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Simulation section

The velocity distribution for three type structures are numerically calculated using 

the finite-element software package COMSOL Multiphysics. For steady fluidic flow of 

porous material, it is determined by Brinkman equation:
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where p is fluidic pressure, u is flow velocity, μ is fluidic viscosity, εp is porosity κ is 

permeability, Qm is the mass source. For boundary conditions, the bottom is the fluid 

inlet and the top is the fluid outlet.

To simulate the energy conversion inside the channel, the electrostatic field, ions 

concentration and the velocity fields can be determined by coupled Poisson–Nernst–

Planck (PNP) equations and Navier-Stocks (N-S) equation:
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where ε0, εf and εm is the absolute permittivity of vacuum, fluid relative permittivity and 

membrane relative permittivity, respectively. F, z, D, R,T, μ is the Faraday constant, 

ions valence, diffusion coefficient, gas constant, temperature, fluid viscosity, 
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respectively. The ci, u, p is the potential, ions concentration, fluid velocity and 

pressure, respectively. At the channel entrance, the velocity and ion concentration (1e-7 

mol/L for DI water) is specified. The wall surface charge is fixed at 5 mC/m2, 

impermeable to ions and no-slip condition. The channel outlet pressure is 0.
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Fig. S1 The geometric schematics of the three types of generators.
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Fig. S2. The zeta potential under three measurements.
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Fig. S3. The diagram of multi-electrode arrangement.
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Fig. S4 The SEM mages of PTFE membranes.
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Fig. S5 The Raman spectra of membrane.
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Fig. S6 The XRD pattern of membrane.
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Fig. S7 The IV curves of drying and wetting PTFE membranes.



11

0

0.1

0.06

μm/s (b)

0

2

4

6

8
μm/s

0.08

0.04

0.02

(a)

local zoom area

local zoom area

Fig. S8 The local zoomed-in image of (a) FCS and (b) RCS.
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Fig. S9 The diagram of generator upon Cu-C and C-Cu electrodes.
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Fig. S10 EDS images of Cu electrode before (a) and after (b) measurement in DI 

water.
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Fig. S11 The mechanism analysis for (a) asymmetric Cu-C electrodes (d) asymmetric 

C-Cu generator.
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Fig. S12 (a) The open circuit voltage and (b) short circuit current under different ion 

concentration. (c) The open circuit voltage and short circuit current as a function of ion 

concentration. 
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Fig. S13 The equivalent circuit diagram of evaporating-hydrovoltaic generator.



17

Fig. S14 The output power comparison of generator.
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Fig. S15 The real optical image of PTFE membrane charging capacitor.
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Fig. S16 The stability test of short circuit current.
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