Supplementary Information

A pdc-pinched copper complex for sustainable hydrogen production through ligand supported-metal centric proton-coupled electron transfer

Meena Chettri,^a Subhajit Saha,^a Nilankar Diyali,^a Rakesh Debnath,^a Harshita Bagdwal,^b Monika Singh,^b Bhaskar Biswas,^{*a}

^aDepartment of Chemistry, University of North Bengal, Darjeeling-734013, India.

^bInstitute of Nano Science and Technology (INST, Mohali, Punjab-140306, India.

	Table of Content	
		Page No.
A.	Experimental	S1-S4
	1.1. Chemicals.	S1
	1.2. Synthesis of $[Cu(pdc)(H_2O)_2]$.	S1
	1.3 . Synthesis of [Zn(pdc) ₂].	S1
	1.4. Physical measurements.	S2
	1.5. X-ray structural studies and refinement.	S2
	1.6. Electrochemical measurements.	S2-S3
	1.7. Catalyst concentration dependence study.	S3
	1.8. EPR analysis for 1e ⁻ reduction of the AcOH treated- [Cu(pdc)(H ₂ O) ₂] in water-DMF	S3
	1.9. Theoretical Calculations.	S4
B.	Figures	S4-S21
	1. Optimized structure of [Cu(pdc)(H ₂ O) ₂].	S4
	2. EDX analysis of [Cu(pdc)(H ₂ O) ₂].	S4
	3. FT-IR spectrum of [Cu(pdc)(H ₂ O) ₂]	S5

4.	UV-Vis spectra of the ligand pdc and $[Cu(pdc)(H_2O)_2]$ in water.	S 5
5.	Time dependent UV-Vis spectra of $[Cu(pdc)(H_2O)_2]$; (a) in H ₂ O; (b) in aq. 0.1 M KCl; (c) in 1 M AcOH; and (d) in 0.5 M H ₂ SO ₄ .	S6
6.	ESI MS spectra of [Cu(pdc)(H ₂ O) ₂] in water.	S6
7.	Crystal structure of [Zn(pdc) ₂] complex; ; (b) UV-Vis spectrum of the ligand pdc and [Zn(pdc) ₂] in water.	S7
8.	 (a) CV of pdc with various scan rate, 100 mV/s to 600 mV/s recorded in the region of 0 V to -1.6 V at scan rate of 100 mV/s, inset represents the linear fit of square root of scan rate vs. peak current obtained from {Figure S8 (a)}; (b) CV of 1 mM [Zn(pdc)₂] complex in 0.1 M aqueous KCl recorded in the region of 0 V to -1.6 V at scan rate of 100 mV/s. 	S7
9.	Differential pulse voltammetry (DPV) of [Cu(pdc)(H ₂ O) ₂], in 0.1 M aqueous KCl.	S8
10.	Spin density plot of $[Cu(pdc)(H_2O)_2]$ (S=1/2,q=0).	S8
11.	LUMO of singlet-configured reduced [Cu(pdc)(H ₂ O) ₂].	S9
12.	Circuit diagram for impedance spectral study.	S9
13.	Comparison of CV of $Cu(NO_3)_2.3H_2O$ and $[Cu(pdc)(H_2O)_2]$ in 0.1 M aqueous KCl with 4 equiv. AcOH addition was recorded in the region of 0 V to -1.6 V at a scan rate of 100 mV/s.	S10
14.	(a) CV of ligand, pdc in 0.1 M aqueous KCl with sequential AcOH addition (0-30 equiv.), recorded in the region of 0 V to -1.6 V at a scan rate of 100 mV/s.	S10
15.	Plot of concentration of AcOH vs. catalytic current obtained from {Figure 3(b)}.	S11
16.	 (a) CV of different concentrations of [Cu(pdc)(H₂O)₂] (1 mM to 3 mM) recorded in 0.1 M aqueous KCl with 60 equiv. AcOH addition in the region of 0 V to -1.6 V (V vs. Ag/AgCl) at scan rate of 100 mV/s and (b) Plot of concentration of [Cu(pdc)(H₂O)₂] vs. peak current obtained from {Figure S16(a)}. 	S11
17.	Hydrogen gas detection by gas chromatography (GC).	S12
18.	Comparison of CV of bare GCE (black); dipped GCE, rinsed and dipped in 0.1M KCl and 60 equiv. AcOH(red) and dipped GCE with 0.1 M KCl and 1 mM [Cu(pdc)(H ₂ O) ₂] in water(blue).	<u>812</u>

	19.	EDX of the electrode-wiped carbon tape after CPE.	S13
	20.	CPE of [Cu(pdc)(H ₂ O) ₂] for 10 hours , in 0.1 M aqueous KCl with 60 equiv. AcOH addition at -1.2 V .	S13
	21.	Full XPS spectra of the deposited species after 10 hours CPE, revealing the presence of C 1s, N 1s, O 1s and Cu 2p.	S14
	22.	UV-Vis spectra before and after CPE (10 hours).	S14
	23.	Post CPE durability study, CPE for 3.5 hours using a fresh electrode.	S15
	24.	Spectrophotometric titration of $[Cu(pdc)(H_2O)_2]$ in 1 M AcOH in H ₂ O under ambient conditions.	S15
	25.	pH-dependent spectrophotometric study for calculation of pKa value in citrate-phosphate buffer in the pH range 2.6 - 7.	S16
	26.	Mulliken charge distribution of [Cu(pdc)(H ₂ O) ₂].	S16
	27.	The energy difference between the protonation sites of $O(4)$, $O(2)$, and $N(1)$.	S17
	28.	Spin density plot of protonated [Cu(pdc)(H ₂ O) ₂] intermediate(B).	S18
	29.	(a) Optimized structure of intermediate (C), (b) Mulliken charge distribution of intermediate (C)	S18
	30.	 (a) Optimized structure of intermediate (D),Cu (III)-H, (b) Mulliken charge distribution of intermediate (D),Cu (III)-H. 	S19
	31.	 (a) Mulliken charge distribution of intermediate (E), Cu (II)-H, (b) Spin density plot of intermediate (E), Cu (II)-H. 	S19
	32.	(a) CV comparison of electrolyte solution (blank, grey), electrolyte solution after addition of 0.8 equiv. of H_2SO_4 (red) and [Cu(pdc)(H ₂ O) ₂] with addition of 0.8 equiv. of H_2SO_4 addition (blue) recorded; (b) CV of [Cu(pdc)(H ₂ O) ₂] in 0.1 M aq. KCl with sequential H_2SO_4 addition (0-6.4 equiv.),inset represents the plot of concentration H_2SO_4 vs. catalytic current obtained from {Figure S32(a)}.	S20
	33.	CPE of $[Cu(pdc)(H_2O)_2]$ in the presence of 6.4 equiv. H ₂ SO ₄ at constant potential of -1.2 V (V vs. Ag/AgCl) for 1 hour.	S20
	34.	CV of $[Cu(pdc)(H_2O)_2]$ in river water with 60 equiv. AcOH addition (black) and 6.4 equiv.), H_2SO_4 addition (red).	S21
-		Tables	S22-S25
	1.	Crystallographic structural parameters of [Cu(pdc)(H ₂ O) ₂].	S22

	2. Selected bond distances (Å) and angles (°) of	S23
	[Cu(pdc)(H ₂ O) ₂]	
	3. Hydrogen bond lengths (Å) and angles (°) for	S24
	[Cu(pdc)(H ₂ O) ₂]	
	4. Electrochemical experimental results from a typical AcOH	S24-S25
	titration of [Cu(pdc)(H ₂ O) ₂]	
D.	Calculation	S25-S26
	1. Determination of diffusion coefficient (D) of [Cu(pdc)(H ₂ O) ₂]	S25
	in 0.1M KCl aqueous solution.	
	2. Calculation of net charge based on CPE in aqueous 0.1M KCl	S26
	solution.	
	3. Calculation of theoretical moles of hydrogen made via total	S26
	charge.	
	4. Calculation of the catalytic turnover frequency (TOF).	S26
Е.	Coordinates of the complex, adducts and intermediates involved in the	S26-S30
	mechanistic cycle of [Cu(pdc)(H ₂ O) ₂] catalyzed HER.	
F.	References	S31

1.1. Chemicals

All chemicals and solvents used in the synthesis were the analytical reagent grade (AR), and of the highest purity available. >98.0% 2,6 pyridine dicarboxylic acid (**pdc**) (TCI, Japan), $Cu(NO_3)_2$.3H₂O (Sigma-Aldrich, USA), Zn(NO_3)_2.6H₂O (Sigma-Aldrich, USA) and Potassium chloride (SRL, India) and acidic acid (AcOH), conc. Sulfuric Acid (H₂SO₄), ethanol, double distilled water were purchased from monetary outlets. All the solvents were used as received without further purification.

1.2. Synthesis of [Cu(pdc)(H₂O)₂]

The complex $[Cu(pdc)(H_2O)_2]$ was synthesized using previously reported method with slight modifications.¹ The $[Cu(pdc)(H_2O)_2]$ was synthesized by the reaction between 0.4 mmol of Cu(NO₃)₂ .3H₂O and 0.4 mmol of 2,6-pyridine dicarboxylic acid (pdc) in 1:1 in an ethanol-water medium at ambient conditions. The resulting solution was kept for slow evaporation under ambient conditions. After a few days, blue-colored crystals were obtained. The single crystal was subjected to SC-XRD.

Yield for **[Cu(pdc)(H₂O)₂]:** 0.078 g (~81% based on metal salt). Anal. Calc. for C₇H₇NO₆Cu: C:31.77, H:2.67, N:5.29. Found: C:31.69, H:2.63, N:5.25%. UV–Vis (λ, nm, H₂O): 267, 609.

1.3. Synthesis of [Zn(pdc)₂]

The $[Zn(pdc)_2]$ was synthesized under ambient conditions using 0.4 mmol $Zn(NO_3)_2.6H_2O$ and 0.4 mmol pdc in a 1:1 ethanol-water mixture. Slow evaporation of the reaction mixture for 4-5 days yielded transparent white crystals of bis-chelated $[Zn(pdc)_2]$ complex characterized by SC-XRD. However, the crystals were not of standard quality (not publishable). Yield for **[Zn(pdc)₂]:** 0.091 g (~77 % based on metal salt). Anal. Calc. for C₁₄H₆N₂O₈Zn: C:42.51, H:1.53, N:7.08. Found: C:42.58, H:1.49, N:7.01. UV–Vis (λ, nm, H₂O): 267.

1.4. Physical measurements:

Steady-state absorption spectral data of $[Cu(pdc)(H_2O)_2]$ was measured with a HITACHI U-2910 spectrophotometer. A Perkin Elmer 2400 CHN microanalyzer was employed to carry out the elemental analyses of the compounds. The structural characteristics of $[Cu(pdc)(H_2O)_2]$ were determined by powder X-ray diffractometer (Rigaku Smart Lab) using Cu-K_{α} radiation ranging from 10°-80°. A K-Lyte-1.0 potentiostat consisting of a glassy-carbon working electrode, Pt counter electrode, and Ag/AgCl reference was employed to study the electrochemical analysis of the compounds.

1.5. X-ray structural studies and refinement

Suitable single crystals of $[Cu(pdc)(H_2O)_2]$ were selected for single-crystal X-ray diffraction studies. The structural diffraction data were collected on a Rigaku XtaLAB SuperNova, Dual, Cu at home/near Pilatus 200 K diffractometer at 100 K cooled with liquid nitrogen. Using Olexsys software, the structure was solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squares minimization. ² non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were fixed at calculated positions.

1.6. Electrochemical measurements

The electrochemical study of $[Cu(pdc)(H_2O)_2]$ complex was carried using a K-Lyte-1.0 potentiostat electrochemical workstation. A standard three-electrode configuration comprising of a glassy carbon electrode (GCE, 3 mm diameter) as a working electrode, Platinum wire as a counter electrode and Ag/AgCl as a reference electrode was employed. The working electrode

was thoroughly cleaned by polishing it with alumina powder (0.05 Microns) dispersed in distilled water. The recorded cyclic voltammograms (CVs) were referenced against Ag/AgCl (saturated with AgCl) as an internal standard. The electrochemical studies were performed in aqueous acidic medium using 1mM [Cu(pdc)(H₂O)₂], 0.1 M KCl as a supporting electrolyte at a scan rate of 100 mV/S. All glass wares were dried overnight prior to the experiments, and all the experiments were performed under N₂ flow to maintain the inertness of the set-up. The solution was purged with N₂ to eliminate dissolved oxygen.

The cyclic voltammetry (CV) was recorded by taking 1.3 mg (1 mM) of $[Cu(pdc)(H_2O)_2]$ in 5ml aqueous solution containing 0.1 M KCl as a supporting electrolyte. For acid titrations, a stock solution of 1 M acetic acid (AcOH) was prepared. The subsequent CVs were recorded with the addition of AcOH from the 1 M stock solution in the following amounts of 10 µL, 20 µL, 30 µL, up to 300µL.

1.7. Catalyst concentration dependence study

1 mM stock solution of $[Cu(pdc)(H_2O)_2]$ was prepared by dissolving 1.3 mg $[Cu(pdc)(H_2O)_2]$ crystals in double distilled water. 5 mL solution of 0.1 M KCl in H₂O was prepared in an electrochemical cell. CVs were taken from 0.0 to -1.6 V at 100 mV/s. Fixed amount of AcOH (60 mM) was added to the electrochemical cell. The concentration of $[Cu(pdc)(H_2O)_2]$ was varied using 1 mM, 1.5 mM, 2 mM, 2.5 mM and 3 mM and the corresponding CV measurements were taken.

1.8. EPR analysis for 1e reduction of the AcOH treated-[Cu(pdc)(H₂O)₂] in water-DMF

An equal amount of cobaltocene was added into an AcOH treated- $[Cu(pdc)(H_2O)_2]$ in water-DMF (v/v, 5/95) under a nitrogen atmosphere in a Glove box. The initial blue solution of the acid-treated $[Cu(pdc)(H_2O)_2]$ solution turned out to be a faint brown-colored solution. An aliquot was syringed out and injected into an EPR tube for EPR analysis.

1.9. Theoretical Calculation

All the structures were optimized by Density functional theory (DFT) by using the B3LYP functional³ and 6-311G(d,p) basic set.⁴ The calculation in water (ϵ =78.3553) medium using IEFPCM solvation methods.⁵ Gauss view was used as a visualization tool, and all the analysis was carried out by Gaussian 09.⁶ After obtaining the converged geometry, the vibrational harmonic frequencies were calculated at the same theoretical level to ensure that the imaginary frequency number was zero for the stationary point.

B. Figures

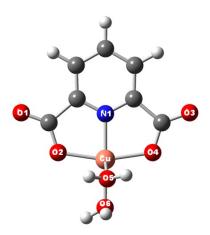


Figure S1: Optimized structure of [Cu(pdc)(H₂O)₂].

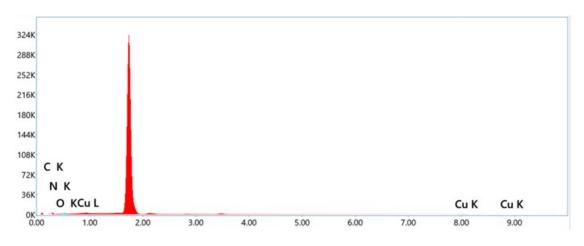


Figure S2: EDX analysis of [Cu(pdc)(H₂O)₂].

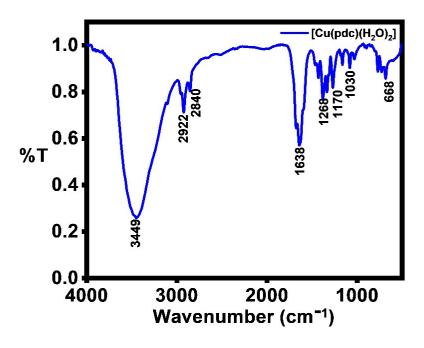


Figure S3: FT-IR spectrum of [Cu(pdc)(H₂O)₂].

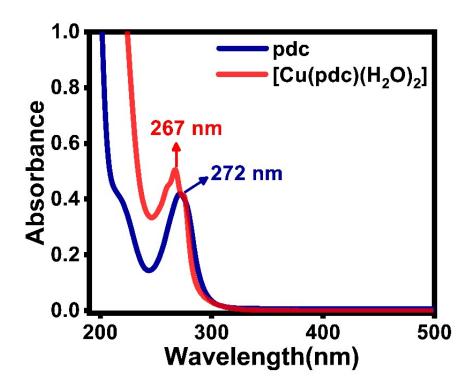


Figure S4: UV-Vis spectra of the ligand pdc and [Cu(pdc)(H₂O)₂] in water.

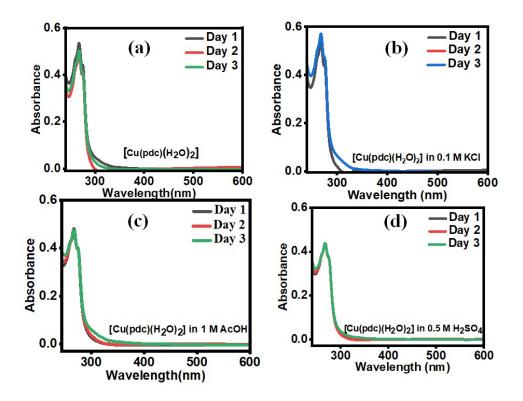


Figure S5: Time dependent UV-Vis spectra of [Cu(pdc)(H₂O)₂]; (a) in H₂O; (b) in aq. 0.1 M KCl; (c) in 1 M AcOH; and (d) in 0.5 M H₂SO₄.

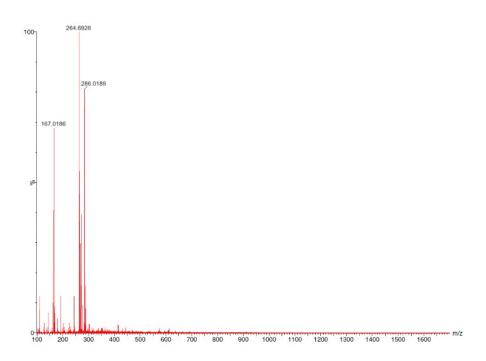


Figure S6: ESI MS spectra of [Cu(pdc)(H₂O)₂] in water.

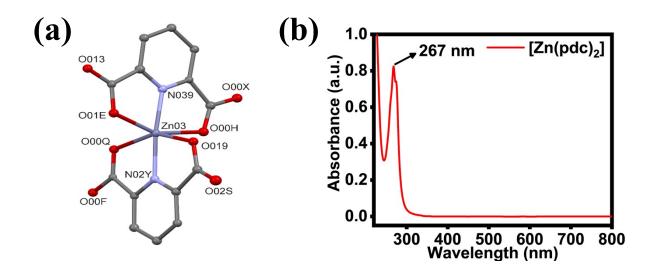
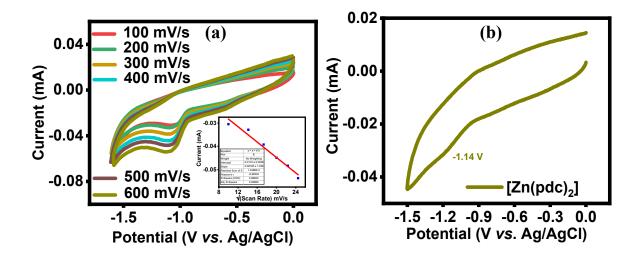



Figure S7: (a) Crystal structure of [Zn(pdc)₂] complex; (b) UV-Vis spectrum of the ligand pdc and [Zn(pdc)₂] in water.

Figure S8: (a) CV of pdc with various scan rate, 100 mV/s to 600 mV/s recorded in the region of 0 V to -1.6 V at scan rate of 100 mV/s, inset represents the linear fit of square root of scan rate vs. peak current obtained from {**Figure S8 (a)**}; (b) CV of 1 mM [**Zn(pdc)**₂] complex in 0.1 M aqueous KCl recorded in the region of 0 V to -1.6 V at a scan rate of 100 mV/s.

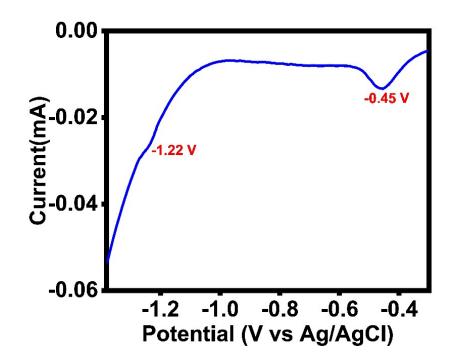


Figure S9: Differential pulse voltammetry (DPV) of [Cu(pdc)(H₂O)₂], in 0.1 M aqueous KCl.

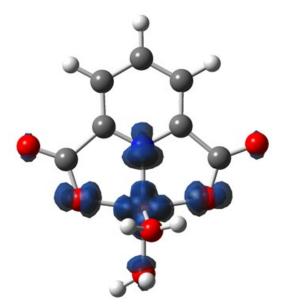


Figure S10: Spin density plot of [Cu(pdc)(H₂O)₂] (S=1/2,q=0).

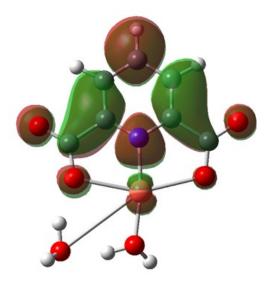


Figure S11: LUMO of singlet-configured reduced [Cu(pdc)(H₂O)₂].

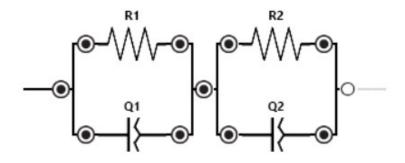
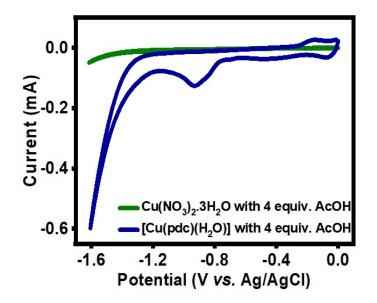
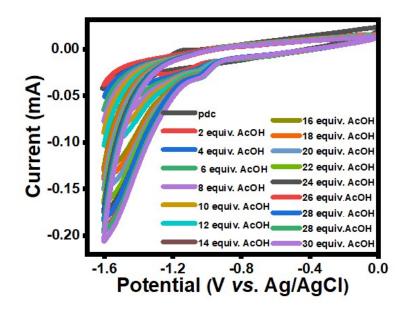




Figure S12: Circuit diagram for impedance spectral study.

Figure S13: Comparison of CV of **Cu(NO₃)₂.3H₂O** and **[Cu(pdc)(H₂O)₂]** in 0.1 M aqueous KCl with 4 equiv. AcOH addition was recorded in the region of 0 V to -1.6 V at a scan rate of 100 mV/s.

Figure S14: (a) CV of ligand, **pdc** in 0.1 M aqueous KCl with sequential AcOH addition (0-30 equiv.), recorded in the region of 0 V to -1.6 V at a scan rate of 100 mV/s.

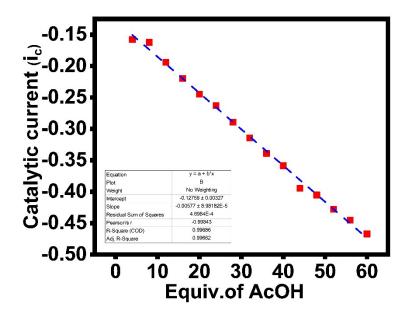
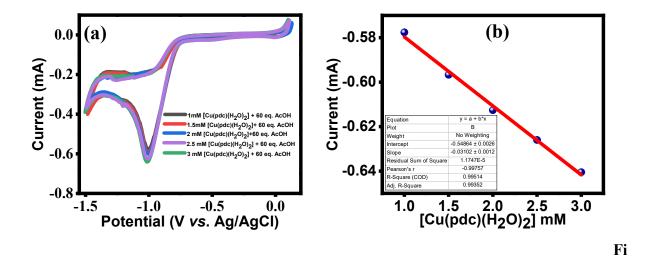



Figure S15: Plot of concentration of AcOH vs. catalytic current obtained from {Figure 3(b)}.

gure S16: (a) CV of different concentrations of $[Cu(pdc)(H_2O)_2]$ (1 mM to 3 mM) recorded in 0.1 M aqueous KCl with 60 equiv. AcOH addition in the region of 0 V to -1.6 V (V vs. Ag/AgCl) at scan rate of 100 mV/s and (b) Plot of concentration of $[Cu(pdc)(H_2O)_2]$ vs. peak current obtained from {Figure S16(a)}.

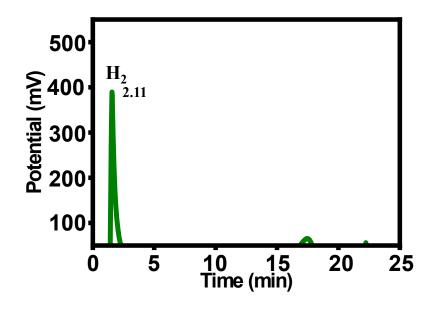
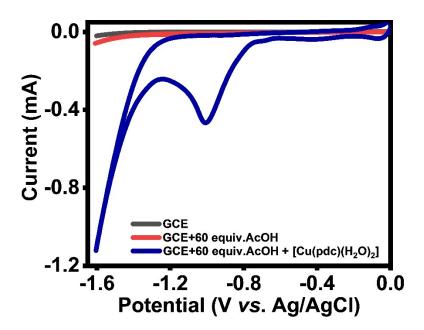



Figure S17: Hydrogen gas detection by gas chromatography (GC).

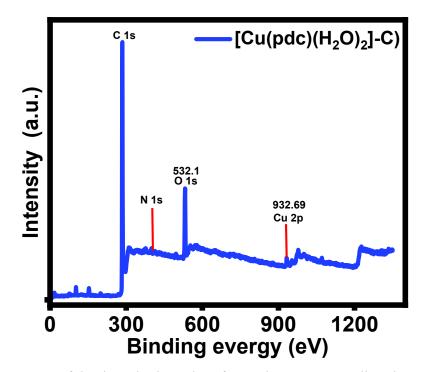

Figure S18: Comparison of CV of bare GCE (black); dipped GCE, rinsed and dipped in 0.1M KCl and 60 equiv. AcOH(red) and dipped GCE with 0.1 M KCl and 1 mM [Cu(pdc)(H₂O)₂] in water(blue).

Figure S19: EDX of the electrode-wiped carbon tape after CPE.

Figure S20: CPE of $[Cu(pdc)(H_2O)_2]$ for 10 hours, in 0.1 M aqueous KCl with 60 equiv. AcOH addition at -1.2 V.

Figure S21: Full XPS spectra of the deposited species after 10 hrs CPE, revealing the presence of C 1s, N 1s, O 1s and Cu 2p.

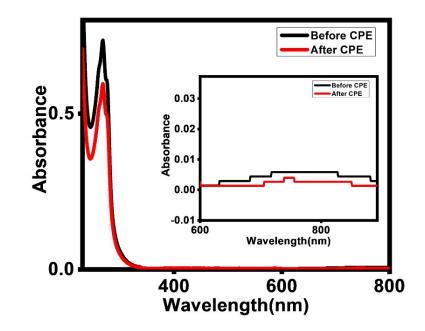


Figure S22:UV-Vis spectra of the $[Cu(pdc)(H_2O)_2]$ before and after CPE (10 hours), Inset: Comparison of the d-d bands of the $[Cu(pdc)(H_2O)_2]$ before and after CPE.

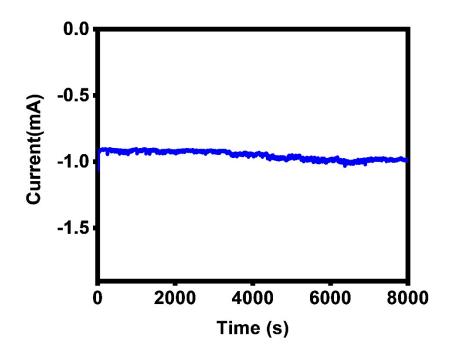


Figure S23: Post CPE durability study, CPE for 3.5 hours using a fresh electrode.

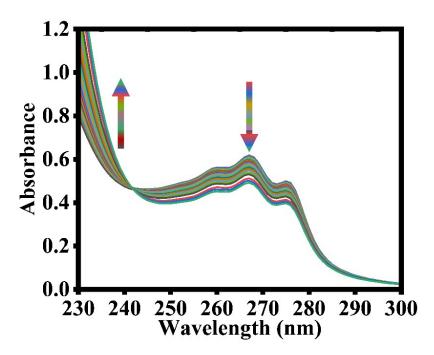
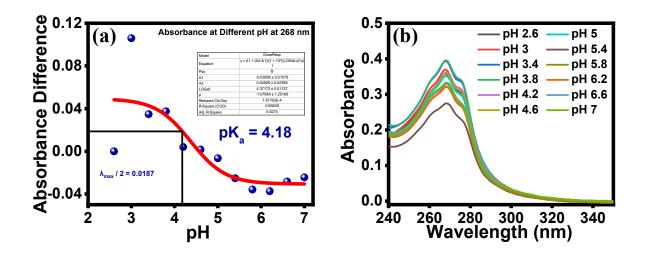



Figure S24: Spectrophotometric titration of $[Cu(pdc)(H_2O)_2]$ in 1 M AcOH in H₂O under ambient conditions.

Figure S25: pH-dependent spectrophotometric study for calculation of pKa value in citratephosphate buffer in the pH range 2.6 -7.

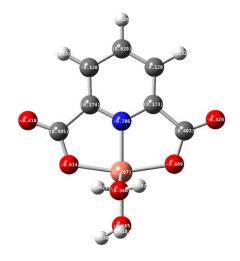


Figure S26: Mulliken charge distribution of [Cu(pdc)(H₂O)₂].

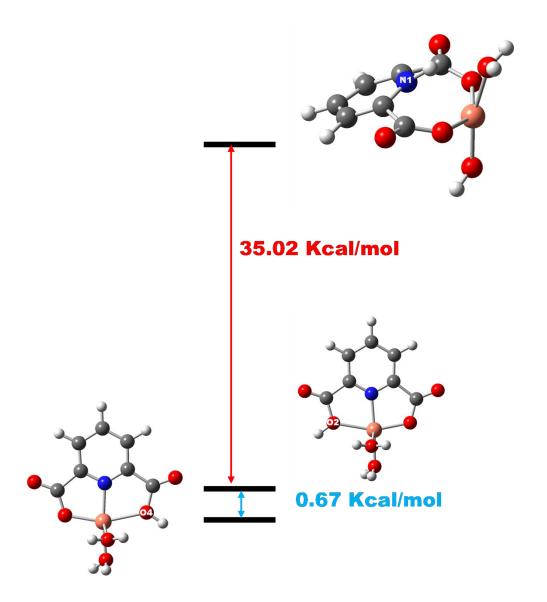


Figure S27: The energy difference between the protonation sites of O(4), O(2), and N(1).

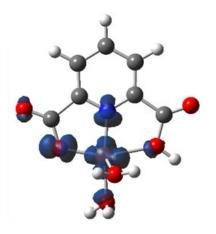


Figure S28: Spin density plot of protonated [Cu(pdc)(H₂O)₂] intermediate(B).

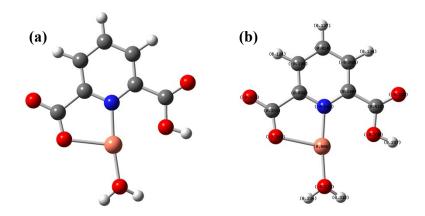


Figure S29:(a) Optimized structure of intermediate (C), (b) Mulliken charge distribution of intermediate (C).

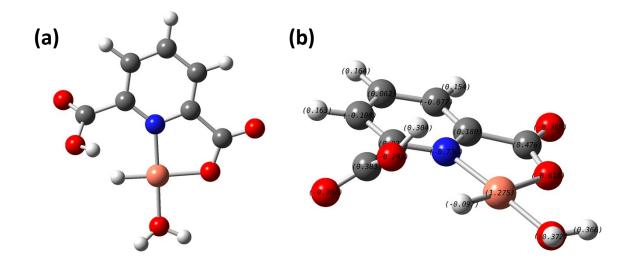


Figure S30: (a) Optimized structure of intermediate (D); (b) Mulliken charge distribution of intermediate (D).

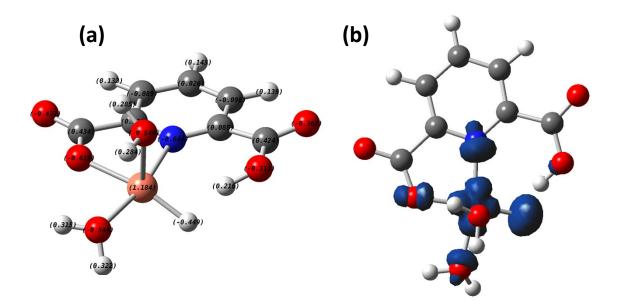


Figure S31: (a) Mulliken charge distribution of intermediate (E); (b) Spin density plot of intermediate (E).

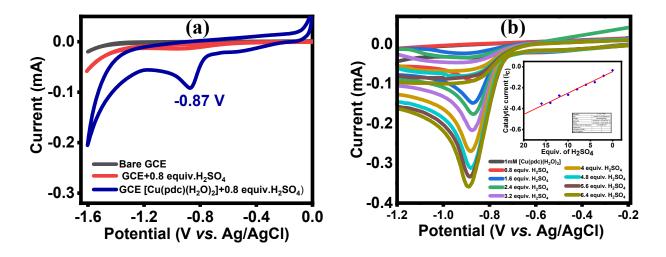


Figure S32: (a) CV comparison of electrolyte solution (blank, grey), electrolyte solution after addition of 0.8 equiv. of H_2SO_4 (red) and $[Cu(pdc)(H_2O)_2]$ with addition of 0.8 equiv. of H_2SO_4 addition (blue) recorded; (b) CV of $[Cu(pdc)(H_2O)_2]$ in 0.1 M aqueous KCl with sequential H_2SO_4 addition (0-6.4 equiv.),inset represents the plot of concentration H_2SO_4 vs. catalytic current obtained from {Figure S32(a)}.

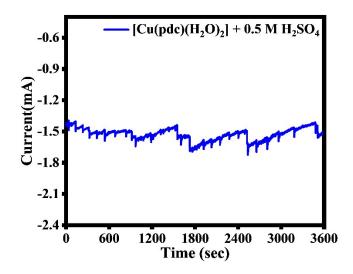


Figure S33: CPE of $[Cu(pdc)(H_2O)_2]$ in the presence of 6.4 equiv. H_2SO_4 at constant potential of -1.2 V (V vs. Ag/AgCl) for 1 hour.

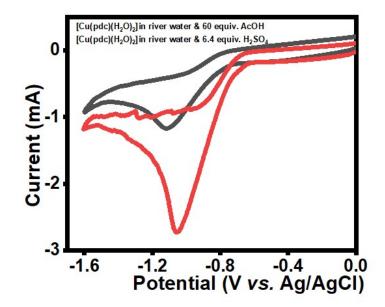


Figure S34: CV of $[Cu(pdc)(H_2O)_2]$ in river water with 60 equiv. AcOH addition (black) and 6.4 equiv.), H_2SO_4 addition (red) (recorded in the region of 0 V to -1.6 V (V *vs*. Ag/AgCl) at scan rate of 100 mV/s.

C. Tables

Parameters	[Cu(pdc)(H ₂ O) ₂]
CCDC	2369860
Empirical formula	C ₇ H ₇ NO ₆ Cu
Formula weight	264.68
T (K)	293K
Wavelength (Å)	1.54184
Crystal system	Triclinic
Space group	pl
Unit Cell Dimensions	0.24 x 0.26 x 0.28
a (Å)	4.6917(3)
b (Å)	8.9149(5)
c (Å)	10.3084(5)
α (°)	80.248(4)
β (°)	85.172(4)
γ (°)	83.783(4)
V (Å ³)	421.48(4)
Z	2
ρ (g cm ⁻³)	2.086
Absorption coefficient (mm ⁻¹)	3.844
F(000)	266
Theta range for data collection	4.4 to 79.9
Index ranges (h, k, l)	$-5 \le h \le 5, -9 \le k \le 11, -10 \le l \le 13$
Reflections collected	7212
Independent reflections	1772
R(int)	0.031
Final R indices [I>2sigma(I)]	$R_1 = 0.0305, wR_2 = 0.0820$

Table S2. Selected bond distances (Å) and angles (°) of [Cu(pdc)(H₂O)₂]:

	Exp.	DFT		Exp.	DFT
Cu(1) - O(2)	2.0099(15)	1.98	$\angle O(2) - Cu(1) - N(1)$	80.51(6)	81.70
Cu(1) - O(4)	2.01(15)	1.99	$\angle O(4) - Cu(1) - O(5)$	96.64(6)	91.06
Cu(1) - O(5)	2.1508(15)	2.39	$\angle O(4) - Cu(1) - O(6)$	97.15(6)	98.56
Cu(1) - O(6)	1.9770(15)	1.99	$\angle O(4) - Cu(1) - N(1)$	80.36(6)	81.47
Cu(1) - N(1)	1.9161(17)	1.89	$\angle O(5) - Cu(1) - O(6)$	92.79(6)	74.28
$\angle O(2) - Cu(1) - O(4)$	160.45(6)	163.08	$\angle O(5) - Cu(1) - N(1)$	108.97(6)	110.80
$\angle O(2) - Cu(1) - O(5)$	93.37(6)	96.48	$\angle O(6) - Cu(1) - N(1)$	158.23(6)	174.91
$\angle O(2) - Cu(1) - O(6)$	99.10(6)	98.04	$\angle Cu(1) = O(2) = C(1)$	114.94(12)	115.42
$\angle Cu(1) = O(5) = H(5A)$	110	120.11	$\angle Cu(1) = O(4) = C(7)$	115.20(12)	115.40
$\angle Cu(1) = O(5) = H(5B)$	111(2)	120.04	$\angle Cu(1) - N(1) - C(2)$	118.31(13)	117.62
	115(3)	122.04	$\angle Cu(1) - N(1) - C(6)$	118.60(13)	117.87
$\angle Cu(1) - O(6) - H(6B)$					
$\angle Cu(1) - O(6) - H(6A)$	109.00	120.11			

D-H···A	<i>d</i> (D – H)	<i>d</i> (H···A)	<i>d</i> (D ····A)	∠(DHA)	Symmetry
O(5)– H(5A)····O(3)	0.85	1.85	2.703(2)	178	2-x,1-y,2-z
O(5)– H(5B)···O(4)	0.82(3)	2.00(3)	2.751(2)	152(3)	-1+x,y,z
O(6)–H(6A)···O(1)	0.85	1.92	2.731(2)	160	1-x,1-y,1-
O(6)–H(6B)···O(2)	0.75(3)	2.29(3)	2.925(2)	144(3)	1+x,y,z
O(6)–H(6B)···O(2)	0.75(3)	2.39(3)	3.026(2)	143(3)	2-x,1-y,1-
C(3)-H(3)···O(1)	0.93	2.38	3.299(2)	169	-x,2-y,1-z
C(5)–H(5)····O(3)	0.93	2.41	3.310(2)	162	2-x,2-y,2-z

Table S3. Hydrogen bond lengths (Å) and angles (°) for [Cu(pdc)(H₂O)₂]:

Table S4. Elect	rochemical	experiment	al results	from a typ	oical AcOH	titration of
[Cu(pdc)(H ₂ O) ₂] obtained using (Equation S3):						
[Cu(pdc)(H ₂ O) ₂] (mM)	AcOH (eq)	i _c (mA)	i _p (mA)	i _{cat} ,i _p	Scan rate (ϑ,mV/s)	k _{obs} (s ⁻¹)
1	4	-0.15783	-0.03414	4.623023	100	9.28
1	8	-0.11624	-0.03414	3.404804	100	9.83
1	12	-0.1941	-0.03414	5.685413	100	14.04
1	16	-0.2198	-0.03414	6.438196	100	18.7
1	20	-0.24498	-0.03414	7.175747	100	22.37
1	24	-0.26299	-0.03414	7.703281	100	25.78
1	28	-0.28933	-0.03414	8.47481	100	31.2
1	32	-0.31439	-0.03414	9.208846	100	36.84

1	36	-0.339053	-0.03414	9.931254	100	42.85
1	40	-0.358688	-0.03414	10.50639	100	47.96
1	44	-0.39474	-0.03414	11.56239	100	58.09
1	48	-0.40528	-0.03414	11.87112	100	61.23
1	52	-0.42791	-0.03414	12.53398	100	68.26
1	56	-0.44915	-0.03414	13.15612	100	73.87
1	60	-0.46724	-0.03414	13.686	100	81.38

D. Calculations:

1. Determination of the diffusion coefficient (D) of [Cu(pdc)(H₂O)₂] in 0.1 M KCl aqueous solution:

The Diffusion Coefficient (D) was derived from the theoretical slope using the equation below-

$$Slope = \left[0.4463nFAC^{0} \left(\frac{nFD}{RT}\right)^{\frac{1}{2}}\right] \dots (Equation S1)$$
$$D = \left(\frac{slope}{0.4463 n FA C^{0}}\right)^{2} \frac{RT}{nF} \dots (Equation S2)$$

Slope = -0.00215

Area of the glassy carbon electrode (A) = 0.071 cm^2

Concentration of the analyte (C) = 1×10^{-3} moles

Faraday constant (F) = 96485 C/mole

R = ideal gas constant, and T = 298 K

$$D = 5.7 \text{ x} 10^{-4} \text{ cm}^2 \text{ s}^{-1}$$

2. Calculation of net charge based on Control potential Electrolysis (CPE) in aqueous 0.1M KCl solution:

Total charge = $Q_{with cat} - Q_{blank} = Qnet$

=10.6056 C - 0.046 C = 10.5596

3. Calculation of theoretical moles of hydrogen made via total charge

a) Moles of Hydrogen produced using AcOH:

Moles of H₂ produced(theoretical) =10.6056 \times (1 mol e⁻/96485 C) x (1 mol H₂/2 mol e⁻)

= 5.5×10^{-5} moles H₂ based on the charge from electrolysis.

b) Moles of Hydrogen produced using H₂SO₄:

Moles of H₂ produced(theoretical) = $17.06 \times (1 \text{ mol } e^- / 96485 \text{ C}) \times (1 \text{ mol } H_2 / 2 \text{ mol } e^-)$

= 8.819×10^{-5} moles H₂ based on the charge from electrolysis.

4. Calculation of the catalytic turnover frequency (TOF):

Assuming two electrons are passed for each H_2 molecule produced (n=2), and the acid concentration does not change significantly during the measurement, the catalytic turnover frequency (k_{obs}) can be calculated using (**Equation S3**)

 $\frac{i_{cat}}{i_p} = \frac{n}{0.4463} \sqrt{\frac{RTKobs}{Fv}}$(Equation S3)

E. Co-ordinates of the intermediates and the adduct involved in the mechanistic cycle of [Cu(pdc)(H₂O)₂] catalyzed HER

A

Cu 4.882	6.237	7.263
O 1.843	7.764	5.15
O 3.44	6.383	5.871
O 6.833	8.491	9.954
O 6.248	6.768	8.639
O 3.679	5.019	8.565
H 4.182	4.62	9.128
Н 3.047	5.449	8.859

O 5.855	4.674	6.541
Н 5.333	4.218	6.049
H 6.47	4.836	6.143
N 4.397	8.074	7.504
C 2.844	7.519	5.827
C 3.44	8.582	6.728
C 3.1	9.924	6.829
H 2.428	10.288	6.3
C 3.798	10.713	7.749
Н 3.594	11.616	7.833
C 4.8	10.151	8.542
Н 5.27	10.666	9.158
C 5.073	8.799	8.383
C 6.145	7.979	9.077
В		
Cu 4.882	6.237	7.263

Cu 7.002	0.237	7.205
O 1.843	7.764	5.15
O 3.44	6.383	5.871
O 7.00749	9 8.4998	8 9.84905
O 6.248	6.768	8.639
O 3.679	5.019	8.565
H 4.182	4.62	9.128
H 3.047	5.449	8.859
O 5.855	4.674	6.541
Н 5.333	4.218	6.049
H 6.47	4.836	6.143
N 4.397	8.074	7.504
C 2.844	7.519	5.827

C 3.44 8.582 6.728
C 3.1 9.924 6.829
H 2.428 10.288 6.3
C 3.798 10.713 7.749
H 3.594 11.616 7.833
C 4.8 10.151 8.542
H 5.27 10.666 9.158
C 5.073 8.799 8.383
C 6.18056 7.96642 9.11672
H 6.86197 6.29223 9.20317
С
Cu -0.81694 -0.9274 0.02515
O -1.30757 3.24281 -0.06654
O -1.93323 1.08443 0.11658
O 3.43001 -2.00547 -0.01683
O 1.21524 -2.38135 -0.00538
O -2.35164 -2.07319 0.05074
H -3.18068 -1.53004 -0.03602
H -2.42271 -2.81381 -0.55833
N 0.66959 0.26386 0.01034
C -1.09421 2.02693 0.01844
C 0.38653 1.58393 0.0098
C 1.3975 2.5434 -0.00416
H 1.10699 3.58439 -0.00938
C 2.72794 2.14686 -0.01223
H 3.52587 2.87899 -0.01986
C 3.01708 0.78703 -0.01254

H 4.03225 0.4161 -0.0212 C 1.96447 -0.12217 -0.0031 C 2.29773 -1.58346 -0.00906

H 1.52283 -3.30214 -0.00939

D

Cu 0.88951 -1.07059 0.01906

- O 2.68205 2.33328 0.03806
- $O\ 2.25945 \quad 0.15608 \quad 0.17531$
- O -3.56699 -1.14091 0.02118
- O -1.5301 -2.2684 0.10981
- O 2.05978 -2.4774 0.03505
- H 2.84266 -2.23672 0.53582
- H 1.64008 -3.23815 0.44335
- N -0.27754 0.38177 -0.02453
- C 1.8811 1.3629 0.0584
- C 0.36035 1.53284 -0.04544
- C -0.315 2.75035 -0.1416
- H 0.21987 3.6761 -0.18396
- C -1.71476 2.72287 -0.17685
- H-2.2749 3.6316 -0.24999
- C -2.37198 1.48129 -0.11241
- H -3.44096 1.43603 -0.12373
- C -1.61327 0.29887 -0.03481
- C -2.3105 -1.07257 0.03314
- H -1.02272 -2.26769 0.92477
- H -0.21592 -2.02683 -0.13754

E

- Cu -1.26288 -0.62077 -0.39561
- O -1.19088 3.28452 0.2495
- O -1.89341 1.1598 0.07067
- O 3.29385 -2.1239 0.15377
- O 1.15506 -2.61159 -0.07395
- O -3.2656 -1.0646 -0.62265
- H -3.78368 -0.25056 -0.56832
- H -3.57854 -1.54105 -1.40039
- N 0.60739 0.23457 -0.08971
- C -0.9996 2.08132 0.10803
- C 0.43501 1.57076 -0.01679
- C 1.50208 2.4611 -0.00733
- H 1.2875 3.51902 0.05186
- C 2.79528 1.96255 -0.06846
- H 3.64905 2.62867 -0.07587
- C 2.97497 0.58573 -0.09254
- H 3.95831 0.13905 -0.09589
- C 1.86337 -0.25632 -0.09461
- C 2.15327 -1.74729 -0.01172
- H 0.2839 -2.21717 -0.39007
- Н -0.84046 -1.90578 -1.13256
- O -1.67857 -1.34874 1.80095
- H -2.57265 -1.70892 1.76445
- H -1.74157 -0.61411 2.42166

F. References:

1	Q. Zang, G. Q. Zhong and M. L. Wang, <i>Polyhedron</i> , 2015, 100 , 223–230.
2	G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3-8.
3	S. Grimme, J. Comput. Chem., 2006, 27, 1787–1799.
4	Y. Zhao and D. G. Truhlar, J. Chem. Phys., , DOI:10.1063/1.2370993.
5	B. Mennucci, E. Cancès and J. Tomasi, J. Phys. Chem. B, 1997, 101, 10506–10517.
6	M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
	Cheeseman, G. Scalmani, V. Barone, B. Mennucc, G. A. Petersson, H. Nakatsuji, M.
	Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
	Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
	Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E.
	Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
	Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.
	S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.
	Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
	A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V.
	G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
	Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 Revision

A.1. Gaussian Inc, Gaussian, Inc., Wallingford CT, 2009.