## **Supporting Information**

## Mn-doped Cobalt oxide dodecahedron nanocages as an efficient bifunctional electrocatalyst for zinc-air batteries

Sai Vani Terlapu, Ranjit Bauri\*

Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India

\*Corresponding author, Email: rbauri@iitm.ac.in



Fig. S1. TGA profile of Co-Mn-ZIF sample in air atmosphere



Fig.S2.SEM images of (a) Co-ZIF, (b) Mn-Co-ZIF-0.5, (c) Mn-Co-ZIF-2, (d) Co<sub>3</sub>O<sub>4</sub>, (e) Mn-Co<sub>3</sub>O<sub>4</sub>-0.5, and (f) Mn-Co<sub>3</sub>O<sub>4</sub>-2.



Fig.S3. (a) CV curves of all the studied catalysts in oxygen-saturated KOH electrolyte, (b) LSV curves of Mn-Co<sub>3</sub>O<sub>4</sub>-1 at various rotation speeds.



Fig. S4. LSV curves of (a)  $Co_3O_4$  and (b) Pt/C at various rotation speeds, corresponding K-L plots of (c)  $Co_3O_4$  and (d) Pt/C.



Fig.S5. Chronoamperometric test of RuO<sub>2</sub> and Mn-Co<sub>3</sub>O<sub>4</sub>-1 under OER conditions.



Fig. S6. LSV curves of Mn-Co<sub>3</sub>O<sub>4</sub>-1 catalyst at various temperatures for (a) ORR and (b) OER.

 Table.S1. Summary of the ORR/OER bifunctional performance of cobalt metal-based
 electrocatalysts reported in literature

| Electrocatalyst                                   | E <sub>1/2</sub> (vs. RHE) | E <sub>j=10</sub> (vs. RHE) | ΔE(V) | Ref.      |
|---------------------------------------------------|----------------------------|-----------------------------|-------|-----------|
| Mn-Co <sub>3</sub> O <sub>4</sub> -1              | 0.84                       | 1.56                        | 0.71  | This work |
| ZnCoMnO <sub>4</sub> /N-rGO                       | 0.83                       | 1.68                        | 0.85  | 1         |
| N-rGO/Co <sub>3</sub> O <sub>4</sub>              | 0.8                        | 1.58                        | 0.78  | 2         |
| NCO-2                                             | 0.65                       | 1.505                       | 0.855 | 3         |
| 0.1Ni@Co <sub>3</sub> O <sub>4</sub>              | 0.8                        | 1.58                        | 0.78  | 4         |
| Ce@Co <sub>3</sub> O <sub>4</sub> /CNFs           | 0.81                       | 1.61                        | 0.8   | 5         |
| NiCo <sub>2</sub> O <sub>4</sub> /N-G             | 0.72                       | 1.595                       | 0.785 | 6         |
| CoLa-1                                            | 0.842                      | 1.531                       | 0.69  | 7         |
| N-Co <sub>3</sub> O <sub>4</sub> /N-CNs           | 0.79                       | 1.584                       | 0.794 | 8         |
| NiCo <sub>2</sub> O <sub>4</sub> -GO/C            | 0.74                       | 1.62                        | 0.88  | 9         |
| 5% Cu- Co <sub>3</sub> O <sub>4</sub>             | 0.69                       | 1.59                        | 0.9   | 10        |
| Ni <sub>oh</sub> - Co <sub>3</sub> O <sub>4</sub> | 0.84                       | 1.62                        | 0.78  | 11        |
| Co <sub>3</sub> O <sub>4</sub> -                  | 0.79                       | 1.62                        | 0.83  | 12        |
| NiCo <sub>2</sub> O <sub>4</sub> /NRGO            |                            |                             |       |           |

## **References:**

1 W. Liu, D. Rao, J. Bao, L. Xu, Y. Lei and H. Li, *J. Energy Chem.*, 2021, **57**, 428–435.

J. S. Sanchez, R. R. Maça, A. Pendashteh, V. Etacheri, V. A. de la P. O'Shea, M. Castillo-Rodríguez, J. Palma and R. Marcilla, *Catal. Sci. Technol.*, 2020, **10**, 1444–1457.

3 J. Zhao, Y. He, J. Wang, J. Zhang, L. Qiu, Y. Chen, C. Zhong, X. Han, Y. Deng and W. Hu, *Chem. Eng. J.*, 2022, **435**, 134261.

4 Y. Zhang, C. Huang, J. Lu, H. Cao, C. Zhang and X. S. Zhao, *Appl. Surf. Sci.*, 2024, **651**, 159241.

5 X. Sun, T. Xu, W. Sun, J. Bai and C. Li, J. Alloys Compd., 2022, 898, 162778.

6 Y. Ma, W. Shang, W. Yu, X. Chen, W. Xia, C. Wang and P. Tan, *Energy Fuels*, 2021, **35**, 14188–14196.

7 N. S. Gultom, Y.-C. Zhou and D.-H. Kuo, *J. Colloid Interface Sci.*, 2024, **655**, 394–406.

8 Z. Liu, Y. Cao, S. Wang, Z. Lu, J. Hu, J. Xie and A. Hao, *J. Alloys Compd.*, 2023, **965**, 171479.

9 L. Fu, Y. Yao, J. Ma, Z. Zhang, G. Wang and W. Wei, *Langmuir*, 2024, **40**, 6990–7000.

10 A. Behera, D. Seth, M. Agarwal, M. A. Haider and A. J. Bhattacharyya, *ACS Appl. Mater. Interfaces*, 2024, **16**, 17574–17586.

11 S. Liu, B. Zhang, Y. Cao, H. Wang, Y. Zhang, S. Zhang, Y. Li, H. Gong, S. Liu, Z. Yang and J. Sun, *ACS Energy Lett.*, 2023, **8**, 159–168.

12 Z. Zhu, J. Zhang, X. Peng, Y. Liu, T. Cen, Z. Ye and D. Yuan, *Energy Fuels*, 2021, **35**, 4550–4558.