Jardins de Les Dones de Negre 1, 08930, Sant Adrià de Besòs, Spain

<sup>2</sup> Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, Barcelona 08028, Spain

\* Corresponding author. E-mail adress: jguilera@irec.cat

## Characterization



## *Figure S.1: (Left) Cross-Section of the Co catalyst under electronic microscopy. (Right) Mapping of the Co presence in the same catalyst particle and SEM image.*

#### SEM:



*Figure S.2: (Left) Cross-Section of the CoCe catalyst under electronic microscopy. (Right) Mapping of the Co and Ce presence in the same catalyst particle.* 

## N<sub>2</sub>-physisorption:



*Figure* S.3: (Left) N2 adsorption-desorption isotherms. (Right) Pore Diameter of the Catalysts.

Figure S.3 shows the nitrogen adsorption-desorption isotherms and the pore size distribution of the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> support and catalysts evaluated in the present work. All samples showed a mesoporous-type isotherm [1–4], without noticeable nitrogen adsorption in the micropore range. Cerium incorporation on reference did not cause any change in the isotherm shape. The mesopore size distribution of cerium-promoted catalysts slightly shifted to lower values than those of reference. This fact is a direct consequence of the promoter incorporation, which reduced the dimensions of the largest pores. There were no differences between promoted catalysts-





Figure S. 4: CeO2 XRD lattice shifts

New XRD measurements were made focusing in the 25-60 ° range to better visualize the presence in the ceria lattice shifts, which are shown in Figure S. 4. The peaks from the Ce material, (Ce/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, 10%) deviate from the Ce-Co materials, as they show slight deviations towards higher 2Theta values. To avoid experimental errors, a sample was prepared by combining the Co and Ce catalyst powders, as the cobalt peaks remained fix in the cobalts samples, to evaluate possible experimental deviations, thereby eliminating the possibility of measurement error.



Figure S.5: XRD diffractograms of the catalysts used in this work post to reaction.

In Figure S.4. The symbol (\*) represents the peak  $[2\theta=34.15^{\circ}]$  corresponding to CoO (ICDD 00-042-1300). No other peaks were highlighted because the silicon compounds and the cerium aluminate caused them. The absence of peaks related to Co<sub>3</sub>O<sub>4</sub> indicates that the reduction has been effective, and no relevant peaks are indicating the formation of cobalt aluminates, although this may be also since they can be amorphous[5,6]. The presence of CoO can be explained by a re-oxidation of the metallic Cobalt upon interaction with the ambient oxygen.





Figure S.6: TPR profiles of the Co reference catalyst and Ce.

In Figure S5, shows the TPR profiles of the Co catalyst, used as a reference, and impregnated ceria. It is observed that ceria is hardly reduced in comparison to the other catalysts, also its reduction takes place at higher temperatures. Curiously, the high-temperature reduction peak observed in the promoted catalyst is not observed with the Ce material (Ce/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>), which may be due to interactions of the ceria-cobalt species.

#### **CO Chemisorption:**

| Cat.                                          | Со    | CeCo  | CoCe  | Ce    |
|-----------------------------------------------|-------|-------|-------|-------|
| Mass of sample (g). at 500 °C                 | 0.096 | 0.090 | 0.104 | 0.044 |
| Volume Adsorbed (cm <sup>3</sup> ) at 500 °C  | 0.834 | 0.713 | 0.908 | 0.013 |
| Mass of sample (g). at 380 °C                 | 0.094 | 0.099 | 0.92  | -     |
| Volume Adsorbed (cm <sup>3</sup> ). at 380 °C | 0.646 | 0.387 | 0.370 | -     |

Table S.1: Adsorbed mols of CO of the catalytic materials under CO Chemisorption.

Table S.1 represents the obtained values of Chemisorbed CO on the catalytic materials, from this table it can be inferred that the impregnated ceria material is not active for CO adsorption when compared to the rest of the catalysts. Table S. 2: CO Chemisorption values at 380 °C and 500 °C of the catalysts.

| Catalyst                                                          | Со   | CoCe | CeCo |
|-------------------------------------------------------------------|------|------|------|
| Metallic Surface Area (m <sup>2</sup> ·g <sup>-1</sup> ) At 500°C | 1.5  | 1.6  | 1.3  |
| Metallic Dispersion (%) At 500°C                                  | 1.5  | 1.6  | 1.2  |
| Metallic Surface Area (m <sup>2</sup> ·g <sup>-1</sup> ) At 380°C | 1.1  | 0.6  | 0.6  |
| Metallic Dispersion (%) At 380°C                                  | 1.1  | 0.6  | 0.6  |
| Dispersion ratio (380 °C/500 °C)                                  | 0.71 | 0.39 | 0.47 |

The CO chemisorption at 380 °C and 500 °C reveals different adsorption behaviors of the catalysts, as at 380 °C the ceria promoted catalysts show similar results, below the unpromoted catalyst. Contrarly to what was obtained at 380 °C, results after reduction at 500 °C, showed similar or even slightly enhanced CO Chemisorption of the CoCe catalyst respective to the Co reference materials and superior to the CeCo catalyst. This phenomenon was explained in the main document due to restrained reduction of the ceria-containing catalysts.

XPS spectra for Co 2p is shown in below in Figure 7.



Figure S. 7: XPS spectra for Co 2p.

## XPS

## Catalytic Results

|                                    | Temperatur<br>e | Co | onversio | on              | GHSV                                    |                 |             | Selectivit  | y                               |                  | α    |
|------------------------------------|-----------------|----|----------|-----------------|-----------------------------------------|-----------------|-------------|-------------|---------------------------------|------------------|------|
| Catalyst                           | [°C]            | CO | $H_2$    | CO <sub>2</sub> | [NmL·h <sup>-1</sup> ·g <sup>-1</sup> ] | CH <sub>4</sub> | $C_2 - C_4$ | $C_5 - C_9$ | C <sub>9</sub> -C <sub>17</sub> | C <sub>18+</sub> | -    |
| Co/                                | 230             | 52 | 54       | -               | 5,290                                   | 11              | 5           | 18          | 36                              | 30               | 0.95 |
| H <sub>2</sub> /CO                 | 245             | 47 | 51       | -               | 8,464                                   | 20              | 10          | 16          | 31                              | 24               | 0.95 |
|                                    | 260             | 52 | 58       | -               | 11,286                                  | 32              | 16          | 14          | 25                              | 13               | 0.94 |
| Co/                                | 230             | 47 | 51       | 5.4             | 3,937                                   | 15              | 12          | 20          | 33                              | 20               | 0.94 |
| H <sub>2</sub> /CO/CO <sub>2</sub> | 245             | 48 | 54       | 1.7             | 5,765                                   | 19              | 10          | 20          | 34                              | 17               | 0.94 |
|                                    | 260             | 50 | 60       | -3.7            | 8,085                                   | 33              | 15          | 16          | 23                              | 12               | 0.93 |

Table S.3: Catalytic Results of the reference Catalyst under H<sub>2</sub>/CO and H<sub>2</sub>/CO/CO<sub>2</sub>

Table S.4: Catalytic results of the Cerium-promoted catalysts under syngas.

|      | Temperature | Conv<br>[ | ersion<br>%]   | GHSV                                    | Selectivity [%] |                                |                                |                                 |                  | α          |            |
|------|-------------|-----------|----------------|-----------------------------------------|-----------------|--------------------------------|--------------------------------|---------------------------------|------------------|------------|------------|
| Cat. | [°C]        | CO        | H <sub>2</sub> | [NmL·g <sup>-1</sup> ·h <sup>-1</sup> ] | $CH_4$          | C <sub>2</sub> -C <sub>4</sub> | C <sub>5</sub> -C <sub>9</sub> | C <sub>9</sub> -C <sub>17</sub> | C <sub>18+</sub> | $\alpha_1$ | $\alpha_2$ |
| CeCo | 230         | 48        | 48             | 2800                                    | 5               | 8                              | 15                             | 45                              | 28               | 0.98       | 0.93       |
|      | 245         | 47        | 48             | 4200                                    | 10              | 5                              | 17                             | 40                              | 28               | 0.96       | 0.93       |
|      | 260         | 55        | 59             | 5600                                    | 26              | 13                             | 17                             | 28                              | 16               | 0.94       | 0.92       |
| CoCe | 230         | 45        | 49             | 4509                                    | 9               | 3                              | 17                             | 43                              | 28               | 0.96       | 0.90       |
|      | 245         | 42        | 45             | 7215                                    | 22              | 9                              | 18                             | 33                              | 17               | 0.94       | 0.87       |
|      | 260         | 50        | 56             | 9619                                    | 28              | 13                             | 20                             | 28                              | 11               | 0.94       | 0.87       |

Table S.5: Catalytic results of Ceria promoted catalysts under CO<sub>2</sub>-rich mixture.

|      | Temperature | Co | onversior | า [%]           | GHSV                                    |        | S             | Selectivity                    | [%]                             |                  |            | α    |
|------|-------------|----|-----------|-----------------|-----------------------------------------|--------|---------------|--------------------------------|---------------------------------|------------------|------------|------|
| Cat. | [°C]        | CO | $H_2$     | CO <sub>2</sub> | [NmL·g <sup>-1</sup> ·h <sup>-1</sup> ] | $CH_4$ | $C_2$ - $C_4$ | C <sub>5</sub> -C <sub>9</sub> | C <sub>9</sub> -C <sub>17</sub> | C <sub>18+</sub> | $\alpha_1$ | α2   |
| CeCo | 230         | 46 | 50        | -2.7            | 2120                                    | 12     | 5             | 16                             | 46                              | 22               | 0.97       | 0.91 |
|      | 245         | 51 | 60        | -7.9            | 3041                                    | 23     | 7             | 12                             | 40                              | 18               | 0.98       | 0.90 |
|      | 260         | 47 | 64        | -34.9           | 4322                                    | 40     | 13            | 13                             | 22                              | 12               | 0.94       | 0.90 |
| CoCe | 230         | 54 | 57        | 6.2             | 3143                                    | 10     | 8             | 19                             | 42                              | 21               | 0.96       | 0.90 |
|      | 245         | 54 | 61        | 1.2             | 4607                                    | 22     | 7             | 13                             | 41                              | 18               | 0.94       | 0.87 |
|      | 260         | 62 | 71        | -7.2            | 6486                                    | 34     | 13            | 17                             | 25                              | 11               | 0.94       | 0.87 |

#### Table S.6: CO<sub>2</sub> selectivity for the promoted catalysts.

|             | CO <sub>2</sub> Selec | tivity [%] |      |
|-------------|-----------------------|------------|------|
| Temperature |                       | Cat.       |      |
| [°C]        | Со                    | CeCo       | CoCe |
| 230         | 0.2                   | 0.2        | 0.4  |
| 245         | 0.6                   | 0.4        | 0.8  |
| 260         | 1.6                   | 1.1        | 1.8  |

|      | Temperature | mcat  | Co mass | XCO |                        | Flux               |            | CTY                                           |
|------|-------------|-------|---------|-----|------------------------|--------------------|------------|-----------------------------------------------|
| Cat. | [°C]        | [g]   | [g Co]  | [%] | [NmL·min⁻¹]            | [mol syngas min⁻¹] | [Mol Co/s] | [mol CO·s <sup>-1</sup> ·g Co <sup>-1</sup> ] |
|      |             |       |         | Ś   | SYNGAS                 |                    |            |                                               |
| Со   | 230         | 0.425 | 0.06    | 52  | 37.5                   | 1.53E-03           | 8.53E-06   | 14.03                                         |
|      | 245         | 0.425 | 0.06    | 47  | 60                     | 2.46E-03           | 1.36E-05   | 22.45                                         |
|      | 260         | 0.425 | 0.06    | 52  | 80                     | 3.27E-03           | 1.82E-05   | 29.93                                         |
| CoCe | 230         | 0.499 | 0.07    | 45  | 37.5                   | 1.53E-03           | 8.53E-06   | 11.78                                         |
|      | 245         | 0.499 | 0.07    | 42  | 60                     | 2.46E-03           | 1.36E-05   | 18.85                                         |
|      | 260         | 0.499 | 0.07    | 50  | 80                     | 3.27E-03           | 1.82E-05   | 25.14                                         |
| CeCo | 230         | 0.428 | 0.07    | 48  | 20                     | 8.18E-04           | 4.55E-06   | 6.94                                          |
|      | 245         | 0.428 | 0.07    | 47  | 30                     | 1.23E-03           | 6.82E-06   | 10.42                                         |
|      | 260         | 0.428 | 0.07    | 55  | 40                     | 1.64E-03           | 9.09E-06   | 13.89                                         |
|      |             |       |         | SYN | IGAS + CO <sub>2</sub> |                    |            |                                               |
| Со   | 230         | 0.426 | 0.06    | 47  | 28                     | 1.15E-03           | 6.37E-06   | 10.45                                         |
|      | 245         | 0.426 | 0.06    | 48  | 41                     | 1.68E-03           | 9.32E-06   | 15.30                                         |
|      | 260         | 0.426 | 0.06    | 50  | 57.5                   | 2.35E-03           | 1.31E-05   | 21.46                                         |
| CoCe | 230         | 0.507 | 0.07    | 54  | 26.6                   | 1.09E-03           | 6.05E-06   | 8.23                                          |
|      | 245         | 0.507 | 0.07    | 54  | 39                     | 1.60E-03           | 8.87E-06   | 12.06                                         |
|      | 260         | 0.507 | 0.07    | 62  | 54.6                   | 2.23E-03           | 1.24E-05   | 16.89                                         |
| CeCo | 230         | 0.651 | 0 10    | 46  | 23                     | 9 41 F-04          | 5 23E-06   | 5 25                                          |
| 0000 | 245         | 0.651 | 0.10    | 51  | 33                     | 1.35E-03           | 7.50E-06   | 7.53                                          |
|      | 260         | 0.651 | 0.10    | 47  | 46.9                   | 1.92E-03           | 1.07E-05   | 10.71                                         |

## Table S. 7: Catalytic Activity (CTY).

 Table S. 8: Average value and standard deviation for catalyst conversion.

| Cat. | Temperature [°C] | Reactant       | Mean      | Std. Dev. | Sample nº | 95% Error margin |
|------|------------------|----------------|-----------|-----------|-----------|------------------|
|      |                  |                | SYNGAS    |           |           |                  |
| Со   | 230              | CO             | 52.35     | 1.03      | 10        | 0.73             |
|      |                  | $H_2$          | 54.15     | 0.82      | 10        | 0.59             |
|      | 245              | CO             | 46.79     | 0.44      | 11        | 0.30             |
|      |                  | H <sub>2</sub> | 50.52     | 0.73      | 11        | 0.49             |
|      | 260              | СО             | 52.09     | 0.26      | 9         | 0.20             |
|      |                  | H <sub>2</sub> | 58.49     | 0.38      | 9         | 0.29             |
| CoCe | 230              | со             | 46.13     | 3.48      | 9         | 2.68             |
|      |                  | H <sub>2</sub> | 43.70     | 4.31      | 9         | 3.31             |
|      | 245              | CO             | 41.92     | 1.05      | 7         | 0.97             |
|      |                  | H <sub>2</sub> | 45.24     | 1.03      | 7         | 0.96             |
|      | 260              | CO             | 50.90     | 2.28      | 6         | 2.39             |
|      |                  | H <sub>2</sub> | 56.55     | 2.51      | 6         | 2.64             |
| CeCo | 230              | со             | 46.01     | 0.37      | 13        | 0.22             |
|      |                  | H <sub>2</sub> | 49.65     | 0.31      | 13        | 0.19             |
|      | 245              | CŌ             | 50.79     | 0.63      | 11        | 0.42             |
|      |                  | $H_2$          | 59.65     | 1.00      | 11        | 0.67             |
|      | 260              | CŌ             | 46.16     | 1.36      | 7         | 1.26             |
|      |                  | $H_2$          | 63.54     | 1.44      | 7         | 1.33             |
|      |                  | SY             | NGAS + CO | 2         |           |                  |
| Со   | 230              | со             | 47.92     | 0.77      | 36        | 0.26             |

|      |      | H <sub>2</sub>       | 50.98          | 0.57         | 36       | 0.19         |
|------|------|----------------------|----------------|--------------|----------|--------------|
|      | 245  | CO<br>H <sub>2</sub> | 47.86<br>54.41 | 0.51<br>0.39 | 13<br>13 | 0.31<br>0.24 |
|      | 260  | CO<br>H <sub>2</sub> | 49.54<br>59.66 | 0.61<br>0.26 | 9<br>9   | 0.47<br>0.20 |
|      |      |                      |                |              |          |              |
| CoCe | 230  | со                   | 53.59          | 1.04         | 13       | 0.63         |
|      | 0.15 | H <sub>2</sub>       | 56.61          | 0.81         | 13       | 0.49         |
|      | 245  | CO                   | 53.96          | 0.23         | 7        | 0.21         |
|      | 260  |                      | 61 75          | 1.05         | 7        | 0.34         |
|      | 200  | H <sub>2</sub>       | 71.25          | 0.64         | 7        | 0.59         |
| CeCo | 230  | СО                   | 47.61          | 1.54         | 28       | 0.60         |
|      |      | H <sub>2</sub>       | 48.16          | 1.52         | 28       | 0.59         |
|      | 245  | co                   | 46.50          | 0.82         | 11       | 0.55         |
|      | 260  |                      | 48.08          | 0.87         | 11       | 0.58         |
|      | 200  | H <sub>2</sub>       | 59.20          | 0.47         | 11       | 0.32         |
|      |      |                      |                |              |          |              |

## Isoparaffin, Olefin and alcohols:

| Cat  | Temperature         |           | Total         |                        |          | Within the Kerosene | e range (C <sub>9</sub> -C <sub>17</sub> ) |
|------|---------------------|-----------|---------------|------------------------|----------|---------------------|--------------------------------------------|
|      |                     |           | Ş             | SYNGAS                 |          |                     |                                            |
| Cat  | T <sup>a</sup> (°C) | Paraffins | Iso-Paraffins | Olefins                | Alcohols | Iso-Paraffins       | Olefins                                    |
| Co   | 230                 | 99.13     | 0.03          | 0.62                   | 0.30     | 100.00              | 100.00                                     |
| Co   | 245                 | 99.28     | 0.01          | 0.14                   | 0.72     | 100.00              | 49.19                                      |
| Co   | 260                 | 97.97     | 0.00          | 1.28                   | 0.85     | -                   | 96.19                                      |
| CeCo | 230                 | 97.56     | 0.08          | 2.00                   | 0.58     | 83.50               | 98.10                                      |
| CeCo | 245                 | 98.24     | 0.09          | 1.78                   | 1.59     | 0.00                | 98.88                                      |
| CeCo | 260                 | 97.49     | 0.00          | 1.43                   | 1.09     | -                   | 100.00                                     |
| CoCe | 230                 | 97.12     | 0.40          | 1.65                   | 0.83     | 100.00              | 100.00                                     |
| CoCe | 245                 | 96.60     | 0.38          | 2.26                   | 0.76     | 100.00              | 100.00                                     |
| CoCe | 260                 | 97.42     | 0.12          | 2.14                   | 0.73     | 100.00              | 98.23                                      |
|      |                     |           | SYN           | IGAS + CO <sub>2</sub> |          |                     |                                            |
| Со   | 230                 | 96.03     | 0.39          | 2.91                   | 0.68     | 100.00              | 100.00                                     |
| Co   | 245                 | 96.32     | 0.37          | 3.25                   | 0.12     | 100.00              | 91.85                                      |
| Co   | 260                 | 94.47     | 0.90          | 4.62                   | 0.39     | 88.81               | 99.16                                      |
| CeCo | 230                 | 96.95     | 0.39          | 2.28                   | 0.39     | 100.00              | 100.00                                     |
| CeCo | 245                 | 99.15     | 0.40          | 0.00                   | 0.45     | 100.00              | -                                          |

Table S. 9: Isoparaffin, olefin and alcohol content of the C5+ hydrocarbons.

| CeCo | 260 | 97.83 | 0.56 | 0.96 | 0.84 | 100.00 | 100.00 |
|------|-----|-------|------|------|------|--------|--------|
| CoCe | 230 | 98.00 | 0.00 | 1.21 | 0.80 | -      | 91.85  |
| CoCe | 245 | 91.38 | 4.00 | 3.92 | 1.22 | 86.26  | 95.02  |
| CoCe | 260 | 99.10 | 1.71 | 2.67 | 0.90 | 73.00  | 100.00 |

Time On Stream (TOS):



Figure S. 8: TOS for the Co catalyst under syngas.



Figure S. 9: TOS for the Co catalyst under CO2-enriched syngas.



Figure S. 10: TOS for the CoCe catalyst under syngas.



Figure S. 11: TOS for the CoCe catalyst under CO2-enriched syngas.



Figure S. 12: TOS for the CeCo catalyst under syngas.



Figure S. 13: TOS for the CeCo catalyst under CO2-enriched syngas.

#### DRIFT:

DRIFT characterization was also performed under CO<sub>2</sub> feed to understand the adsorption behavior and the changes in the adsorbate species while undergoing reaction-like conditions. The obtained results are shown in Figure S. 13 and Figure S. 14:



Figure S. 14: DRIFT characterization of the CeCo catalyst under CO<sub>2</sub> hydrogenation.



Figure S. 15: DRIFT characterization of the CoCe catalyst under  $CO_2$  hydrogenation.

Relative areas of the DRIFT peaks were quantified by measuring the area of each peak, relative to the linearly adsorbed CO peak (2022 cm<sup>-1</sup>).

Table S. 10: IR peak assignment, and relative areas in reference to linear CO absorption band  $2022 \text{ cm}^{-1}$ 

| Peak (cm- |                                                    |       |        |       |
|-----------|----------------------------------------------------|-------|--------|-------|
| 1)        | Adsorbate species                                  | Со    | CoCe   | CeCo  |
| 3762 -    |                                                    |       |        |       |
| 3665      | Hydroxyls [7–9]                                    | 20.6% | 36.7%  | 6.1%  |
| 3016      | Hydrocarbons [10]                                  | 13.6% | 3.6%   | 3.6%  |
| 2901      | Formate [10]                                       | 2.3%  | 6.9%   | 13.8% |
| 2835      | Formate [11]                                       | 6.0%  | 23.7%  | 9.0%  |
| 2022      | Linear Carbonyl [8–10]<br>Multiply-bonded carbonyl | 100%  | 100%   | 100%  |
| 1930      | [10]                                               | 14.4% | 57.5%  | 8.8%  |
| 1868      | Bridged Carbonyl [10]                              | 27.3% | 166.8% | 42.5% |
| 1590      | Carbonate [9,10]                                   | 69.6% | 200.6% | 88.0% |
| 1374      | Carbonate [9,10]                                   | 19.8% | 47.1%  | 1.2%  |

The areas used for estimating the values corresponding to each adsorbate species was calculated as seen in Figure S. 13.



Figure S. 16: DRIFT area delimitation.

Table S. 11: Ratio of Bridged CO to linear CO, and ratio of surface carbonates to surface carbonyls, calculated using the relative areas of Table S.9

|                        | Со   | CoCe | CeCo |
|------------------------|------|------|------|
| Bridged CO / linear CO | 0.42 | 2.24 | 0.51 |
| Carbonates/carbonyls   | 0.63 | 0.76 | 0.59 |

### References:

- [1] R. Haul, S. J. Gregg, K. S. W. Sing: Adsorption, Surface Area and Porosity. 2. Auflage, Academic Press, London 1982. 303 Seiten, Preis: \$ 49.50, Berichte Der Bunsengesellschaft Für Physikalische Chemie 86 (1982) 957–957. https://doi.org/10.1002/bbpc.19820861019.
- [2] F. Rouquerol, J. Rouquerol, K. Sing, CHAPTER 7 Assessment of Mesoporosity, in: F. Rouquerol, J. Rouquerol, K. Sing (Eds.), Adsorption by Powders and Porous Solids, Academic Press, London, 1999: pp. 191–217. https://doi.org/10.1016/B978-012598920-6/50008-7.
- [3] M. Thommes, Physical Adsorption Characterization of Nanoporous Materials, Chemie Ingenieur Technik 82 (2010) 1059–1073. https://doi.org/10.1002/cite.201000064.
- [4] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117.
- [5] N.M. Deraz, Formation and Characterization of Cobalt Aluminate Nano-Particles, International Journal of Electrochemical Science 8 (2013) 4036–4046. https://doi.org/10.1016/S1452-3981(23)14451-8.
- [6] E.M. Masoud, A.-A. El-Bellihi, W.A. Bayoumy, E.S. Abdelazeem, Structural, optical, magnetic, and electrical properties of nanospinels containing different molar ratios of cobalt and aluminum ions, Ionics 23 (2017) 2417–2427. https://doi.org/10.1007/s11581-017-2091-0.
- [7] X. Liu, DRIFTS Study of Surface of γ-Alumina and Its Dehydroxylation, J. Phys. Chem. C 112 (2008) 5066–5073. https://doi.org/10.1021/jp711901s.
- [8] L.F. Bobadilla, A. Egaña, R. Castillo, F. Romero-Sarria, M.A. Centeno, O. Sanz, M. Montes, J.A. Odriozola, Understanding the promotional effect of Pt/CeO2 in cobalt-catalyzed Fischer-Tropsch synthesis using *operando* infrared spectroscopy at moderated pressures, Fuel 312 (2022) 122964. https://doi.org/10.1016/j.fuel.2021.122964.
- [9] P.A.U. Aldana, F. Ocampo, K. Kobl, B. Louis, F. Thibault-Starzyk, M. Daturi, P. Bazin, S. Thomas, A.C. Roger, Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy, Catalysis Today 215 (2013) 201–207. https://doi.org/10.1016/j.cattod.2013.02.019.
- [10] C.G. Visconti, L. Lietti, E. Tronconi, P. Forzatti, R. Zennaro, E. Finocchio, Fischer–Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas, Applied Catalysis A: General 355 (2009) 61–68. https://doi.org/10.1016/j.apcata.2008.11.027.
- [11] A. Parastaev, V. Muravev, E. Huertas Osta, A.J.F. Van Hoof, T.F. Kimpel, N. Kosinov, E.J.M. Hensen, Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts, Nat Catal 3 (2020) 526–533. https://doi.org/10.1038/s41929-020-0459-4.

#### Annex 1. Reference Catalyst Optimization

Before ceria promotion, a reference cobalt catalyst was optimized by modifying impregnated metal content, calcination temperature, and impregnation steps, results are shown below:

Table S.12: Description of the catalysts: Composition and procedural parameters.

| Cat. ID | Description                                                                                                                                                                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10A     | 10 wt% cobalt supported over $\gamma$ -Al_2O_3 calcined at 500°C.                                                                                                           |
| 10B     | 10 wt% cobalt supported over $\gamma$ -Al <sub>2</sub> O <sub>3</sub> calcined at 275°C.                                                                                    |
| 14B     | 14 wt% cobalt supported over $\gamma$ -Al <sub>2</sub> O <sub>3</sub> calcined at 275°C.                                                                                    |
| 14A     | 14 wt% cobalt supported over $\gamma$ -Al <sub>2</sub> O <sub>3</sub> calcined at 500°C.                                                                                    |
| 17.5A1  | 17.5 wt% cobalt supported over $\gamma$ -Al_2O_3 calcined at 500°C and impregnated in one step.                                                                             |
| 17.5A3  | 17.5 wt% cobalt supported over $\gamma$ -Al_2O_3 calcined at 500°C and impregnated in 3 steps.                                                                              |
| 17.5Bi  | 17.5 wt% cobalt supported over $\gamma$ -Al <sub>2</sub> O <sub>3</sub> calcined at 275°C, impregnated in 3 steps with intermediate calcination between every impregnation. |
| 17.5B1  | 17.5 wt% cobalt supported over $\gamma$ -Al_2O_3 calcined at 275°C impregnated in one step.                                                                                 |

The series of catalyst samples obtained are described in Table S.7. A brief description of the procedural parameters such as the composition (nominal), calcination temperature (A = Calcination temperature of 500 °C; B = Calcination temperature of 275 °C) and number of impregnation steps of the catalysts. The catalysts were synthesized to achieve a nominal metallic loading of wt%= [10%;14%;17.5%]. All catalysts described in Table S.7, were prepared by impregnating Co(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O over γ-Al<sub>2</sub>O<sub>3</sub>.

## Characterization

SEM:



Figure S.17: SEM image of the 10A Catalyst pellet.



Figure S. 18: Cross-section of a catalyst particle (17.5A3)(A) SEM micrography of the particle; (B) EDX of Carbon atoms; (C) EDX of cobalt; (D) EDX of Aluminum atoms; (D) EDX of oxygen.

## Density and ICP:

| Cat ID                                 | M/t 0/ ICD Cabalt | Deal Danaity [kg/dm3]              |
|----------------------------------------|-------------------|------------------------------------|
| Cal. ID                                | WL% ICP Coball    | Real Density [kg/dm <sup>s</sup> ] |
| 10A                                    | 9.20              | 3.28                               |
| 10B                                    | 8.60              | 3.27                               |
| 14B                                    | 10.80             | 3.33                               |
| 14A                                    | 11.55             | 3.35                               |
| 17.5A1                                 | 16.00             | 3.46                               |
| 17.5A3                                 | 15.40             | -                                  |
| 17.5Bi                                 | 14.65             | 3.39                               |
| 17.5B1                                 | 15.20             | 3.43                               |
| $\Box$ -Al <sub>2</sub> O <sub>3</sub> | 0                 | 3.27                               |

Table S.13: Skeletal density and chemical composition of synthesized catalysts.

## N<sub>2</sub>-physisorption:

Table S.14: Surface area and mesopore volume of catalysts

| Cat. ID | S <sub>BET</sub> (m²/g) | V <sub>meso</sub> (cm³/g) |
|---------|-------------------------|---------------------------|
| 10A     | 152                     | 0.48                      |
| 10B     | 176                     | 0.52                      |
| 14B     | 161                     | 0.50                      |
| 14A     | 150                     | 0.49                      |
| 17.5A1  | 144                     | 0.45                      |
| 17.5A3  | 162                     | 0.49                      |
| 17.5Bi  | 168                     | 0.49                      |
| 17.5B1  | 151                     | 0.44                      |

## XRD:

Table S.15: Particle size and FWMH of catalysts.

| Cat. ID | FWMH (°) | D (nm) |
|---------|----------|--------|
| 10A     | 0.16     | 53     |
| 10B     | 0.315    | 27     |
| 14B     | 0.472    | 18     |
| 14A     | 0.276    | 30     |
| 17.5A1  | 0.354    | 24     |
| 17.5A3  | 0.315    | 27     |
| 17.5Bi  | 0.576    | 15     |
| 17.51   | 0.315    | 27     |



Figure S.19: XRD diffractograms of the non-promoted catalysts used in this work prior to reduction.

TPR:



Figure S.20: TPR profile of the non-supported cobalt oxide calcined at 500°C.



Figure S.21: Comparison of catalysts TPR.

## CO Chemisorption:



Figure S.22: Metallic Surface Area and Metallic Dispersion measured by CO Chemisorption.

## Catalytic Results







Figure S.24: Selectivity at low GHSV.



Figure S. 25: Selectivity at medium GHSV.



Figure S. 26: Selectivity at high GHSV.